

Unified Approach for Building Heterogeneous
Artifacts and Consistency Rules

Mounir Zekkaoui
Laboratory LIST

FST-Tangier
Tangier-Morocco

zekkaoui@gmail.com

Abdelhadi Fennan
Laboratory LIST

FST-Tangier
Tangier-Morocco
fennan@fstt.ac.ma

Abstract—It has become increasingly difficult to ensure
consistency between all artifacts in complex software
applications, and manage the impact of their development
throughout the development process.
Computer assistance in detecting and resolving
inconsistency issues can help improve the quality of designs
and development of software.
In this article, we propose a unified approach to
representation of different heterogeneous artifacts and a
uniform formalism to express methodological consistency
rules based on traces of construction and we validated our
approach by building a check engine in order to detect
inconsistency.

General Terms—Design, Verification.

Index Terms—Artifact, Meta-model Construction,
Consistency, Software Engineering, Inconsistency Rules,
Construction Operations, Check Engine.

I. INTRODUCTION

We ask Software Engineering has been described as a
discipline of description [2]. Software engineers make
use of a large number of different artifacts, including
source code, analysis models and design, unit tests, XML
deployment descriptors, the user guides, among many
others. Since these artifacts may evolve over the time
through participation and collaboration of many
engineers throughout the development process, [3]
establishing and maintaining consistency among
descriptions presents several problems:
• descriptions vary greatly in their formality and

precision;
• individual descriptions may themselves be ill-formed

or self-contradictory;
• descriptions evolve throughout the life cycle at

different rates; and

• checking consistency of a large, arbitrary set of
descriptions is computationally expensive.
We use the term inconsistency to denote any situation

in which a set of descriptions does not obey some
relationship that should hold between them [16]. The
relationship between descriptions can be expressed as a
consistency rule against which the descriptions can be
checked. In current practice, some rules may be captured
in descriptions of the development process; others may be
embedded in development tools. However, the majority
of such rules are not captured anywhere [3].

Spanoudakis and Zisman [1] define six inconsistency
management activities that should be undertaken. The
first activity, inconsistency detection, is of special interest
as it defines the foundation of the whole process.
Considering this activity, two families of approaches are
identified: the logic-based approaches and the model
checking approaches. The logic-based approaches are
defined by the use of some formal inference techniques to
detect any kind of model inconsistency. The model
checking approaches deploy dedicated model verification
algorithms that are well suited to detect specific
behavioural inconsistencies but are not well adapted to
other kinds of inconsistencies.

The approach called « consistency management »
believes that it is impossible to ensure the global
consistency of all software artifacts at all times. Any
artifact can be temporarily inconsistent. The main
problem of this approach lies in tracking inconsistencies.
It is necessary to detect the introduction of new
inconsistencies and removing existing inconsistencies in
successive changes made by developers on artifacts,
without impeding the progress of the development
process.

It is important to note that current approach do not in
general work on homogeneous artifacts (eg model objects
[6, 7, 9, 11, 13, 14 et 15]), or using pivots formats (such
as XML [4 et 10]) to hide the heterogeneity. Moreover,

26 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jetwi.6.1.26-31

they cannot generally cope with the evolution of different
heterogeneous artifacts.

In this article, we present CMAC, our approach to
managing consistency which has the particularity of
being based on construction operations of software
artifacts. CMAC detects the presence or absence of
inconsistency artifacts. Inconsistencies are specified by
logical rules on construction operations. This
representation has the advantage of supporting the
implementation of incremental detection providing
performance gains very interesting. Moreover, it allows
the definition of methodological rules of inconsistency to
specify temporal orders between construction operations.

The remainder of this paper is structured as follows.
Section 2 describes, accurately, how we attacked the
problem, the methods and tools we used and how we did
(the meta-model construction, unified formalism for
managing inconsistency). Section 3 presents the results of
our approach (the prototype we built) and we conclude in
the last section.

II METHODOLOGY

Understanding of the software and the acquisition of
knowledge about the system are essential for all activities
in software engineering. The term artifact means any
entity falling within the scope of software development.
However, it is both difficult and complex to identify the
data inconsistency across all artifacts starting from the
artifact changed. A change to any software artifact must
be taken into account and it will treat by controlling the
consistency rules defined in relation to other artifacts. It
is then necessary to dispose an abstract and unified
representation of software artifacts to facilitate the
expression and management of consistency between these
heterogeneous artifacts.

