JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 111

A Comprehensive Study of Finding Copy-and-
Paste Clones from Program Source Codes

Kamran Khan,

Shaheed Zulfigar Ali Bhutto
Institute of Science and Technology
Islamabad, Pakistan
Kamran_3388@yahoo.com

Abstract—In any programming language source code, the
code that is repeated is called the clone. The clone detections
have got much attention in the recent years. In literature
there are a number of clone detection techniques have been
proposed. These techniques includes CP-Miner, CC-Finder
etc. each of these techniques attempts to detect the clone
from the source code of various programming languages. In
this study, we will provide comprehensive details of the
various clone detection techniques proposed so far. These
techniques have been critically evaluated based on a no of
efficiency measure parameters. In our future work we will
propose our own clone detection technique that will more
efficient and accurate in terms of code clone detection from
multiple programming languages.

l. INTRODUCTION

In software development, programmer often uses copy-
and-paste technique. The aim of copy-and-paste
technique is save efforts in manually typing over the
codes again in computer program software. It is
mandatory to detect and remove such clones. In the past,
many techniques have been proposed. For example, [1],
[2] use copy-and-paste detection tool for detecting code
clones.The main issue associated to clones in
programming languages is that copy-and-paste
introduces bugs in programming code due to forgetting to
change identifiers each time right through the code that is
pasted from some somewhere else [2].

There are many issues associated with copy-and-paste
source code when the size of the code get bigger,
furthermore handling these issues are even greater
challenge. A bug in one module is reproduced in every
copy [3]. As many of the copy-and-paste codes are not
documented which provides that which part of the code
repeated in which parts, it is extremely hard to find and
fix such programming bugs. These bugs are the main
source of issues related to maintenance of existing
software and removing such bugs are more complex and
costly. Moreover, understanding and reusing such code is
also a challenge for programmers which reduce the level
of abstraction and adding new functionality to the code
[3].

Different research studies have already been done to

©2014 ACADEMY PUBLISHER
doi:10.4304/jetwi.6.1.111-118

Saif Ur Rehman, Kamran Aziz
CORDE: Center of Research in Data
Engineering, MAJU University,
Islamabad, Pakisan
Saifi.ur.rehman@gmail.com,
kamrandik@gmail.com

Simon Fong
Department of Computer and
Information Science
University of Macau
Macau SAR
ccfong@umac.mo

identify the duplicates in software applications [12].
However, these techniques have limitations regarding the
support for certain programming languages. In literature
different tests have been performed on known tools and
techniques for clone detection but the results reveals that
there is none good approach that produce efficient and
optimal output.

In software engineering the topic of clone detection
has received much attention in last decades. In literature
several methods for clone detection have been proposed.
These techniques are widely used in software domain[8]
the existing clone detection techniques focuses on finding
similar codes in source code, known as clone, which
resulted in reduced update issues and application size.
These gains, however, can be improved by evaluating the
level of clone analysis [4]. Previous studies showed that
these gains can be detect design level similarities which
can aid to the software design in terms of code
optimization and understanding the design of software.

The rest of the paper is organized as follows: After
presenting some basic definitions about clones in Section
2, we present some summaries and strong points and
weak points of clone detection techniques. In Section 3,
we present a different comparison of these clone
detection techniques have been critically evaluated.

1. LITERATURE REVIEW

In [1] Kamiya et al. have proposed a technique for
detecting clones in large source codes. Their technique is
called CC-Finder. The CC-Finder is based on the
following elements: (1)-transformation rules; (2) a token-
based comparison and (3) optimization techniques. These
three elements attempt to improve the performance and
efficiency of clone detection in the source code. The CC-
Finder works as follow. In first step, the source code is
divided into tokens. Afterwards, all these tokens are
concatenated into a single token file. Then clones
detection is performed on this single file. During the
token analysis process, the white spaces are removed
between the tokens and these characters are sent to the
formatting step. In the second step, the token sequence is
transformed using transformation rules. In this step the

112 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

special characters, operators and name spaces are
discarded. In the third step, following the second step
transformation the same pairs are detected as clone pair
[1]. In the fourth and last step the proposed method
locates the copy-and-paste and converted them into the
line numbers on the original source code. Afterword [1]
is implemented in C++ language. The results showed that
[1] can extract the clone from different languages source
code including C, C++, Java and COBOL. Although, CC-
Finder is very efficient for clone detection but this
technique is failed to detect the clones that come from
two different programming language source codes.

