
Hardware Implementation of Web Based Arabic
Optical Character Recognition Units

Osama Al-Khaleela, Inad Aljarraha, Abdelrahman Idriesb, Khaldoon Mhaidata
Department of Computer Engineering

Jordan University of Science and Technology
Irbid, Jordan 22110

Emaila: {oda, inad, mhaidat}@just.edu.jo
Emailb: aaidraisalsouqi11@cit.just.edu.jo

Abstract— Optical character recognition (OCR) is an
important application in the field of pattern recognition. It
extracts text from an image document and saves it in an
editable form. Examples where OCR is used include library
digitization and text searching in scanned documents. Web
based applications are main tools for data processing over
the net. However, implementing such applications in
dedicated hardware systems would increase performance
and reliability by many folds over software implementation.
In this paper, we present a detailed hardware
implementation of the features extraction and character
matching units of an Arabic optical character recognition
(AOCR) system. The hardware implementation of each of
these two units is described in VerilogHDL and functionally
tested using ISim from Xilinx. Furthermore, each
implementation is synthesized using Xilinx ISE 13.1
targeting Xilinx Spartan6 FPGA family. Experimental
results show significant speed up in the hardware
implementations over software ones. We further, explore
the possibility of accessing these systems over the Web. Thus,
they are beneficial to wider range of people.

Index Terms—AOCR, FPGAs, character matching,
segmentation, hardware

I. INTRODUCTION

Optical character recognition (OCR) is the method for
converting a text document that is stored as an image into
editable text. There are many applications that use optical
character recognition such as searching scanned
documents that are saved as images for a given text.
Other applications include libraries digitization, reading
filled forms of customers, and saving postal address off
envelopes in text based files [1]. Due to its importance,
OCR has been attracting researchers for the last four
decades [1, 2]. For Arabic language, it is called Arabic
optical character recognition (AOCR).

AOCR is harder to implement than OCR for other
languages due to the continuous nature of the Arabic
language writing. This continuity dictates that words
must be segmented before each character is recognized.

OCR usually starts by dividing the words into
characters. Each character is then recognized based on its
feature descriptors. The text in the scanned document can

be either handwritten or typewritten. In this work, only
typewritten text will be considered.

Existing AOCR implementations are known to have
long execution time because they are implemented in
software and because they require intensive processing.
For example, the segmentation process for the AOCR is
repeated many times for each word to be divided into
characters. Also, the feature descriptors are calculated for
each character. Therefore, a hardware based
implementation of AOCR is of great importance.

It can be easily figured out that extracting the feature
descriptors and the character matching are the two main
steps in AOCR. Thus, in this paper we propose a features
extraction and a character matching units for Arabic
characters recognition. The features that are under
consideration are part of the features presented in [3] and
[4]. Additional two features have been considered as will
be shown in Section IV. The proposed character matching
unit along with four different versions of the proposed
features extraction unit have been investigated and
implemented in Field Programmable Gate Array (FPGA).

Different web based OCR systems do exist. Examples
of these are ABBYY FineReader [5], Free Online OCR
[6], Free OCR [7], i2OCR [8], and OCRextrACT [9].
However, these systems are software based which
dictates long processing time. Up to the knowledge of the
authors, there is no hardware OCR implementation that is
accessible through the web. Therefore, in this work we
discuss the possibility of connecting the proposed
hardware systems to the web as a high speed substitute
for the software ones.

The rest of this paper is organized as follows: Section
II presents the related work. Section III discusses the
connectivity of hardware systems to the Web. Section IV
and Section V discuss the proposed features extraction
and character matching units respectively. Section VI
talks about the experiments and gives some experimental
results. Finally, the conclusion and the future work are
presented in Section VII.

II. RELATED WORK

Different approaches for Arabic optical character
recognition have been proposed in literature. These

210 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jetwi.6.2.210-219

approaches have been implemented in both software and
hardware platforms. However, software implementations
are known to be slow compared with the proper dedicated
hardware ones. Actually, due to its complexity, few
examples of hardware implementation are known to exist
in literature.

The authors in [3] and [4] present a new method to
segment and recognize typewritten Arabic characters. A
gray scale image of the scanned Arabic text document is
converted into binary image. Median filter is then applied
on the binary image in order to remove the isolated pixels.
The filtered image is divided into lines which are divided
into words using segmentation algorithms. In the final
stage they use character splitting and features extraction
for character recognition.

An optical character recognition system for isolated
Arabic characters is presented in [1]. It is implemented
using the fixed-point digital signal processor (TI
TMS320C6416T). Fuzzy art neural network is used to
recognize the characters.

In [10], an automated recognition of handwritten
Arabic characters is proposed. The approach is based on
the geometrical features of the characters. Artificial
neural network is adopted for characters classification.