To check the consistency rules, we proposed CMAC
approach that identifies the elements that do not comply
with the consistency rules of artifacts. CMAC is
composed a meta-model of structural and unified
representation of the different software artifacts and a
uniform mechanism for expressing consistency rules in
these artifacts.

2.1 Artifact Construction
We considered that all artifacts, regardless of their type,

are comparable to typed graphs [17]. An Artifact is then
composed of elements. Each element is typed. It can
reference other elements. All references are also typed.
The artifacts are interrelated them at different levels of
granularity [18]. All artifacts can be represented
according to the hierarchisation in levels by the pair <
∑Lv , ∑art > where ∑Lv is the set of all levels. The kth
artifact of the jth level is represented by the pair < Lvj ,
artk>. For example, <LvClass, Calculator> denotes the fact
that Calculator is an artifact belonging to the class level.

It is important to note that the current approaches
extract the data either by browsing all the artifacts with a
listening on construction operations of developers at the
end of to store in a database [5, 7, 8, 11 et 12], or through

the conversion of all artifacts into XML before applying
the consistency rules [4].

Extract all artifacts and listening different construction
operations is a very heavy process to install it in a
development environment. In our approach, we allow
users (who are often responsible for the development) to
extract artifacts by level who need and stored in the
database at the end of applying different consistency rules
(eg classes, methods, attributes, beans deployment
descriptor).

For more complex artifacts such as compounds
artifacts, texts files and documents of business rules. We
adopt an approach that is defined manually by the expert
of evolution. This means that artifacts are extracted
manually or by specific algorithms implemented by
artifact level such as java and xml files.

The figure (Fig 2.1.1) shows the meta-model we
proposed, to present the structure of uniform
representation of artifacts. Of specific algorithms defined
by artifacts level and other added manually by experts
following the approach adopted. The event listener
adapted for each type of artifacts are listening to the
construction operation (creation, modification, deletion)
to represent all artifacts in meta-model, specifying
temporal orders between construction operations, for
better control of software evolution.

We tried to provide a simple and scalable meta-model
to represent all types of artifacts.

We considered that all artifacts are stored in files. Each
file type must have hierarchical abstro-granular levels (eg
class level which contains methods which can find the
parameters). Artifacts can also be represented
hierarchically, an artifact can have elements (artifacts),
and each element can have other elements (artifacts), and
so on. Each artifact belongs to a level (set manually by
experts).

Taking the following example, a class java «
Calculator.java » (Fig 2.1.3).

Fig 2.1.1:Meta-model of Artifact construction

File

-String name
-String path

RefLevel

Artifact

-Long version
-String name
-String value
-Date date

RefFileType

ReferentialData

#String code
#String value
#description

Parent
0..*

0..1

1..*11

0..*

1

0..*

Parent

0..*

0..1

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 27

© 2014 ACADEMY PUBLISHER

Level i+n

Level i

Level

Level Level i

Level

Level

Inter-file relationship

vertical relationship

horizontal

Fig 2.1.1: Classification of artifact relationships

To meet these rules consistency, we propose a unified
approach to extract only the artifacts which will need it,
that means the developer responsible for the evolution
specifies the different artifacts to extract by level, and it is
through a form choosing the file type and artifacts levels
to extract. For complex files (not supported by the
application) such as text files and documents, specific
algorithms can beings developed following the adopted
approach end to enrich the form data.

Below is represented the different levels and artifacts
they may be extracted from the previous example at the
end of meet consistency rules.
<Lvpackage ,ma.organization.calculation>
<LvClass , Calculator >
<Lvattribut , operand1>
<Lvattribut , operand1>
<Lvconstructor , Calculator >
<Lvparameter , pOperand1>
<Lvparameter , pOperand2>

2.2 Engine of Consistency Rules
Several classifications of consistency rules have been

provided in [1] and others. Our goal is not to define a new
classification of consistency rules, but rather to provide a
uniform mechanism (engine of rules) for dealing with
artifacts inconsistency regardless of their types.

For the consistency rules, we proposed to define them
as of relationships between the elements defined in the
meta-model construction (chapter 2.1). In the case of our
model, we allow users (who are often responsible for the
development) to define dependencies between software
artifacts. These relationships are represented as of logical
formulas defined by the development engineer through an
intuitive interface (Eclipse plugin under construction).
For more complex relationships we adopt a specific
language that is to define them manually by the expert of
evolution.

