

Comparing Distributed Online Stream Processing
Systems Considering Fault Tolerance Issues

André Leon Sampaio Gradvohl
School of Technology / University of Campinas, Brazil

Email: gradvohl@ft.unicamp.br

Hermes Senger
Department of Computer Science / Federal University of São Carlos, Brazil

Email: hermes@dc.ufscar.br

Luciana Arantes and Pierre Sens
Laboratoire d’Informatique de Paris 6 / Université Pierre et Marie Curie, France

Email: {luciana.arantes, pierre.sens}@lip6.fr

Abstract —This paper presents an analysis of four online
stream processing systems (MillWheel, S4, Spark Streaming
and Storm) regarding the strategies they use for fault
tolerance. We use this sort of system for processing of data
streams that can come from different sources such as web
sites, sensors, mobile phones or any set of devices that provide
real-time high-speed data. Typically, these systems are
concerned more with the throughput in data processing than
on fault tolerance. However, depending on the type of
application, we should consider fault tolerance as an
important a feature. The work describes some of the main
strategies for fault tolerance – replication components,
upstream backup, checkpoint and recovery – and shows how
each of the four systems uses these strategies. In the end, the
paper discusses the advantages and disadvantages of the
combination of the strategies for fault tolerance in these
systems.

Index Terms—Fault-tolerance, Distributed systems, System
applications, Online stream processing.

I. INTRODUCTION
Online stream processing or event stream processing

(ESP) is an initiative that is growing in recent years with
social networks and other applications that require data
processing in real time. Examples of such applications are
network attack detection, financial analysis, spam
filtering, targeted advertising, trend analysis,
participatory sensing and even disaster management
situations, among others [1] [2] [3]. The main feature of
an application that uses event stream processing is to deal
with a continuous flow of incoming data, also called
events, as quickly as possible reducing this huge input
data volume, for decision-making or storage of what is
relevant.

In few words, an ESP system receives a data stream as
input, perform some computations or transformations and
produces an output. The input data rate is not under
control of the system, which generally receives it at a

high throughput. The amount of data coming from the
input stream is usually so huge that it is impractical to
store on disks. The events or input stream may come from
different sources such as websites, mobile phones or
specific sensors. Keeping this system on a single server is
risky and may not have enough computing power to meet
system's demand for processing [4]. Therefore, a
distributed system will increase the processing power and
the availability.

On the other hand, stream-processing applications
usually runs for a long time and shall keep their state over
extended periods. Thus, when running this sort of
application, we expect that it might encounter problems
such as failures, infrastructure updates, scheduled restarts
and application updates

According to [5], buffer overflow and node failures are
the two most challenging faults in distributed ESP
systems. A buffer overflow happens when a node cannot
allocate enough memory to buffer and incoming event. In
turn, a node failure occurs when there are hardware faults
on the platform that supports a processing node.

Therefore, to achieve its objectives, it is necessary to
build a distributed, fault tolerant, persistent state and
scalable system. The fault tolerance feature is important
to keep the system working as long as possible, since
losing a portion of the data stream can lead to inaccurate
decisions. Maintain persistent states of the system is also
required for quickly restart the system after a fault
situation. In other hand, scalability is a feature that allows
the growth of the system, adding or removing
components for processing without impact on its
performance.

The first ESP systems, created in the early 2000s,
Aurora, Borealis, STREAM, TelegraphCQ, NiagaraCQ
and Cougar [6]. At that time, they were centralized
systems, i.e. they run on a single server, and aimed to
overcome the problems to deal with stream processing by
traditional databases.

174 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jetwi.6.2.174-179

It is important to mention that objectives of the
databases are essentially different from ESPs. While
databases are optimized for the efficient storage and
querying of data, ESPs are designed to provide high
performance analysis of streams with low latency. Thus,
the requirements for fault tolerance and scalability differs
substantially in both kind of systems.

