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Abstract —This paper presents an analysis of four online 
stream processing systems (MillWheel, S4, Spark Streaming 
and Storm) regarding the strategies they use for fault 
tolerance. We use this sort of system for processing of data 
streams that can come from different sources such as web 
sites, sensors, mobile phones or any set of devices that provide 
real-time high-speed data. Typically, these systems are 
concerned more with the throughput in data processing than 
on fault tolerance. However, depending on the type of 
application, we should consider fault tolerance as an 
important a feature. The work describes some of the main 
strategies for fault tolerance – replication components, 
upstream backup, checkpoint and recovery – and shows how 
each of the four systems uses these strategies. In the end, the 
paper discusses the advantages and disadvantages of the 
combination of the strategies for fault tolerance in these 
systems. 
 
Index Terms—Fault-tolerance, Distributed systems, System 
applications, Online stream processing. 
 

I.  INTRODUCTION 
Online stream processing or event stream processing 

(ESP) is an initiative that is growing in recent years with 
social networks and other applications that require data 
processing in real time. Examples of such applications are 
network attack detection, financial analysis, spam 
filtering, targeted advertising, trend analysis, 
participatory sensing and even disaster management 
situations, among others [1] [2] [3]. The main feature of 
an application that uses event stream processing is to deal 
with a continuous flow of incoming data, also called 
events, as quickly as possible reducing this huge input 
data volume, for decision-making or storage of what is 
relevant.   

In few words, an ESP system receives a data stream as 
input, perform some computations or transformations and 
produces an output. The input data rate is not under 
control of the system, which generally receives it at a 

high throughput. The amount of data coming from the 
input stream is usually so huge that it is impractical to 
store on disks. The events or input stream may come from 
different sources such as websites, mobile phones or 
specific sensors. Keeping this system on a single server is 
risky and may not have enough computing power to meet 
system's demand for processing [4]. Therefore, a 
distributed system will increase the processing power and 
the availability. 

On the other hand, stream-processing applications 
usually runs for a long time and shall keep their state over 
extended periods. Thus, when running this sort of 
application, we expect that it might encounter problems 
such as failures, infrastructure updates, scheduled restarts 
and application updates 

According to [5], buffer overflow and node failures are 
the two most challenging faults in distributed ESP 
systems. A buffer overflow happens when a node cannot 
allocate enough memory to buffer and incoming event. In 
turn, a node failure occurs when there are hardware faults 
on the platform that supports a processing node. 

Therefore, to achieve its objectives, it is necessary to 
build a distributed, fault tolerant, persistent state and 
scalable system. The fault tolerance feature is important 
to keep the system working as long as possible, since 
losing a portion of the data stream can lead to inaccurate 
decisions. Maintain persistent states of the system is also 
required for quickly restart the system after a fault 
situation. In other hand, scalability is a feature that allows 
the growth of the system, adding or removing 
components for processing without impact on its 
performance. 

The first ESP systems, created in the early 2000s, 
Aurora, Borealis, STREAM, TelegraphCQ, NiagaraCQ 
and Cougar [6]. At that time, they were centralized 
systems, i.e. they run on a single server, and aimed to 
overcome the problems to deal with stream processing by 
traditional databases.  
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It is important to mention that objectives of the 
databases are essentially different from ESPs. While 
databases are optimized for the efficient storage and 
querying of data, ESPs are designed to provide high 
performance analysis of streams with low latency. Thus, 
the requirements for fault tolerance and scalability differs 
substantially in both kind of systems. 

A.  Key Concepts in Event Stream Processing Systems 
In ESP systems there are some common concepts 

described as follows. First, stream processing refers to a 
programming paradigm for processing continuous data 
streams, i.e. an infinite sequence of data items, through a 
topology (stream graph). Such topology is a directed 
acyclic graph where edges are streams and vertexes are 
operators, as depicted in Fig. 1. The operators do 
computations or transformations in input streams to 
produce new streams for other operators or for output [7]. 

A data item or an event consists of a key-value pair, 
which forms a tuple. A key identifies the tuple and the 
value is a sequence of bytes associated with a particular 
key. Notice that some operators need to maintain their 
state, which means that the operator should keep 
information while it processes different tuples. 

 

 
Figure 1. Generic schematic model for ESP systems. 

As soon as the operators receives the tuples and just 
before their processing, tuples are temporarily stored in 
the input queues (one for each input stream). Likewise, 
the output queues hold the tuples generated by each 
operator, just before other operators receives them.  