Modeling the inter-relationships artifacts is a complex
and very important task. We consider three types of
relationships (Fig 2.2.1).

They are:

1. Inter-files relationships: These relationships
connect artifacts belonging to two different file
systems. This is the case for example of the
relationship between a UML class and a Java class
that implements or the relationship between java
class and the deployment descriptor (xml file).

2. Horizontal relationships: they represent different
kinds of semantic links in the same file and linking
artifacts of the same granular level. This is
particularly the case of the call relationship between
two methods or the inheritance relationship between
two classes, ...

3. Vertical relationships: they connect two artifacts
belonging to the same file at different granular
levels. An example of this type of relationship is the
one between a class of these attributes, a method
body or block the instructions that compose it, ...

Figure 2.2.2 presents our proposal of a meta-model of

construction and consistency rules between the different
artifacts for monitoring the impact of their evolution
(detect violations of methodological constraints)
We considered that a consistency rule « Rule » is
composed of several conditions « Condition ».
A condition can be either:

1. A composition of several sub condition «
Condition ».

2. Or in the form of two parameters « ParameterA &
B » and one operation « RefOperation ».

« ParameterA » may have the exact value of artifact or
after the application of the method « RefMethode ».
« ParameterB » same principle as the « ParameterA »,
except that it can also have a value entered by the user.
« RefMethod » specific methods that can be applied sue
parameters (eg StringToInt, NumberOfChart and others).
« RefOperation » can have the value of the following
symbols (>, <, = =, equals and others), usually all the
signs used in the “if” statement of the Java language.

package ma.organization.calculation;
public class Calculator {
 private int operand1;
 private int operand2;
 public Calculator(int pOperand1, int pOperand2) {
 this.operand1 = pOperand1;
 this.operand2 = pOperand2;
 }
....
}

Fig 2.1.2: Sample java file “Calculator.java”

28 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

(e.g. the rule “(StringToInt("23")> 3)”, the sign “>”
represents the « RefOperation », “23” is the value of «
Artifact », “StringToInt("23")” is the value of «
ParameterA » and “3” is the value of « ParameterB »).
The user can specify an error message « Message » in
case of inconsistency, as he may specify the severity level
for each rule (in case of “BLOCKING” the system stops
the application if it is started).
« RuleState » containing a state history of each rule
(successful and not succesful) together with the current
state (historized: false), this table is powered to each
inconsistency check.

2.3 Detection of Inconsistency
We have implemented a system for the automatic

verification of inconsistency. The program is developed
with Java language, it is based on the extracted artifacts
and consistency rules defined by the developer before
displaying the different specific messages to each
inconsistency in the console. The key principle is to
convert the rules defined in the meta-model to queries
written in Java language.

A consistency rule is usually written in the following
form :
IF conditions Then actions(A) Else actions(B)

A condition can be either a set of other conditions
condition = ∑$condition
Or may have the following form :
Condition = $ConditionType ($ParameterA
 $RefOperation $ParameterB)

• $ConditionType : can have two values {OR | AND}.
• $RefOperation : can have the following symbols {<, >,

=, ==, !=, equals, …} almost all the symbols used in
the if condition of Java language.

• $ParameterA : $RefMethode($Artefact), is the value of
an artifact, be simple or well after application of a
specific method (e.g. converting a string to a numeric
value).

• $ParameterB : {Value | $RefMethode($Artefact)} the
same principle as $ParameterA, except that
$ParameterB can have a value entered by the
developer.

actions(A) = (update curent $RuleState) and (add new
 $RuleState)
If the conditions of the rule are true then update the
current state $RuleState(historized:false) of the rule by
changing the value of the attribute historized to true, then
add a new object $RuleState with successful:true,
historized:false and date:new Date().

actions(B) = (update curent $RuleState) & (add new
 $RuleState)

If the conditions of the rules are wrong then 1- Update
the current state $RuleState(historized:false) of the rule
by changing the value of the attribute historized to true.
2- Add a new object $RuleState with successful:false,
historized :false and date:new Date(). 3- if
$Gravity:blocking Stop processing and display
specific message (or generic message if the developer has
not specified an error message) in the console, else if
$Gravity:{not blocking|information} display the message
in the console without stop processing.