One example of hardware implementation is presented
in [11]. Altera FPGAs are targeted and an embedded
design for Arabic optical character recognition is
designed. The system consists of two parts: software part
for image preprocessing and hardware part for image
segmentation and character recognition.

Since there are similarities between Arabic and Persian
characters, approaches for Persian character recognition
might be applicable to Arabic character recognition. An
FPGA implementation for Farsi handwritten digit
recognition is proposed in [12]. The authors present a
new method for feature extraction and a simple two
layers Multi-Layer Perceptron (MLP) is used for digit
classification.

One new algorithm for Persian handwritten characters
recognition appears in [13]. The character is recognized
by new decision tree using artificial neural network. A
recognition accuracy of 98.72% has been achieved.

A novel Persian digits optical character recognition
algorithm that is implemented in FPGA chip is presented
in [14]. The approach mainly depends on the horizontal
and vertical projections of digits. In this algorithm the
image is converted into black and white image where the
black color pixels (pixels with value of 0) represent the
digit and the white color pixels (pixels with value of 1)
represent the background. The features vectors are
calculated for each digit. A feature vector contains the
maximum number of black pixels in the horizontal and
the vertical projections, the total number of the black
pixels, and the number of the black pixels in the top left
quarter of the image. In the recognition stage, the feature
vector is extracted for the input digit and it is compared
with all feature vectors that have been stored in a data
base.

Much work has been done in the area of implementing
part of server-client systems in hardware. One example is

presented in [15] where a web server is designed using
Xilinx MicroBlaze soft processor. The authors also
explain a way where a client can connect to the web
server running on the MicroBlaze soft processor.

Another web server design example by Altera is found
in [16]. The design is based on Nios II development
board.

In [17], the authors propose a system in which an
image is captured by an image recorder and then it is sent
to a PC. The PC establishes a communication link with an
FPGA board and the image is transferred to the board for
processing. An edge detection algorithm is implemented
on the FPGA. The edge detection algorithm is applied on
the image and then the processed image is transferred
back to the PC for displaying. Different techniques are
adopted for the implementation of the edge detection
algorithm. In the first one, MicroBlaze is only used to run
a software version of the edge detection algorithm. In the
second implementation, MicroBlaze is used as the
processor and QUKU as the hardware accelerator. QUKU
is a coarse grained dynamically reconfigurable PE
overlay for FPGAs. In the third implementation,
MicroBlaze is used as the processor and a 4x4 coarse
grained PE array as the hardware accelerator. Finally, in
the fourth implementation, MicroBlaze is used as the
processor and the IP based Sobel and Laplace circuits as
the hardware accelerators. All of the communications
between the PC and the FPGA board are carried out
through an Ethernet link.

An FPGA-based web server that is targeted for
biological alignment has been designed and implemented
in [18]. In their approach a host application receives
queries from users and submits them to the FPGAs
coprocessors. Queries are initially stored in a MySQL
database and are examined by the host application in
order to figure out the proper FPGA configuration that is
to be used. In order to serve many requests, many FPGA
chips can be used and several processes would be run on
each FPGA simultaneously. Upon finishing the
processing, the host application collects the results and
stores them in the database with a unique ID similar to
the one that has been assigned to the incoming query. The
user can access these results using their ID via a web
interface.

The authors of [19] propose a system in which FPGA
is configured via an Internet connection. The client
uploads some data along with the FPGA configuration to
a web server. An application running on the server
performs some processing on the data sent by the client
and the FPGA is then configured with the user
configuration.

[20] and [21] propose a teaching environment in which
the students can remotely access hardware resources for
the purpose of performing experiments in the field of
electronics and FPGAs respectively. The students are
able to communicate with these hardware components
using the web browser through a web server.

Authors in [22] develop an embedded web server using
FPGAs. A client side application can communicate with
the web server using HTTP protocol. The messages sent

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014 211

© 2014 ACADEMY PUBLISHER

Internet
server−side application

Web ServerClients

System
Hardware

Figure 1. A block diagram to show how the hardware system is
connected to the Web.

by the client are displayed on a LCD on the server side.
The web server is designed using MicroBlaze soft
processor. A light MicroBlaze based embedded web
server that hosts static web pages is introduced in [23].
The server enables HTTP file transfer and IO
communication. The proposed system has been integrated
in a network of wireless sensor nodes.

Novel web server architecture and its implementation
using FPGAs are proposed in [24]. The request type that
the authors adopt for the web clients requests in the
system is the HTTP GET.