Those concepts are common to most distributed ESP 
systems. In the remainder of this paper, we describe some 
selected ESP systems regarding fault tolerance issues. 
Section II describes the main fault tolerance models 
within distributed ESP systems, along with the some fault 
tolerance strategies in distributed ESP systems. Section 
III depicts four ESP systems selected for this work. 
Section IV discusses the differences in the advantages 
and disadvantages ESPs systems regarding fault tolerance 
features in those systems. Finally, Section V presents 
some final remarks. 

II.  FAULT TOLERANCE MODELS 
The way in which a computer system can gracefully 

degrades in a presence of failures of some of its 
components is what we call a fault tolerance model. Thus, 
fault tolerant techniques used will depend on the 
tolerance model predicted for specific computing systems. 

According to [8], there are two main fault models, 
Byzantine faults and fail-stop faults, but also a third 
model called fail-stutter faults. 

In Byzantine fault model, failed nodes are still alive 
and interacting with the rest of the system. However, their 
output is corrupted, although failed nodes still produce 
valid messages. According to [9] [10], this means that 
other nodes in the system cannot detect the failures, 
neither the failed nodes. 

On the other hand, in fail-stop fault model, when 
failures happen, a node stops producing outputs and 
interacting with the system. This a sort of fault is easy to 
detect and overcome.  

The third model, called fail-stutter model, is based on 
an extension of the fail-stop fault model. In this case, it 
also includes performance faults, which occurs when a 
node of the system performs much worse than other ones.  

A.  Fault Tolerance Strategies in Distributed ESP 
Systems 

Next, will describe some strategies to improve fault 
tolerance in distributed ESP systems. 

    1)  Replication of components 
This strategy, according to [11] [12], duplicates the 

components of systems to minimize damages is case of 
failures. In active replication, duplicated components are 
alive and receive the same input. This strategy allows the 
comparison of outputs and thus can identify unexpected 
behavior of a component. Furthermore, in the case of a 
fail-stop failure, backup components can take over the 
role of the primary component, preventing the system 
from collapsing. The problem with this strategy is the 
investment since the strategy replicates components of 
the system and therefore involves, at least, duplicating 
costs. 

In passive replication, on the other hand, there are 
components in stand-by, which assume the role of the 
corrupted component only in case of failures. In this 
situation, the whole input must be resubmitted to reach 
the normal state of the system. Furthermore, it must 
consider the elapsed time until the normal state is 
established. However, this delay is not always tolerable, 
especially on stream processing systems. 

    2)  Checkpoint 
To implement checkpoints, we model the whole 

system as a series of fault-free states. Upon reaching each 
of these states, we do a checkpoint. In addition, a 
checkpoint is consistent if all events that occurred up to 
that checkpoint came from a previous consistent 
checkpoint. 

To keep these checkpoints, the system must have a 
stable storage, i.e. a storage device that allows system 
state saving and recovery in case of failures, recovering 
from the fault-free states recorded previously. The 
recovering process is based on the most recent set of 
consistent checkpoints. 

There are two classes of recovery protocols based on 
checkpoints: uncoordinated (asynchronous) or 
coordinated protocols [13]. In uncoordinated protocol, 
each process decides when making their own checkpoints. 
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However, this type of protocol is very risky because it 
does not guarantee a global system consistency. 
Additionally, it can generate the so-called domino effect, 
when the recovery of a process will require the recovery 
of another one, thus continuing indefinitely. 

The coordinate protocol, on the other hand, requires 
that the processes organize their checkpoints in order to 
ensure global system consistency. However, this is a 
more complex protocol for creating checkpoints as it 
requires an exchange of messages between all processes, 
making it a relatively time consuming task. 

    3)  Upstream backup 
In upstream backup, upstream nodes (e. g. node u in 

the graph depicted in Fig. 2) logs the tuples in their 
output queues for their downstream neighbors (e. g. node 
v in Fig. 2) until the downstream neighbors finish 
processing these tuples [14]. In case of failure of a 
downstream node, upstream nodes send the tuples again. 
 

 
Figure 2. Upstream and downstream nodes in a topology. 

This approach has some drawbacks, however. For 
instance, the queue length may not be large enough to 
handle all the tuples stored between failure and recovery 
times. Additionally, it is important to mention that 
upstream backup takes a long time to recover, because 
the system should wait a new node to rebuild serially the 
failed node’s state by sending its data again. 

    4)  Recovery 
There are three types of recovery according to [14]. On 

precise recovery, it can completely mask a failure by 
sending all the tuples that that downstream nodes did not 
receive. On the other hand, on rollback recovery strategy, 
the output produced after a failure is not necessarily the 
same as the output of an execution without failure, since 
on this type of recovery some duplicate tuples may be 
sent again. Finally, on gap recovery it drops off some old 
data to reduce recovery time and runtime overheads. 