A. Key Concepts in Event Stream Processing Systems
In ESP systems there are some common concepts

described as follows. First, stream processing refers to a
programming paradigm for processing continuous data
streams, i.e. an infinite sequence of data items, through a
topology (stream graph). Such topology is a directed
acyclic graph where edges are streams and vertexes are
operators, as depicted in Fig. 1. The operators do
computations or transformations in input streams to
produce new streams for other operators or for output [7].

A data item or an event consists of a key-value pair,
which forms a tuple. A key identifies the tuple and the
value is a sequence of bytes associated with a particular
key. Notice that some operators need to maintain their
state, which means that the operator should keep
information while it processes different tuples.

Figure 1. Generic schematic model for ESP systems.

As soon as the operators receives the tuples and just
before their processing, tuples are temporarily stored in
the input queues (one for each input stream). Likewise,
the output queues hold the tuples generated by each
operator, just before other operators receives them.

Those concepts are common to most distributed ESP
systems. In the remainder of this paper, we describe some
selected ESP systems regarding fault tolerance issues.
Section II describes the main fault tolerance models
within distributed ESP systems, along with the some fault
tolerance strategies in distributed ESP systems. Section
III depicts four ESP systems selected for this work.
Section IV discusses the differences in the advantages
and disadvantages ESPs systems regarding fault tolerance
features in those systems. Finally, Section V presents
some final remarks.

II. FAULT TOLERANCE MODELS
The way in which a computer system can gracefully

degrades in a presence of failures of some of its
components is what we call a fault tolerance model. Thus,
fault tolerant techniques used will depend on the
tolerance model predicted for specific computing systems.

According to [8], there are two main fault models,
Byzantine faults and fail-stop faults, but also a third
model called fail-stutter faults.

In Byzantine fault model, failed nodes are still alive
and interacting with the rest of the system. However, their
output is corrupted, although failed nodes still produce
valid messages. According to [9] [10], this means that
other nodes in the system cannot detect the failures,
neither the failed nodes.

On the other hand, in fail-stop fault model, when
failures happen, a node stops producing outputs and
interacting with the system. This a sort of fault is easy to
detect and overcome.

The third model, called fail-stutter model, is based on
an extension of the fail-stop fault model. In this case, it
also includes performance faults, which occurs when a
node of the system performs much worse than other ones.

A. Fault Tolerance Strategies in Distributed ESP
Systems

Next, will describe some strategies to improve fault
tolerance in distributed ESP systems.

 1) Replication of components
This strategy, according to [11] [12], duplicates the

components of systems to minimize damages is case of
failures. In active replication, duplicated components are
alive and receive the same input. This strategy allows the
comparison of outputs and thus can identify unexpected
behavior of a component. Furthermore, in the case of a
fail-stop failure, backup components can take over the
role of the primary component, preventing the system
from collapsing. The problem with this strategy is the
investment since the strategy replicates components of
the system and therefore involves, at least, duplicating
costs.

In passive replication, on the other hand, there are
components in stand-by, which assume the role of the
corrupted component only in case of failures. In this
situation, the whole input must be resubmitted to reach
the normal state of the system. Furthermore, it must
consider the elapsed time until the normal state is
established. However, this delay is not always tolerable,
especially on stream processing systems.

 2) Checkpoint
To implement checkpoints, we model the whole

system as a series of fault-free states. Upon reaching each
of these states, we do a checkpoint. In addition, a
checkpoint is consistent if all events that occurred up to
that checkpoint came from a previous consistent
checkpoint.

To keep these checkpoints, the system must have a
stable storage, i.e. a storage device that allows system
state saving and recovery in case of failures, recovering
from the fault-free states recorded previously. The
recovering process is based on the most recent set of
consistent checkpoints.

There are two classes of recovery protocols based on
checkpoints: uncoordinated (asynchronous) or
coordinated protocols [13]. In uncoordinated protocol,
each process decides when making their own checkpoints.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014 175

© 2014 ACADEMY PUBLISHER

However, this type of protocol is very risky because it
does not guarantee a global system consistency.
Additionally, it can generate the so-called domino effect,
when the recovery of a process will require the recovery
of another one, thus continuing indefinitely.