III. CONNECTIVITY TO THE WEB

Different scenarios can be adopted for connecting
hardware accelerators to the Web in order to maximize
the utilization of these accelerators by exposing them to
wide area of clients. In any of these scenarios, the client
sends queries through the Web to the web server which
guarantees the proper response to be sent back to the
client. However, it can be figured out from Section II that
in the server side different approaches may be used to
implement the hardware accelerator system. One
approach is to have a separate web server communicate
with the hardware accelerator that is implemented in the
FPGA. In this approach the web server receives the
requests from the clients and delvers them to the
hardware accelerator. The accelerator does the required
processing and returns back the results to the server
which sends it back to the client. Another approach is to
have both the web server and the accelerator embedded
on the same FPGA. Although this approach may
complicate the design process and may require more
hardware resources, it definitely speeds up the whole
process as the need for separate web server is avoided.
The clients send the request directly to the FPGA board
which is connected to the web through an Ethernet port.
The data is accepted by the embedded web server and
directed to the accelerator within the same chip. The
accelerator performs the processing and directs back the
results to the embedded web server also internally within
the chip. The embedded web server then sends back the
results to the client. Usually, an embedded web server is
designed by running web server over a soft processor like
the MicroBlaze processor from Xilinx. In this case, the
hardware accelerator would be hardcoded using other
resources in the FPGA. However, with an external web
server, the hardware accelerator is implemented using
both ways. So it is either implemented in software and we
let the software to run over the embedded soft processor
or it is hardcoded using other resources in the FPGA chip.

Although all previously mentioned implementation
approaches are feasible as these approaches or similar
ones have been proposed in literature like those presented
in [15-24], we will suggest to go for the approach where
the web server is not embedded in the FPGA as this
approach is much simpler to implement. However, some
tuning and modifications are required in order to have the
system function properly. Therefore in the following
discussion we will present the details of how the

proposed hardware systems can be accessed through the
web.

In the proposed system, the queries consist of scanned
text documents. On the web server side an application
would carry out some preprocessing on the scanned text
document so that it is ready to be forwarded to the
hardware of the features extraction and character
matching units for text recognition.

As shown by Fig. 1, using a Web interface, the user
uploads the scanned text document to a Web server. The
hardware system is attached to the server. A server side
application preprocesses the scanned document. During
the preprocessing stage, the image of the text document is
converted from gray scale into binary scale. It is then

segmented into lines where each line consists of 26 rows
of pixels and then into characters that are 16 columns by
26 rows. The preprocessing application sends 16 columns
by 26 rows (that represent the first character in the
scanned text document) to the system in a row by row
fashion and waits for an acknowledgment from the
hardware system. On its side, the hardware system
recognizes the character presented in these 16 columns of
pixels and sends the acknowledgment to the server
application. The hardware system uses its features
extraction units to compute the features vector for the
entered data. The calculated features vector is compared
concurrently with the pre-computed features vector of All
Arabic characters using multiple character matching units.
The matching results from all of the character matching
units are fed into a priority encoder in order to decide the
matched character. The highest priority is given to the
first character in the Arabic alphabet which is the “Alif”.
The second highest priority is given to the “Baa” which is
the second character in the Arabic alphabet and so on.
Afterward, the system returns back the recognized
character to the server-side application. The system keeps
this matching process until all characters in the document
are recognized and the server-side application sends back
the resulted text to the client through the web server.

In this study, standalone characters will be under
consideration. The scanned text document is assumed to
include only separate characters that are not connected to
form words. Therefore, this work is character-level
recognition not word-level recognition.

IV. FEATURES EXTRACTING NNIT

212 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014

© 2014 ACADEMY PUBLISHER

RAM

00000
00001

11111
16

16

16

16

16

16

Calculation
Area

Calculation
Width

Calculation
Length

Calculation

Calculation

Area

Width

Length

x_feature

y_feature

x_feature

y_feature

Input
Binary
Image

Figure 2. Features extraction unit.

Binary scale

255 255 255 255 255 255
255

255

255255
255 255 255 255

255

217 104 104 189 255
240
178 154 225 255
104 255

167
167 255

104

104 255217178
124

233 104

167

104
167217

0
0
0
0
0 0 0 0 0

0 0
00000

0

0

0

0

1
1
1
1
0

1
1
1

1
1

0
0

1
0

1
1
1

1

1
1
1
0

0

0

1
1
1
0

1 1
1

1

1

1
1

1 1

1
1
1
1
1

0

0
0
0
0

0

0
0
00

0
0

00 0
0

0

0
0

1

0

Gray scale

255

Figure 3. Gray scale to binary image conversion example.

In this section we present the features extraction unit
which has been originally proposed in [25] (an earlier
conference version of this paper).

Arabic optical character recognition (AOCR) takes an
image that represents a document of Arabic text. Part of
the proposed work in this paper is the design of the
character features extraction of an AOCR. Therefore, the
input is presumed to be an image of a segmented Arabic
character. Many features of each character are extracted
from the input image. These features can be compared
with the pre-calculated features that are usually stored in
a database. The features adopted here are similar to those
presented in [3] with the feature extraction process being
implemented in a hardware platform instead of the
software platform used in [3]. The hardware
implementation is built on FPGAs.