The recovery method chosen determines the latency of 
the recovery operation. Therefore, the application should 
consider which method uses to reduce the latency of 
recovery to acceptable levels [15]. 

III.  EVENT STREAM PROCESSING SYSTEMS 
We selected four distributed ESP systems to analyze 

how they treat fault tolerance issues. The criterion for 
selection was strictly the usage, i.e., we choose systems 
that are currently in production on enterprises that deal 
with event stream processing. Among the selected are the 
following: MillWheel [16], S4 [17] [18], Spark 
Streaming [19] and Storm [20] that are described in next 
sections. 

A.  MillWheel 
MillWheel is widely used at Google. It is a framework, 

which implements a programming model for streaming 
and low-latency systems [16]. MillWheel allows users 
specify a topology, where tuples (triples) are composed of 
key, value and timestamp data. Unlike other ESP systems, 
MillWheel includes a timestamp in tuples, which is a 
time reference generated by the event which outputs that 
tuple. 

Based on the input stream, each node in the topology 
does a computation and outputs tuples to another node. 
Thus, as soon as data arrives in a node, it invokes these 
computations or transformations. The computations may 
occur in parallel, which makes them faster, although 
more susceptible to system faults. One of the Millwheel 
features is that users can add or remove computations 
dynamically, i.e., they can add or remove nodes in the 
topology during its execution, without having to restart 
the whole system. 

    1)  Fault tolerance strategy on MillWheel 
MillWheel provides persistent states of operators by a 

replicated high available data storage systems, such as 
BigTable (a distributed storage system) or Spanner (a 
distributed database). These systems ensure data integrity 
and are transparent to users.  

MillWheel also deals with fault tolerance at the 
framework level, ensuring that each operator receives its 
tuple. For this, it is necessary that the application use the 
abstractions of state and communication provided by the 
framework itself.  

Therefore, upon receiving a tuple, the operator checks 
if it is duplicate or not. If it is duplicate, then it discards 
the tuple; otherwise, it processes the tuple according to 
the user code. After that, the state of that node is 
committed into a storage system and the sender node 
receives acknowledge. 

B.  S4 
In S4, a stream is a set of elements composed of tuples 

of key and attributes (or values) and we call these tuples 
as events. Yahoo! proposed the S4 system architecture as 
a set of processing elements (PE) that consumes or 
process exactly those tuples identified by a particular key. 
There is a special type of PE, called keyless PE, that 
consumes all events associated with a tuple, regardless 
their key. The association between the outputs of some 
PEs and the entry of other PEs also forms a dataflow 
graph or a topology [18]. 

The PEs are logically hosted in Processing Nodes (PN), 
which are responsible for listening to events, perform 
operations when an event arrives and dispatch new events 
for other nodes in the topology. 

    1)  Fault tolerance strategy on S4 
ZooKeeper [21] [22] is the subsystem responsible for 

detecting failures in S4 nodes. A fixed number of tasks or 
partitions defines a S4 clusters. Usually, we define more 
nodes than partitions and hence we got stand-by nodes.  

Upon detecting a node failure, the ZooKeeper notifies 
the stand-by nodes. These stand-by nodes compete for the 
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partition and, once determined the assigned node other 
nodes are notified that the task was assigned. Then the 
new active node sends a message the other active nodes 
requesting to forward messages to it. 

ZooKeeper considers that a node has failed when there 
is no response from him after a timeout. The node itself 
defines this time when connects to ZooKeeper and is at 
least twice the heartbeat signal frequency specified by the 
ZooKeeper configuration. 

When the cluster brings a new node, it has no state. 
Thus, if there has been a previous checkpoint, the user 
code should retrieve the state when messages arrive to 
that node and when the PEs are instantiated. 
Checkpointing is uncoordinated and asynchronous to 
minimize latency and reduce state loss. In addition, 
recovery is lazy, which means that occurs only when 
necessary.  

C.  Spark Streaming 
Despite other ESP systems, Spark Streaming works on 

a series of deterministic tasks (batch computations) on 
small time intervals [19]. For this work, the Spark 
Streaming system defines a data structure called Resilient 
Distributed Dataset (RDD), which holds the data in 
memory and can retrieve it without replication by 
analyzing the lineage graph operations used to build it.  

The RDD is an immutable, deterministically re-
computable, distributed and fault tolerant dataset. More 
specifically, an RDD is a read-only collection of records 
partitioned and replicated across the worker nodes in a 
cluster. These worker nodes are processes that can store 
and process RDDs in memory. 