The coordinate protocol, on the other hand, requires
that the processes organize their checkpoints in order to
ensure global system consistency. However, this is a
more complex protocol for creating checkpoints as it
requires an exchange of messages between all processes,
making it a relatively time consuming task.

 3) Upstream backup
In upstream backup, upstream nodes (e. g. node u in

the graph depicted in Fig. 2) logs the tuples in their
output queues for their downstream neighbors (e. g. node
v in Fig. 2) until the downstream neighbors finish
processing these tuples [14]. In case of failure of a
downstream node, upstream nodes send the tuples again.

Figure 2. Upstream and downstream nodes in a topology.

This approach has some drawbacks, however. For
instance, the queue length may not be large enough to
handle all the tuples stored between failure and recovery
times. Additionally, it is important to mention that
upstream backup takes a long time to recover, because
the system should wait a new node to rebuild serially the
failed node’s state by sending its data again.

 4) Recovery
There are three types of recovery according to [14]. On

precise recovery, it can completely mask a failure by
sending all the tuples that that downstream nodes did not
receive. On the other hand, on rollback recovery strategy,
the output produced after a failure is not necessarily the
same as the output of an execution without failure, since
on this type of recovery some duplicate tuples may be
sent again. Finally, on gap recovery it drops off some old
data to reduce recovery time and runtime overheads.

The recovery method chosen determines the latency of
the recovery operation. Therefore, the application should
consider which method uses to reduce the latency of
recovery to acceptable levels [15].

III. EVENT STREAM PROCESSING SYSTEMS
We selected four distributed ESP systems to analyze

how they treat fault tolerance issues. The criterion for
selection was strictly the usage, i.e., we choose systems
that are currently in production on enterprises that deal
with event stream processing. Among the selected are the
following: MillWheel [16], S4 [17] [18], Spark
Streaming [19] and Storm [20] that are described in next
sections.

A. MillWheel
MillWheel is widely used at Google. It is a framework,

which implements a programming model for streaming
and low-latency systems [16]. MillWheel allows users
specify a topology, where tuples (triples) are composed of
key, value and timestamp data. Unlike other ESP systems,
MillWheel includes a timestamp in tuples, which is a
time reference generated by the event which outputs that
tuple.

Based on the input stream, each node in the topology
does a computation and outputs tuples to another node.
Thus, as soon as data arrives in a node, it invokes these
computations or transformations. The computations may
occur in parallel, which makes them faster, although
more susceptible to system faults. One of the Millwheel
features is that users can add or remove computations
dynamically, i.e., they can add or remove nodes in the
topology during its execution, without having to restart
the whole system.

 1) Fault tolerance strategy on MillWheel
MillWheel provides persistent states of operators by a

replicated high available data storage systems, such as
BigTable (a distributed storage system) or Spanner (a
distributed database). These systems ensure data integrity
and are transparent to users.

MillWheel also deals with fault tolerance at the
framework level, ensuring that each operator receives its
tuple. For this, it is necessary that the application use the
abstractions of state and communication provided by the
framework itself.

Therefore, upon receiving a tuple, the operator checks
if it is duplicate or not. If it is duplicate, then it discards
the tuple; otherwise, it processes the tuple according to
the user code. After that, the state of that node is
committed into a storage system and the sender node
receives acknowledge.

B. S4
In S4, a stream is a set of elements composed of tuples

of key and attributes (or values) and we call these tuples
as events. Yahoo! proposed the S4 system architecture as
a set of processing elements (PE) that consumes or
process exactly those tuples identified by a particular key.
There is a special type of PE, called keyless PE, that
consumes all events associated with a tuple, regardless
their key. The association between the outputs of some
PEs and the entry of other PEs also forms a dataflow
graph or a topology [18].