For the feature descriptors of a character to be
extracted from an image, preprocessing operations like
converting the colored or gray scale image into binary
image are performed. Binary images have enough
information for character recognition, so dealing with
colored or gray scale images would add up unnecessary
processing overhead. Besides that, processing a binary
image is much faster since pixels are represented by a
single bit. The gray to binary conversion process is
attained by simply replacing each pixel value by either 1
or 0 based on a particular threshold value. The threshold
value is usually calculated based on the histogram
distribution of the given image. For example, in the gray
scale images, each pixel is represented by 8 bits.
Therefore, the maximum pixel value is 255 and the
threshold value is set to a value between 0 and 255. In the
simplest case, the value is set to 128. Thus, if the most
significant bit in a pixel value is 1 then the pixel value is
set to 1; otherwise the pixel value is set to 0. An example
to illustrate the gray scale to binary image conversion for
this case is shown in Fig. 2.

As soon as the image is converted to binary, it is set for

processing over the hardware. The image is transferred
into the FPGA and the pixel values are saved in the
distributed RAM elements which are storage units in the
FPGA.

The dimensions of the character image are 26 rows by
16 columns, which sums to an area of 416 pixels. Rows
of the image are entered to the system serially. Since
there are 26 rows, a total of 26 clock cycles are required

for the image to be stored in the distributed RAM
elements. After the data entry process is finished, the
rows of the image are fed internally to the feature
descriptors calculation modules in order to compute the
wanted features. The outputs of these modules are
compared with the stored features in order to identify the
character. The entire process is depicted in Fig. 3 which
represents the features extraction unit.

The feature descriptors for each character are unique

and can distinguish the characters from each other. The
feature descriptors that have been used in [3] and are
being implemented using hardware in this work are:
character area, character length, and character width. Two
more features are added in this work which are: the
x_feature and the y_feature. A complete description of
each of these features and their hardware implementation
will be presented next.

The area of each character denotes the sum of the pixel

values of the character. Each input image consists of the
pixel values of the character and the pixel values of the
background. The image is binary and the pixel values of
the background are all zeros. Whereas the pixel values of
the character are ones. Therefore, the area of the character
is simply evaluated by summing all the pixel values of
the image since the 0’s values do not contribute to the
result. Fig. 4. shows the hardware module to accomplish
the calculations. The pixel values in each row are
summed together and to the sum of the pixel values from
the previous row. The content of the register is initially
cleared to 0 so that the sum of the pixel values of the first
row is added to 0. This accumulation of the sum of the
pixel values is repeated for 26 times until all rows are
added.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014 213

© 2014 ACADEMY PUBLISHER

Binary Counter

Pixel_3Pixe_2Pixel_1 Pixel_14 Pixel_15 Pixel_16

16−bit Row register

OR

Count enable

Length

16

Input Data

5

Figure 5. Length calculation module.

Pixel_3Pixe_2Pixel_1 Pixel_14 Pixel_15 Pixel_16

16−bit Row register

Accumulator

Register

Area

16

Input Data

7

7

7

Figure 4. Area calculation module.

5

Pixe_2Pixel_1 Pixel_14 Pixel_15 Pixel_16

16−bit Row register

Adders

Register

D
FF

D
FF

D
FF

D
FF

D
FF

D
FF

Q Q Q Q Q Q

16

Input Data

Width

5

Pixel_3

Figure 6. Width calculation module.

The length of a character is calculated by counting the
number of rows in the binary image where the row has at
least one pixel of value 1. As shown in Fig. 5, the length
calculation module is very simple. The 16-bit register
holds the input row while the OR gate checks for the
occurrence of 1 among the pixel values in that row. If the
output of the OR gate is 1 then the count enable of the
counter is enabled, which results in it counting up by one.
After each clock cycle a row is shifted into the 16-bit
register. Thus, 26 cycles are required to shift in all rows.

On the other hand, the width of a character is the
number of the columns that have at least one pixel value
of 1 in the binary image. One possible way to calculate
the width is to use a method similar to that used for
computing the length with the columns being entered
sequentially instead of the rows. However, this would
require reading the image twice and so will impose an
extra delay. Another alternative is to calculate the width
during the row by row reading of the binary image. The
idea is based on the fact that if a pixel value in the row is
1 then the corresponding column which contains that
pixel is counted for the final value of the width. Therefore,
as shown by Fig. 6, during reading the rows, the pixel
values are tracked.