III RESULTS

As a proof of concept of our approach, we have built a
prototype in the Java programming language. The key
idea is that the artifacts and consistency rules are
represented in a unified meta-model and a Java program
is based on the meta-model for check the inconsistency.
This java prototype will be integrated into the Eclipse
development environment (CMAC eclipse plugin in
progress) and development tool Checkstyle (in progress).
Users can trigger the inconsistency check or set the start
settings (at project start, activate the listeners, ...). Of
listeners per file and level artifacts are listening to
different construction operations at the end update the
relevant data in the meta-model (e.g. if a file has been
updated update all artifacts of this file).

Fig 2.2.2: Meta-model of construction and consistency rules

Condition

-value

File

-String name
-String path

RefLevel

Artifact

-String value

RefFileType

ReferentialData

#String code
#String value
#description

Parent

0..*

0..1

1..*11

0..*

1
0..*

11

1..*

1

1

0..*

RefOperation

1

0..*

Parent

0..*

0..1

Rule

RelationType
<<enumeration>>

+HORIZONTAL
+VERTICAL
+INTER_FILES

1..*

1 Gravity
<<enumeration>>

+BLOCKING
+NOT_BLOCKING
+INFORMATION

10..*

Message

-code
-title
-body

0..1

1

subcondition
1

0..*

ConditionType
<<enumeration>>

+AND
+OR

0..*

1

ParameterA

ParameterB

+String value

10..*

0..10..*

RefMethod

0..1

0..*

0..1

0..*

1..*

1

RuleState

-boolean successful
-boolean historized
+Date date

0..*

1

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 29

© 2014 ACADEMY PUBLISHER

3.1 Architecture
Our prototype is composed of two main components:

the “Artifact Builder” and the “Rules Engine” (see
Figure 3.1.1).

“Artifact Builder” is responsible for the following two
main tasks:
1. The extraction of artifacts from different file types

and levels selected by developers, and then store
them in a unified database of construction.

2. Listening to the various construction operations (add,
update and delete) made by the developers on the
files and monitored artifacts levels in order to update
the database of construction.

“Rules Engine” allows users to specify different
consistency rules through an intuitive graphical interface
or through the specific language for complex rules. Also
contains a program for detecting inconsistencies. It
analyzes the rules stored in the database (conversion to
the specific language before compilation) and produces
an inconsistency detection report.

Fig 3.1.1: CMAC architecture

3.2 Artifact Builder
We have defined two kinds of Artifact Builder. One is

a file reader and the other is an event listener. The file
reader can scan all file type, and outputs all the artifacts
that correspond to different levels selected by the user
(existing levels or implemented by the developer). The
event listener can receive events raised by the various
modification made by developers in order to update
artifacts in the database. This enables the incremental
checking of inconsistencies.

The file reader artifact builder has been developed in
Java on top of CMAC framework using Strategy pattern.
Strategy is a software design pattern, whereby an
algorithm's behavior can be selected at runtime based on
the type of data [19], in our case the type of data is the
level of artifact. We proposed to implement a specific

class by artifact level, and for more complex levels the
developer can add more classes by level following the
adopted approach. In each class we defined the specific
algorithm for extracting and recording the artifacts in the
database with corresponding levels.

The event listener has been also developed in Java
using the WatchService API of Java 7. The objective is to
monitor the various changes to the files and Artifacts
levels, then make the call to the file reader in order to
update data in the database.

3.3 Rules Engine
The principle of the Rules Engine is very simple, it is a

CMAC plugin interface allowing users to define
consistency rules as logical operations between artifacts
values, already extracted by the Artifact Builder.

For the simple rules (those defined between two
artifacts for example), we have proposed to define them
manually through an interface proposed by the plugin,
and for more complex rules, the developers must go
through an option of specific language that is available in
the same plugin interface.

The two ways of declaring consistency rules deliver
output recorded in a unified meta-model.

Rules Engine also contains a program for detecting
inconsistencies. Our approach is to convert the different
registered rules to queries in java language (section 2.3),
and at the output of the execution of these conditions, the
program update states history of each rule and display
specific messages when inconsistency.

IV CONCLUSION AND PERSPECTIVES

In this article, we presented an approach to managing
consistency in the design and software development. This
approach includes a unified meta-model representation of
different heterogeneous artifacts and a uniform formalism
to express methodological consistency rules to support
information engineering in software development projects.
And we validated our approach by building a system
(check engine) to detect violations of methodological
rules.