The PEs are logically hosted in Processing Nodes (PN),
which are responsible for listening to events, perform
operations when an event arrives and dispatch new events
for other nodes in the topology.

 1) Fault tolerance strategy on S4
ZooKeeper [21] [22] is the subsystem responsible for

detecting failures in S4 nodes. A fixed number of tasks or
partitions defines a S4 clusters. Usually, we define more
nodes than partitions and hence we got stand-by nodes.

Upon detecting a node failure, the ZooKeeper notifies
the stand-by nodes. These stand-by nodes compete for the

176 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014

© 2014 ACADEMY PUBLISHER

partition and, once determined the assigned node other
nodes are notified that the task was assigned. Then the
new active node sends a message the other active nodes
requesting to forward messages to it.

ZooKeeper considers that a node has failed when there
is no response from him after a timeout. The node itself
defines this time when connects to ZooKeeper and is at
least twice the heartbeat signal frequency specified by the
ZooKeeper configuration.

When the cluster brings a new node, it has no state.
Thus, if there has been a previous checkpoint, the user
code should retrieve the state when messages arrive to
that node and when the PEs are instantiated.
Checkpointing is uncoordinated and asynchronous to
minimize latency and reduce state loss. In addition,
recovery is lazy, which means that occurs only when
necessary.

C. Spark Streaming
Despite other ESP systems, Spark Streaming works on

a series of deterministic tasks (batch computations) on
small time intervals [19]. For this work, the Spark
Streaming system defines a data structure called Resilient
Distributed Dataset (RDD), which holds the data in
memory and can retrieve it without replication by
analyzing the lineage graph operations used to build it.

The RDD is an immutable, deterministically re-
computable, distributed and fault tolerant dataset. More
specifically, an RDD is a read-only collection of records
partitioned and replicated across the worker nodes in a
cluster. These worker nodes are processes that can store
and process RDDs in memory.

The Spark Streaming architecture comprises a master
node, which schedules tasks to compute new RDD
partitions; worker nodes to get the data, stores the input
data and perform the tasks; and the client library, used to
send data into the system.

 1) Fault tolerance strategy on Spark Streaming
Spark Streaming provides two types of strategies for

fault tolerance: replication and upstream backup. Spark
Streaming handles fault tolerance by periodically writing
metadata information into a Hadoop Distributed File
System (HDFS) [23] directory. Therefore, when a worker
node fails, another worker node can restart and continue
processing from the last checkpoint. The fact that RDD
models all data assures it. Thus, any computation will
lead to the same result.

On the other hand, for online data sources, received
input data should be replicated in memory between nodes
of the cluster. Then, if a worker node fails, the other
worker node can still process the input data.

D. Storm
The Storm system, created by Twitter, also works with

the concept of topology as MillWheel and S4. In a Storm

topology, there are spouts and bolts, which forms a
topology. A spout is a source of a stream and a bolt does
a computation or transformation. A bolt receives a stream
and may even produce an output stream.

Three kind of nodes comprises a Storm cluster: a
master node, called Nimbus; a coordinator node,
managed by ZooKeeper; and one or more workers
embedded in nodes called supervisors. The Nimbus is
responsible for distributing code around the cluster,
assign tasks to machines, and faults monitoring. A worker
node, in turn, processes the work assigned by the master
node; and ZooKeeper coordinates the relation between
Nimbus and worker nodes.

 1) Fault tolerance strategy on Storm
In Storm, the spouts – sources of streams – keep the

messages at their output queues until the bolts
acknowledge them. If there is an acknowledgement, the
spout drops off the message from the queue. Otherwise,
the spout sends the messages again.

To handle the node failures, Nimbus – the master node
– listens for worker nodes heartbeats, which are sent
periodically. If the heartbeats do not come, Nimbus
assumes that the node is down and move the workers to
another node.

Nimbus and supervisor nodes are stateless and they
destruct themselves when and unexpected situation
occurs. Therefore, if an abnormal situation occurs with
those nodes, they restart themselves transparently to the
worker processes. However, other machines could not
host worker processes if they fail and Nimbus is dead.