The Spark Streaming architecture comprises a master 
node, which schedules tasks to compute new RDD 
partitions; worker nodes to get the data, stores the input 
data and perform the tasks; and the client library, used to 
send data into the system. 

    1)  Fault tolerance strategy on Spark Streaming 
Spark Streaming provides two types of strategies for 

fault tolerance: replication and upstream backup. Spark 
Streaming handles fault tolerance by periodically writing 
metadata information into a Hadoop Distributed File 
System (HDFS) [23] directory. Therefore, when a worker 
node fails, another worker node can restart and continue 
processing from the last checkpoint. The fact that RDD 
models all data assures it. Thus, any computation will 
lead to the same result.  

On the other hand, for online data sources, received 
input data should be replicated in memory between nodes 
of the cluster. Then, if a worker node fails, the other 
worker node can still process the input data. 

D.   Storm 
The Storm system, created by Twitter, also works with 

the concept of topology as MillWheel and S4. In a Storm 

topology, there are spouts and bolts, which forms a 
topology. A spout is a source of a stream and a bolt does 
a computation or transformation. A bolt receives a stream 
and may even produce an output stream.  

Three kind of nodes comprises a Storm cluster: a 
master node, called Nimbus; a coordinator node, 
managed by ZooKeeper; and one or more workers 
embedded in nodes called supervisors. The Nimbus is 
responsible for distributing code around the cluster, 
assign tasks to machines, and faults monitoring. A worker 
node, in turn, processes the work assigned by the master 
node; and ZooKeeper coordinates the relation between 
Nimbus and worker nodes. 

    1)  Fault tolerance strategy on Storm 
In Storm, the spouts – sources of streams – keep the 

messages at their output queues until the bolts 
acknowledge them. If there is an acknowledgement, the 
spout drops off the message from the queue. Otherwise, 
the spout sends the messages again.  

To handle the node failures, Nimbus – the master node 
– listens for worker nodes heartbeats, which are sent 
periodically. If the heartbeats do not come, Nimbus 
assumes that the node is down and move the workers to 
another node.  

Nimbus and supervisor nodes are stateless and they 
destruct themselves when and unexpected situation 
occurs. Therefore, if an abnormal situation occurs with 
those nodes, they restart themselves transparently to the 
worker processes. However, other machines could not 
host worker processes if they fail and Nimbus is dead. 

IV.  DISCUSSION 

Tab. 1 summarizes the differences between the 
selected ESP systems regarding the supported 
programming languages, the strategies used for fault 
tolerance and the subsystem responsible for dealing with 
failures.  

Both MillWheel and Storm work with virtually any 
programming language, which means that, with less 
effort, programmers can adapt their legacy software to 
work with these ESPs. S4 and Spark Streaming, in turn, 
work on Java, despite the fact that Spark Streaming also 
supports computations programming in Scala and Python. 

In addition, MillWheel and Spark Streaming do not 
depend on third-part subsystems to address the fault 
tolerance. In this aspect, they both deal with fault 
tolerance issues within the framework itself. S4 and 
Storm, in turn, are strongly dependent on ZooKeeper to 
tolerate failures; and Storm is even dependent on Nimbus. 
In both cases – S4 and Storm – user should manage the 
operator state, which is responsible to specify how and 
when it should recover those states. 

V.  CONCLUSIONS 
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Applications that uses ESP systems will determine the 
type of fault that the system should support. In some 
applications, where the state of the operator is not vital to 
the operations on stream graph, the system can tolerate a 
failure of an operator (a vertex in the stream graph) 
simply instantiating the failed operator. In this case, 
systems that deal with stateless and replicated operators, 
e.g. S4 and Storm, can be useful. 

Furthermore, applications where the state of each 
operator should be kept, robust mechanisms for fault 
tolerance and maintenance of states should be strong 
enough to ensure that the application remains integrate 
and coherent. In this case, MillWheel and Spark 
Streaming have interesting features. 

However, we are particularly interested in applications 
of participatory sense in emergencies, i.e., given an 
emergency such as an earthquake or collapse of a building, 
victims who are able to use their mobile devices could ask 
for help, communicate with emergency teams or even 
informing the situation around them, all through social 
networks like Twitter and Facebook. 

This communication could make the most effective 
displacement of emergency teams, directing them to the 
most critical locus. In this case, we would need an ESP 
system that maintains the state of its operators but at the 
same time, could keep the high throughput of data 
processing. 

Therefore, a system that combines fast failure detection 
with operator state maintenance even in the event of 
failure would be ideal. 
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