If a pixel value during reading any row happens to be 1
then its corresponding flip flop is set to 1 since the flip

flops are initially reset. The feedback from the output of
the flip flop guarantee’s that any change on the pixel
value to 0 would not affect the flip flop output. After
processing all rows the flip flops outputs reflect the
number of the columns that amount for the width value.
The outputs of the flip flops are added in the final stage to
compute the value of the width.

The x_feature is a value that is calculated based on the
x-coordinate for all pixels in the image. Any pixel in the
binary image can be referenced by one point (x-
coordinate , y-coordinate) in the two dimensional plane
and according to its position in the image. It should be
pointed out that the x-coordinate and the y-coordinate of
the top left pixel in the binary image is 1 and 1
respectively and the x-coordinate increases horizontally
from left to right. Whereas, the y-coordinate increases
vertically from top to bottom.

As shown by Equation 1, x_feature is calculated by
adding up the x-coordinate for all pixels that have value
equals to 1 and subtracting the amount k×A from the total
sum.

x_feature=
⎝
⎜
⎛

⎠
⎟
⎞

 ∑
i=1

26
 ∑
j=1

16
 xj×Vij −k×A (1)

where:
xj is the x-coordinate of the (i,j) pixel.

Vij∈{0,1} is the pixel value of the (i,j) pixel.

A is the area of the character.
k is the number of columns that are to the left of the

beginning of the character pixels in the image (All of
these columns have their pixel values equal to 0).

The term k×A is subtracted from the total sum so that
the effect of x-coordinate of the first character pixel, from
left, on the calculation of the x_feature happens as if the
x-coordinate of the pixel is 1. This would propagate to all
other pixels in the columns which results in having the
x_feature independent from the actual position of the
character in the image.

214 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014

© 2014 ACADEMY PUBLISHER

Adders

Register

Pixel_3Pixe_2Pixel_1 Pixel_14 Pixel_15 Pixel_16

16−bit Row register
16

Input Data

5

10

l*A

10

5

10

Accumulator

10

y_feature

*

C
ou

nt
er

Figure 8. y_feature calculation module.

**

Pixel_3Pixe_2Pixel_1 Pixel_14 Pixel_15 Pixel_16

16−bit Row register

14 15 16321

Accumulator

Register

16

Input Data

10

10

k*A

10

x_feature

* * * *

Figure 7. x_feature calculation module.

0
0
0
0
0

0
0

0
1

1
0
0

0

0
1
0

1

0
1
0

0 0
0

0

0
0

0

1
1
0
0

0
1
10

0

Figure 9. An example to demonstrate the features calculation.

An exact hardware implementation of Equation 1 is
shown in Fig. 7. However, since Vij is either 0 or 1, the
multipliers can be replaced with multiplexers to reduce
the total delay and area of the design as will be shown in
Section V.

On the other hand, y_feature is calculated by adding up
the y-coordinate for all pixels that have value equals to 1
and subtracting the amount l×A from the total sum as
given by Equation 2.

y_feature=
⎝
⎜
⎛

⎠
⎟
⎞

 ∑
j=1

16
 ∑
i=1

26
 yi×Vij −l×A (2)

where:
yi is the y-coordinate of the (i,j) pixel.

Vij∈{0,1} is the pixel value of the (i,j) pixel.

A is the area of the character.
l is the number of rows that are above the beginning of

the character pixels in the image (All of these rows have
their pixel values equal to 0).

The term l×A is subtracted from the total sum so that
the effect of y-coordinate of the first character pixel, from

top, on the calculation of the y_feature happens as if the
y-coordinate of the pixel is 1. This would propagate to all
other pixels in the rows which also results in having the
y_feature independent from the actual position of the
character in the image.

Since the image is being read row by row and in order
to avoid reading the image twice, Equation 2 can be
reordered to yield a more suitable formula. This can be
carried out based on the fact that all the pixels in the same
row have the same y-coordinate. The reordering process
produces Equation 3 which can be exactly implemented
in hardware as shown in Fig. 8.

y_feature=
⎝
⎜
⎛

⎠
⎟
⎞

 ∑
i=1

26

⎝
⎜
⎛

⎠
⎟
⎞

yi× ∑
j=1

16
 Vij −l×A (3)

An example to demonstrate the features calculation is
shown in Fig. 9. In this example, the area of the character
is 9, the length of the character is 4, the width of the
character is 4, the x_feature is 23, and the y_feature is 21.

Due to the fact that the features extraction unit and its
modules are designed such that the binary image is read
once, the distributed RAM elements can be removed from
the design without affecting the final results. This would
not have been possible if the image is to be read more
than one time. During the FPGA implementation phase,
both options have been investigated as presented in
Section V.