IV. DISCUSSION

Tab. 1 summarizes the differences between the
selected ESP systems regarding the supported
programming languages, the strategies used for fault
tolerance and the subsystem responsible for dealing with
failures.

Both MillWheel and Storm work with virtually any
programming language, which means that, with less
effort, programmers can adapt their legacy software to
work with these ESPs. S4 and Spark Streaming, in turn,
work on Java, despite the fact that Spark Streaming also
supports computations programming in Scala and Python.

In addition, MillWheel and Spark Streaming do not
depend on third-part subsystems to address the fault
tolerance. In this aspect, they both deal with fault
tolerance issues within the framework itself. S4 and
Storm, in turn, are strongly dependent on ZooKeeper to
tolerate failures; and Storm is even dependent on Nimbus.
In both cases – S4 and Storm – user should manage the
operator state, which is responsible to specify how and
when it should recover those states.

V. CONCLUSIONS

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014 177

© 2014 ACADEMY PUBLISHER

Applications that uses ESP systems will determine the
type of fault that the system should support. In some
applications, where the state of the operator is not vital to
the operations on stream graph, the system can tolerate a
failure of an operator (a vertex in the stream graph)
simply instantiating the failed operator. In this case,
systems that deal with stateless and replicated operators,
e.g. S4 and Storm, can be useful.

Furthermore, applications where the state of each
operator should be kept, robust mechanisms for fault
tolerance and maintenance of states should be strong
enough to ensure that the application remains integrate
and coherent. In this case, MillWheel and Spark
Streaming have interesting features.

However, we are particularly interested in applications
of participatory sense in emergencies, i.e., given an
emergency such as an earthquake or collapse of a building,
victims who are able to use their mobile devices could ask
for help, communicate with emergency teams or even
informing the situation around them, all through social
networks like Twitter and Facebook.

This communication could make the most effective
displacement of emergency teams, directing them to the
most critical locus. In this case, we would need an ESP
system that maintains the state of its operators but at the
same time, could keep the high throughput of data
processing.

Therefore, a system that combines fast failure detection
with operator state maintenance even in the event of
failure would be ideal.

ACKNOWLEDGEMENT

The first author gratefully acknowledges Coordination
for the Improvement of Higher Education Personnel
(CAPES), Brazil, project number 11785/13-6, for the
financial support to this project and the Laboratoire
d'Informatique de Paris 6 (LIP6) for hosting him during
his postdoctoral studies.

REFERENCES

[1] N. R. Adam, J. Eledath, S. Mehrotra e N.
Venkatasubramanian, “Social media alert and response to
threats to citizens (SMART-C),” in 8th International
Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), 2012.

[2] N. R. Adam, B. Shafiq e R. Staffin, “Spatial Computing and
Social Media in the Context of Disaster Management,”
IEEE Intelligent Systems, vol. 27, nº 6, pp. 90-96, Nov
2012.

[3] M. K. Boulos, B. Resch, D. N. Crowley, J. G. Breslin, G.
Sohn, R. Burtner, W. A. Pike, E. Jezierski e K.-Y. S.
Chuang, “Crowdsourcing, citizen sensing and sensor web
technologies for public and environmental health
surveillance and crisis management: trends, OGC standards
and application examples,” International Journal of Health
Geographics, vol. 10, nº 1, p. 67, 2011.

[4] A. Martin, C. Fetzer e A. Brito, “Active Replication at
(Almost) No Cost,” in 30th IEEE Symposium on Reliable
Distributed Systems (SRDS), 2011.

[5] W. Hummer, C. Inzinger, P. Leitner, B. Satzger e S.
Dustdar, “Deriving a Unified Fault Taxonomy for Event-
based Systems,” in Proceedings of the 6th ACM
International Conference on Distributed Event-Based
Systems, New York, NY, USA, 2012.