In [2] Li et al. have proposed another useful tool for
clone detection. The method proposed in [2] applies
techniques of data mining to identify copy-and-pasted
code in a huge source code. The proposed technique is
capable to find operating system associated bugs [2]. The
proposed approach has two main functionalities (1).
Detecting copy-and-paste code segments (2) finding
copy-and-paste related bugs. It works as follow: In step
reduce the development time. A software developer in his
development career frequently uses copy-and-paste and
they use the same code again and again. Copy-and-paste
method reduces programming effort and time therefore
programmer uses copy-and-paste rather than writing new
code from scratch. In literature a large number of
techniques have been developed for detecting duplicated
code in

No.1 the proposed approach first change the problem
into frequent subsequence mining problem [2]. The
author used CloSpan algorithm to detect the basic copy-
and-paste segments. In this step the proposed approach
detects copy-and-paste very competently. To further
accelerate the process the [2] eliminate unnecessary
comparison by using frequent subsequence mining
method. In second step, the proposed approach found
code clones which were the main source of bugs.
Furthermore to evaluate the efficiency of the [2] different
experiments were performed using [2] the results showed
that the execution time of the proposed technique is
optimal, proposed approach took 11-12 minutes to find
101,699-198,605 code clones in a source code segment in
a Linux. Further [2] was compared with [1], the
comparisons established that execution of [1] is similar to
[2] but the [2] is more efficient and detects much more
copy-and-paste segments. So there work is supported by
very good explanatory examples. The currently
developed tool is only work for programs written in C or
C++ and their tool detects only simple cases of errors
which is not complicated.

In [3] Wahler et al. have proposed a new method for
detecting clones. Their technique is based on frequent
itemset. The proposed technique works as follow; in first
step, it takes source code from different compilers as an
input, the [3] then creates a consistent code from the input
using corresponding parser. In the next step, it uses the
popular frequent itemset finding technique to generate
most frequent itemset from the XML file. In the last step,
it removes or detects the itemset as the duplicate code. By
using JDK, the authors have implemented their approach.

©2014 ACADEMY PUBLISHER

Although, the experimental results shows that it can
efficient and accurate to detect the clones from the source
code; but this detection is limited to clone of type 2.

In [4] Basit et al. have proposed a method for detecting
or finding the clones in a source file. Their technique is
based on token-base technique for finding (a) simple
clones (b) finds co-occurring clones in a different files by
using a frequent itemset mining and it perform file
clustering to find clusters that are similar. The execution
process of [4] is as follow; In first step, the input file is
converted into tokens and the efficient suffix array based
algorithm is used to find the repeated tokens. The first
step provides a data in a suitable format for second step.
In the second step, [4] detect clones that occur together
and frequently in a different source by using a frequent
itemset technique. In this step they found some un-
significant files coverage, for these un-significant files
coverage they used third step (clustering highly clone
method). The proposed approach is implemented using
the C++ compiler for efficiency measure; they used the
Java source file as an input to find the clones from it.
Although, this technique can find clone but this detection
is limited to just one programming language.

In [5] hummel et al. have proposed a new technique
for finding clones. Their method is known as “Novel
Index Based”. Their technique is used for both
incremental and scalable to a very large source code. The
incremental based method consists of three steps. In a
first step the source code is read from a disk and
converted into tokens. So the result of this step is the list
of normalized statements for each file. In the second step,
it finds the global statements list for equal sub strings.
The result of this step is cloning information on the level
of statement sequences. In the last step this technique
creates cloning information on the level of code regions
from cloning information on the level of normalized
statements. Their clone index approach is similar to the
inverted index used in document retrieval system. This
method is not only used for the retrieval of all the clones
enclosed in a source file but it is also useful for the
efficient retrieval of clones from the source file. They use
their method in a distributed environment across different
machines for the creation of index and retrieval of clones.
In a distributed environment they experiment on Java, C
and C++ source codes. They have showed the efficiency
of their work experimentally.

In [6] Baxter et al. proposes the Abstract Syntax Tree
(AST) to detect the clones in the source code. Their
proposed approach is the simple one as compared to the
rest of the clone detecting techniques available in the
literature. This technique is efficient and can detect the
clones accurately from the code as compare to other clone
detection techniques which only focus on either the string
matches or near misses only on the body of the
underlying functions. The technique proposed in [6] first
of all the source code is parsed and from this parsed code
an Abstract Syntax tree is produced. Then a set of three
algorithms have been applied on Sub-Tree Clones. In
this step the similarity is measured between the sub trees.
This similarity is measured using the formula given

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 113

below in Eq.1. This AST is used to find the clones
from the source code. The first algorithm is called
Finding

Similarity =2xS/(2xS+L+R)- Eqgl [1]

Where, S is the number of shared nodes [6], L is the
number of different nodes in sub-tree 1; R is the number
of different nodes in sub-tree 2 [6]. The [6] applied their
proposed technique on real world software systems,
which confirms that this new technique [6] can generated
more accurate clone detection results as compared to the
other clone detection techniques. This technique has
following strong points. (1) This technique is
straightforward for detecting the clone in the source code.
(2) It is more efficient as compare to it is proved form the
experimental results [1]. (3) It will defiantly open the new
direction for the detection of the clone code in the source
code of the program. Although [6] has given new
dimensions to the clone detection mechanism but the
technique it uses, AST uses a thresholds value which
eliminates small trees comparisons but the proposed
method failed to find the close clones such that in which
one clone instance is small, and the other is large [6].