V. CHARACTER MATCHING UNIT

The character matching unit accepts the features vector
that is attained by the features extraction unit along with
the features vector that is pre-computed and stored in the
system. In this paper, we will assume that the computed
and the stored feature vectors are F and G respectively
and are defined as follows:
F={An,Wn,Ln,Xn,Yn}.

G={As,Ws,Ls,Xs,Ys}.

where An, Wn, Ln , Xn, and Yn are the computed area,

width, length, x_feature, and y_feature respectively and
As, Ws, Ls, Xs, and Ys are the stored area, width, length,

x_feature, and y_feature respectively.
These two vectors are compared for the purpose of

character matching. The comparison process is based on
calculating the dot product of the two vectors and
dividing by the product of the magnitude of the two
vectors. The outcome of these calculations is called
matching_value as defined by Equations 4, 5, 6, and 7.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014 215

© 2014 ACADEMY PUBLISHER

nAn

LnLn

WnWn

YnYn

XnXn

AsAs

LsLs

WsWs

YsYs

XsXs

AnAs

LnLs

WnWs

YnYs

XnXs

100 X (matching_value)2

F

G

S
qu

ar
er

s
S

qu
ar

er
s

A
dd

er
A

dd
er

A
dd

er

S
qu

ar
er

s

M
ul

tip
lie

rs

M
ul

tip
lie

r

by
 1

00
C

on
st

an
t m

ul
tip

lie
r

D
iv

id
er

Decision

C
om

pa
ra

to
r

A

Figure 10. Character matching unit.

matching_value=
F⋅G

|F||G| (4)

F⋅G=AnAs+WnWs+LnLs+XnXs+YnYs (5)

|F|= A
2
n+W

2
n+L

2
n+X

2
n+Y

2
n (6)

|G|= A
2
s+W

2
s+L

2
s+X

2
s+Y

2
s (7)

The character matching unit is depicted in Fig. 10. If

the matching_value is less than a threshold value then a
matching is achieved and the process is restarted for a
new matching. Otherwise; the computed feature vector is
compared with the other stored feature vectors until a
matching is achieved. As an example, assume:

The computed features vector is F={21,7,5,21,19}
The pre-stored one is G={20,8,7,18,20} then

F⋅G=(21×20)+(7×8)+(5×7)+(21×18)+(19×20)=1269

|F|= 212+72+52+212+192≅36.3

|G|= 202+82+72+182+202≅35.2

matching_value=
1269

36.3×35.2=0.993

It should be pointed out that the comparison process is
started with the stored feature vector of first letter in
Arabic language which is the “Alif”, then the second,
third and so on. In order to achieve higher performance,
during the implementation phase, we let the computed
vector be concurrently compared with all stored features
vectors using multiple character matching units. The
(matching_value)2 (Equation 8) computation is
implemented as it is more convenient for hardware than
the (matching_value) itself. This would not affect the
matching process as the square of (matching_value) is
proportional to (matching_value). Thus, the decision can
be made based on (threshold) and calculating the square

root is avoided. Moreover, to simplify the implementation
of the division operation, we compute
100×(matching_value)2 and we compare with
100×(threshould) which is two decimal digits. The
pseudo code to compute the value
100×(matching_value)2 is depicted in Algorithm 1.

(matching_value)2=
(F⋅G)2

|F|2|G|2
 (8)

V. EXPERIMENTAL RESULTS

The proposed features extraction and character
matching units have been described and functionally
tested using VerilogHDL and ISim from Xilinx. The
features extraction unit has been tested for all Arabic
characters and the outputs from the unit are listed in
Table I. The font type is bold times new roman and the
font size is 11.

216 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014

© 2014 ACADEMY PUBLISHER

In fact, four different versions of the features
extraction unit have been tested and implemented. In the
first version, multipliers are used in the x_feature
calculation module and the unit is implemented with

distributed RAM elements. In the second version, MUXs
are used in the x_feature calculation module instead of
the multipliers and the unit is implemented with
distributed RAM elements. In the third version,
multipliers are used in the x_feature calculation module
and the unit is implemented without distributed RAM
elements. Finally, In the fourth version, MUXs are used
in the x_feature calculation module instead of the

multipliers and the unit is implemented without
distributed RAM elements.

All these versions have been synthesized and
implemented using Xilinx ISE 13.1 targeting Xilinx
Spartan-6 FPGA family (xc6slx150t-3fgg676). The
experimental results for the four different
implementations that have been investigated in this work
are listed in Table II.

It is clear from Table II that the fourth version requires
the least number of slice LUTs. On the other hand, the
best delay and the lowest total power dissipation are
achieved by the third version. It is also clear that the
highest throughput is achieved by the first and the third

versions since they have the highest frequency.

In addition, the character matching unit has been
synthesized and implemented using the same
environment (Xilinx ISE 13.1 targeting Xilinx Spartan-6
FPGA family (xc6slx150t-3fgg676)) and the results are
reported in Table III.