Due to its modular architecture, CMAC serves as a
good basis to implement a whole chain of processing
tools on top of it. Many tasks in the context of software
development and reverse engineering require not only to
retrieve information of interest, but also to process it in
some meaningful way. Tasks like pre-processing,
refactoring, consistency validation etc., all require a
custom extraction tool. For example, block modification
of any entity before updating the class in the UML model.
This example shows that CMAC is a good basis for the
implementation of tools and languages for the
development of software engineering.

We are currently working to implement the plugin
CMAC implementing our approach which can facilitate
the management of inconsistency between heterogeneous
artifacts. Finally, we wanted to integrate our approach in
several object mapping and refactoring tools, citing for
example “Checkstyle” and “Dozer” tools.

30 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

REFERENCES

[1] Spanoudakis, G. Zisman, A. 2001. Inconsistency
Management in Software Engineering: Survey and Open
Research Issues, Volume 1 (2001), pp. 329-380.

[2] Jackson, M. 1995. Software Requirements &
Specifications: A Lexicon of Practice, Principles, and
Prejudices, Addison-Wesley, Wokingham, England.

[3] Bashar, N. Easterbrook, S. and Russo, A. 2000. Leveraging
Inconsistency in Software Development.

[4] Eichberg, M. Mezini, M. Ostermann, K. and Schäfer, T.
2004. XIRC: A Kernel for Cross-Artifact Information
Engineering in Software Development Environments.
WCRE 2004: 182-191.

[5] Blanc, X. Mounier, I. Mougenot, A. and Mens, T. 2008:
Detecting model inconsistency through operation-based
model construction. ICSE 2008: 511-520.

[6] Egyed, A. 2007. Fixing Inconsistencies in UML Design
Models. ICSE 2007: 292-301.

[7] Blanc, X. Mougenot, A. Mounier, I. and Mens, T. 2009.
Incremental Detection of Model Inconsistencies based on
Model Operations, Conference on Advanced Information
Systems Engineering, Springer-Verlag Berlin, Heideberg
2009.

[8] Mougenot, A. Blanc, X. and Gervais, M.-P. 2009. D-Praxis:
A Peer-to-Peer Collaborative Model Editing Framework,
Distributed Applications and Interoperable Systems, 9th
IFIP WG 6.1 International Conference, DAIS 2009, 2009,
p. 16-29.

[9] Caffiau, S. Girard, P. Guittet, L. and Blanc, X. 2011.
Vérification de cohérence entre modèles de tâches et de
dialogue en conception centrée-utilisateur.

[10] Nentwich, C. Capra, L. Emmerich, W. and Finkelstein, A.
2002. xlinkit: A Consistency Checking and Smart Link
Generation Service.

[11] Egyed, A. 2009. Automatically Detecting and Tracking
Inconsistencies in Software Design Models.

[12] Le Noir, J. Delande, O. Exertier, D. Silva, M. A. A. and
Blanc, X. 2011. Operation Based Model Representation:
Experiences on Inconsistency Detection.

[13] Liu, W. 2002. RULE-BASED DETECTION OF
INCONSISTENCY IN SOFTWARE DESIGN.

[14] Liu, W. Easterbrook, S. and Mylopoulos, J. 2002. RULE-
BASED DETECTION OF INCONSISTENCY IN UML
MODELS.

[15] Silva, M. A. A. Mougenot, A. Blanc, X. and Bendraou, R.
2008. Towards Automated Inconsistency Handling in
Design Models

[16] Nuseibeh, B. Kramer, J. and Finkelstein, A.C.W. 1994. A
Framework for Expressing the Relationships between
Multiple Views in Requirements Specification, IEEE Trans.
Software Eng. pp. 760-773.

[17] Ehrig, H. Prange, U. and Taentzer, G. 2004. Fundamental
Theory for Typed Attributed Graph Transformation, Graph
Transformations, Second International Conference, ICGT
2004, Springer 2004.

[18] Basson, H. 1998. An integrated model for impact analysis
of software change. In International Conference On
Osftware Quality Management.

[19] Erich, G. Richard, H. Ralph, J. John, V. 1993. Design
Patterns: Abstraction and Reuse of Object-Oriented Design

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 31

© 2014 ACADEMY PUBLISHER