[6] V. M. Gulisano, “StreamCloud: An Elastic Parallel-
Distributed Stream Processing Engine,” PhD. Thesis.
Faculdad de Informática, Universidad Politécnica de
Madrid, 2012.

[7] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R.
Khandekar, V. Kumar, M. Mendell, H. Nasgaard, S.
Schneider, R. Soule e K.-L. Wu, “IBM Streams Processing
Language: Analyzing Big Data in motion,” IBM Journal of
Research and Development, vol. 57, nº 3/4, pp. 7:1-7:11,
2013.

[8] M. Treaster, “A Survey of Fault-Tolerance and Fault-
Recovery Techniques in Parallel Systems,” ACM
Computing Research Repository (CoRR), vol. 501002, pp.
1-11, 2005.

[9] P. Costa, M. Pasin, A. N. Bessani e M. Correia, “Byzantine
Fault-Tolerant MapReduce: Faults are Not Just Crashes,” in
IEEE Third International Conference on Cloud Computing
Technology and Science (CloudCom), 2011.

[10] P. Costa, M. Pasin, A. N. Bessani e M. Correia, “On the
Performance of Byzantine Fault-Tolerant MapReduce,”
IEEE Transactions on Dependable and Secure Computing,
vol. 10, nº 5, pp. 301-313, 2013.

[11] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki e P.
Pietzuch, “Integrating Scale out and Fault Tolerance in
Stream Processing Using Operator State Management,” in
SIGMOD International Conference on Management of Data,
New York, 2013.

[12] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki e P.
Pietzuch, “Scalable and Fault-tolerant Stateful Stream
Processing,” in OpenAccess Series in Informatics, 2013.

TABLE I.
 ESP SYSTEMS COMPARED.

ESP System Programming languages supported Fault tolerance strategy Subsystem to handle
failures

MillWheel Virtually any programming language Uncoordinated periodic
checkpoint; Upstream backup

None, the system
handles failures itself.

S4 Java Uncoordinated periodic
checkpoint; ZooKeeper.

Spark Streaming Java, Scala and Python Coordinated periodic checkpoint;
Replication; Parallel recovery

None, the system
handles failures itself.

Storm Virtually any programming language Upstream backup;
No checkpoints Nimbus, ZooKeeper.

178 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014

© 2014 ACADEMY PUBLISHER

[13] D. Goswami e S. Sahu, “An Efficient Protocol for
Checkpoint-Based Failure Recovery in Distributed
Systems,” Distributed Computing and Internet Technology,
pp. 135-144, 1, 2005.

[14] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel, M.
Stonebraker e Z. Stan, “High-availability algorithms for
distributed stream processing,” in International Conference
on Data Engineering, 2005.

[15] A. Brito, S. Weigert, M. Subkraut, C. Fetzer e P. Felber,
“Handling Crash and Software Faults Efficiently in
Distributed Event Stream Processing,” in 2010 Third
International Conference on Dependability (DEPEND),
2010.

[16] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J.
Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom e S.
Whittle, “MillWheel: Fault-Tolerant Stream Processing at
Internet Scale,” in Very Large Data Bases, 2013.

[17] L. Neumeyer, B. Robbins, A. Nair e A. Kesari., “S4:
Distributed Stream Computing Platform,” in IEEE
International Conference on Data Mining Workshops
(ICDMW), 2010.

[18] J. Chauhan, S. A. Chowdhury e D. Makaroff, “Performance
Evaluation of Yahoo! S4: A First Look,” in Seventh
International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing, 2012.

[19] M. Zaharia, T. Das, H. Li, S. Shenker e I. Stoica,
“Discretized streams: an efficient and fault-tolerant model
for stream processing on large clusters,” in 4th USENIX
conference on Hot Topics in Cloud Computing, Farminton,
Pennsylvania, 2013.

[20] T. Chardonnens, P. Cudre-Mauroux, M. Grund e B. Perroud,
“Big data analytics on high Velocity streams: A case
study,” in IEEE International Conference on Big Data, 2013.