For comparison purposes between the hardware and the
software implementations, the execution time spent by
the proposed character matching unit has been compared
with the execution time required by the software
implementation. The hardware implementation of the

proposed character matching unit has been carried out
using FPGAs while the the software implementation uses

TABLE I
FEATURES FOR EACH ARABIC CHARACTERS BASED ON THE PROPOSED

FEATURES EXTRACTION UNIT.

Char. area length width x_feature y_feature

 70 20 2 9 14 ا

10 8 32 ب 182 150

10 7 32 ت 181 162

10 9 37 ث 207 236

 254 195 9 11 45 ج

 224 169 9 11 40 ح

 394 190 9 14 45 خ

 72 45 4 7 15 د

 145 58 4 10 21 ذ

 105 97 7 8 19 ر

 191 123 7 11 24 ز

14 8 42 س 319 209

14 12 52 ش 435 406

16 9 55 ص 507 293

16 12 60 ض 563 523

 256 227 9 9 42 ط

 308 262 9 10 47 ظ

 298 167 8 12 43 ع

 481 190 8 15 49 غ

12 9 44 ف 337 338

 350 276 9 11 45 ق

 279 222 8 10 42 ك

 278 153 7 13 33 ل

 102 80 6 9 24 م

 235 153 8 11 31 ن

 69 42 4 6 18 ه

 118 123 7 8 24 و

 199 178 8 9 36 ي

TABLE II
THE IMPLEMENTATION RESULTS FOR THE FOUR DIFFERENT VERSIONS

THAT HAVE BEEN INVESTIGATED.

 With Without
 distributed RAM distributed RAM
 using using using using
 multiplier MUXs multiplier MUXs

Number of
Slice registers 91 94 75 78

Number of
Slice LUTs 253 223 242 214

Execution time(ns) 547 555 279 283

Maximum
Frequency (MHz) 96.9 95.5 96.9 95.5

Power (mW) 3.81 4.21 3.76 4.21

TABLE III
THE IMPLEMENTATION RESULTS FOR THE CHARACTER MATCHING UNIT.

Parameter Result
Number of Slice registers 1596
Number of Slice LUTs 56864
Maximum Frequency (MHz) 160.7

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014 217

© 2014 ACADEMY PUBLISHER

C++. The code of the character matching unit has been
run on Pentium 4 processor with 3 GHz clock frequency
and 1 GB RAM and the results are listed in Table IV. It is
clear that the hardware implementation is much faster
than the software implementation.

V. CONCLUSION AND FUTURE WORK

Arabic character features extraction and character
matching units have been proposed. The features
extraction unit calculates the feature descriptors for an

Arabic character. While, the character matching unit
compares the calculated feature descriptor with pre stored
ones for character matching. The feature descriptors
include the area, the width, and the length of the character.
Both of the proposed units can be employed in any
AOCR system. The connectivity of these units to the
Web has been discussed. The character matching unit
along with four versions of the features extraction unit
have been investigated and implemented in FPGA using
VerilogHDL and Xilinx ISE 13.1 CAD tools.
Experimental results are promising. As a next step, more
features will be considered such as the centroid of the
character and the number of its objects. In addition, an
integrated system that segments the words and the
characters and recognizes them will be developed.

REFERENCES

[1] H. Almohri, J. S. Gray, and H. Alnajjar, “A real-time DSP-
based optical character recognition system for isolated
arabic characters using the TI TMS320C6416T,” The 2008
IAJC-IJME International Conference, November 2008.

[2] M. Kavianifar and A. Amin, “Preprocessing and structural
feature extraction for a multi-fonts arabic/persian OCR,” in
Document Analysis and Recognition, 1999. ICDAR ’99.
Proceedings of the Fifth International Conference on,
September 1999, pp. 213–216.

[3] I. Aljarrah, O. Al-Khaleel, K. Mhaidat, M. Alrefai,
A. Alzu’bi, and M. Rabab’ah, “Automated system for
arabic optical character recognition with lookup
dictionary,” Journal of Emerging Technologies in Web
Intelligence, vol. 4, no. 4, 2012.

[4] I. A. Aljarrah, O. D. Al-Khaleel, K. Mhaidat, M. Alrefai,
A. Alzu’bi, and M. Rabab’ah, “Automated system for
arabic optical character recognition,” in Proceedings of the
3rd International Conference on Information and
Communication Systems, ser. ICICS ’12. plus 0.5em minus
0.4emNew York, NY, USA: ACM, 2012, pp. 5:1–5:6.

[5] ABBYY, “Abbyy finereader online,”
http://finereader.abbyyonline.com/en.

[6] OnlineOCRService, “Free online ocr,”
http://www.onlineocr.net/.

[7] FreeOCR, “Free ocr,” http://www.free-ocr.com/.
[8] i2OCR, “i2ocr,” http://www.i2ocr.com/.
[9] OCRextrACT, “Ocrextract,” http://www.ocr-extract.com/.
[10] M. M. Fahmy and S. A. Ali, “Automatic recognition of

handwritten arabic characters using their geometrical
features,” Studies in Informatics and Control, vol. 10, no. 2,
2001.

[11] A. Al-Marakeby, F. Kimura, M. Zaki, and A. Rashid,
“Design of an embedded arabic optical character
recognition,” Journal of Signal Processing Systems, vol. 70,
pp. 249–258, 2013.

[12] M. Moradi, M. A. Pourmina, and F. Razzazi, “FPGA-
based farsi handwritten digit recognition system,”
International Journal of Simulation Systems, Science and
Technology, vol. 11, no. 2, 2010.

[13] M. Rajabi, N. Nematbakhsh, and S. A. Monadjemi,
“Article: A new decision tree for recognition of persian
handwritten characters,” International Journal of
Computer Applications, vol. 44, no. 6, pp. 52–58, April
2012, published by Foundation of Computer Science, New
York, USA.

[14] N. Toosizadeh and M. Eshghi, “Design and
implementation of a new persian digits ocr algorithm on
fpga chips,” in European Signal Processing
(EUSIPCO2005), 13th Conference, Antalya, Turkey,
September 2005.

[15] M. Muggli, M. Ouellette, and S. Thammanur, “Embedded
system example: Web server design using microblaze soft
processor,” Xilinx, Application notes 433, August 2004.

[16] ALTERA, “Web server design example,”
http://www.altera.com/support/examples/nios2/exm-
micro\s\do5(t)utorial.html.

[17] S. Shukla, N. W. Bergmann, and J. Becker, “A web server
based edge detector implementation in fpga,” in
Symposium on VLSI, 2008. ISVLSI ’08. IEEE Computer
Society Annual, 2008, pp. 441–446.

[18] Y. Liu, K. Benkrid, A. Benkrid, and S. Kasap, “An fpga-
based web server for high performance biological sequence
alignment,” in Adaptive Hardware and Systems, 2009.
AHS 2009. NASA/ESA Conference on, 2009, pp. 361–368.

[19] O. Cret, Z. Baruch, and K. Pusztai, “Fpgaw: Fpga
configuration over the internet,” in Proceedings of the 3rd
International Conference on Mathematical and
Computational Applications (ICMCA’2002). plus 0.5em
minus 0.4emKonya, Turkey: Selзuk University, Septemper
2002.

[20] A. F. Herrero, I. Elguezábal, and M. L. Vallejo, “A web-
based environment providing remote access to fpga
platforms for teaching digital hardware design.” in e-
Learning, 2008, pp. 161–165.

[21] A. Fernández-Herrero, P. Ituero, M. López-Vallejo, and
F. G. Redondo, “Web-based integrated environment for
self-learning electronics: the analog and digital laboratory
at home,” in Fourth International Conference on the
Applications of Digital Information and Web Technologies
(ICADIWT), 2011, pp. 124–129.

[22] R. S. Soni and D. Asati, “Development of embedded web
server configured on fpga using soft-core processor and
web client on fpga using soft-core processor and web client
on pc,” International Journal of Engineering and
Advanced Technology (IJEAT), vol. 1, no. 5, pp. 295–298,
June 2012.

[23] P. B. Reddy, K.Soundararajan, and M. Prasad,
“Implementation of light weight internet controlled web
server in embedded systems,” International Journal of
Advanced Trends in Computer Science and Engineering,
vol. 2, no. 1, pp. 183–188, 2013.

TABLE IV
THE EXECUTION TIME NEEDED BY THE CHARACTER MATCHING UNIT

AND THE SOFTWARE IMPLEMENTATION

Approach Worst case execution time
Software implementation 2.2 μs
Proposed unit in FPGAs 0.616 μs

218 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014

© 2014 ACADEMY PUBLISHER

[24] J. Yu, Y. Zhu, L. Xia, M. Qiu, Y. Fu, and G. Rong,
“Grounding high efficiency cloud computing architecture:
Hw-sw co-design and implementation of a stand-alone web
server on fpga,” in Applications of Digital Information and
Web Technologies (ICADIWT), 2011 Fourth International
Conference on the, 2011, pp. 124–129.

[25] O. Al-Khaleel, A. Idries, K. Mhaidat, and I. Aljarrah,
“FPGA-based features extraction unit for arabic
characters,” in Proceedings of The International
Conference on Information and Communication Systems
(ICICS 2013), Irbid, Jordan, April 2013.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014 219

© 2014 ACADEMY PUBLISHER