[21] P. Hunt, M. Konar, F. P. Junqueira e B. Reed, “ZooKeeper:
Wait-free Coordination for Internet-scale Systems,” in
Proceedings of the 2010 USENIX Conference on USENIX
Annual Technical Conference, Berkeley, CA, USA, 2010.

[22] S. Skeirik, R. B. Bobba e J. Meseguer, “Formal Analysis of
Fault-tolerant Group Key Management Using ZooKeeper,”
in 13th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), 2013.

[23] K. Shvachko, K. Hairong, S. Radia e R. Chansler, “The
Hadoop Distributed File System,” in IEEE 26th Symposium
on Mass Storage Systems and Technologies, 2010.

André Leon S. Gradvohl received the bachelor’s degree in
Computer Science from Federal University of Ceará, Brazil in
1997; master in sciences degree from Technological Institute of
Aeronautics, Brazil in 2000; and the Ph.D. in Electric
Engineering from University of Campinas, Brazil in 2005. He
has been an assistant professor in computer science at the School
of Technology at University of Campinas, Brazil since 2010.
Currently, he is doing post-doctoral studies in distributed online
stream processing systems at Laboratoire d'Informatique de
Paris 6 (LIP6), France. The Coordination for the Improvement of
Higher Education Personnel (CAPES) in Brazil currently
sponsors his researches.

Hermes Senger obtained the BS degree in Computer Science
from the State University of São Paulo (UNESP), Brazil, in 1989.
He obtained both the MS and Ph.D. degrees in Electrical
Engineering from the University of São Paulo (USP), Brazil, in
1996 and 2002, respectively. In 2009 he joined the Federal
University of São Carlos (UFSCar), Brazil, where he teaches
Computer Science at the undergraduate, masters, and doctorate
levels. He has published more than 40 papers in international
and national journals and conferences with selective editorial
policy. His research interests include high performance
computing, parallel and distributed computing systems and
applications, resource scheduling, and scalability analysis. He is
a member of the Brazilian Computer Society (SBC), IEEE, and
ACM.

Luciana Arantes received her Ph.D. degree from the University
Pierre et Marie Curie (Paris 6), Paris, France in 2000 and her
masters degree from the Polytechnic Scholl of University of São
Paulo, Brazil, in 1996. She got the undergraduate degree from
the University of Campinas, Brazil, in 1986. Since 2001, she is
associated professor at Université Pierre et Marie Curie (UPMC)
and member of Regal project-team, a cooperation between the
Laboratoire d'Informatique de Paris 6 (LIP6) and the French
Research Center INRIA. Her research focuses on adapting
distributed algorithms to large-scale, heterogeneous, dynamic,
and self-organizing environments, such as grid, peer-to peer
systems, cloud computing or mobile networks. She has
published 7 articles in journals, 55 articles in international
conferences, 13 articles in French conferences and 2 book
chapters. Dr. Luciana Arantes has been member of some
conference committees (ICPADS, LADC, GCP) and reviewer of
some journals (JPDS, Computer Journal, FGCS).

Pierre Sens received his Ph. D. in Computer Science in 1994,
and the “Habilitation à diriger des recherché” in 2000 from Paris
6 University, France. Currently, he is a full Professor at
Université Pierre et Marie Curie. His research interests include
distributed systems and algorithms, peer-to-peer file systems,
fault tolerance, grid and cloud computing. Pierre Sens is heading
the Regal group which is a joint research team between LIP6 and
INRIA. He was member of the Program Committee of 25
conferences (ICDCS, IPDPS, OPODIS, Europar, SSS…).
Overall, he has published over 100 papers in journals (JPDC,
PPL, JOS, SPE..) and conferences (DSN, SRDS, EDCC, ICPP,
OPODIS, EuroPar,…) .

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 2, MAY 2014 179

© 2014 ACADEMY PUBLISHER