In [7] Falke et al. have proposed a method called
“Abstract syntax Suffix Tree”. Their method is used to
find clones in based on [6]. The approach proposed in [7]

is used to find syntactic code clones in an optimal manner.

Their method is very efficient especially in token base
clone detection as suffix tree token base clone detection is
very fast. Basically suffix tree is originally used for
efficient string searching. The suffix tree represents a
string where every suffix is shown through a path from

root to a leaf and the edges are labeled with substrings [7].

Comparison between token base ad AST base shows that
suffix-tree-based study offers a lot of advantages over
other methods. Their comparison shows that token base
clone detector is familiar to a new language in a very
small time. The algorithm of linear time is consists of the
following steps; In a first step, the source code is parsed
and from this parsed code an Abstract Syntax tree is
produced. Then in the 2nd step they serialize the AST
nodes by a preorder traversal [7]. In the 3rd step each
AST node represents a token and suffix tree clone
detection is based on token. In this step the actual value
of string is not disturbed when they are represented as a
node. The output of this step is set of clone classes. The
clone classes are consisting of AST node sequences and
these sequences may or may not be syntactic clones [7].
Therefore in last and 4th step these sequences are
decomposed into syntactic clones. They compare their
method with 9 other techniques which is a plus point of
their technique. Their method is good to find syntactic
clones in a source but their technique is less efficient.

In [8] Jablonski et al. have proposed a new approach
for detecting a copy-and-paste clones and changing the
identifiers name in an integrated development
environment. This technique is called a CReN. CReN
finds the code clones which is occurred during the copy-
and-paste in the integrated development environment

©2014 ACADEMY PUBLISHER

(IDE) and the proposed method in [8] uses set of rules
which are based on the identifiers relationship in the code
fragments. Their tool CReN is implemented as an eclipse
plug-in in Java [8]. They have performed experiment on
the source code which is written in a Java language. Then
they apply the proposed tool to find the copy-and-paste in
the input file, the proposed tool is a set of identifiers
placed in a code fragment and map the identifiers pairs
which are placed in a same location. Their tool uses AST
API of eclipse JDK framework [8] and this AST allows
the proposed tool is used to create connection in clone
code. The [8] tool is also used for renaming the identifiers
just within copy-and-paste fragments. Experimentally
their tool is so good for clone detection but it is used only
for Java source code.

In [9] Uchida et al. have presented, the broad analysis
of a code clones and for this purpose they use 125
packages of open source which is written in a C language.
For analysis they use a CC-Finder technique to determine
the code clones and evaluate them statistically. They also
use a clone warrior tool for code clone identification for
identifying and classifying the code clones and to
examine the causes for their production. For token base
clone detection they use CC-Finder method which have
an industrial potency and applicable to a million lines size
of source ¢ ode. For detecting a code clones using a CC-
Finder method they follow the following steps; In the
first step, the input files are converted into tokens based
on the lexical analyzer rules of the programming
language [9]. In this step, the proposed method prunes
white spaces and remarks or comments. In the next step,
data types, variables and constants are replaced by the
same respective tokens [9]. This replacement is useful for
identifying a code clones as pair of code lines where only
the variables names are differ. In the last step, all the
substrings which are transferred as token sequences; a
pair of identical substring is detected as clone pair. So,
for visualization of a code clone they used a clone warrior
tool which consists of a graphical user interface (GUI).
Using clone warrior tool, first they specify the criteria for
clone detection i.e. the smallest amount of a fragments. In
next they specify the input files which have to be
analyzed and after all the clones are detected from the
input file and stored in code clone storage and provide the
view in three forms i.e. the file list view, the code clone
list view and the source code editor. This work is
supported by very good explanatory examples. So their
experiment works fine but it is applicable only to a source
file which is written in a C Language.

In [10] Jia et al. have proposed a new technique for the
precise and efficient clone identification. This approach is
called Kclone. It combines lexical and local dependencies
analysis in order to generate precise clones from the data
source without affecting the clone deduction speed. This
technique works in three steps; first of all it converts the
code into an internal representation. After transformation
it identifies those parts that denote clones and finally it
combines the clone pairs into clone classes. For further
details readers are referred to read [10]. Efficiency of this
technique is supported by experiment which performs

114 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

clones deduction in various programming code including
C, C++ and Java. The author have concluded that it is fast
and requires less memory as compare to other clone
detection techniques. Although it can find type 3 clones
from the source code but it is less efficient for type 2
clones.

Shinobi [11] is another useful and novel approach for
the clone’s detection and then the modification of the
code clones. This technique was proposed by Kawaguchi
et al. in 2009. The main features of this technique are to
(1). Identify the clones from the source code and (2).
Highlight these identified clones segments. This
technique is very tightly integrated with Microsoft visual
studio. It works in such a simple way that as it detects the
code clones, it warns the developers about the clones, so
that the developer can get read of it. Shinobi is a token-
base detection method. It takes the source code
automatically and then detects the clones. The source
code may be from a CSV file or source file directory.
This approach is very useful for clone detection while a
developer is working on the software maintenance. The
detail procedure of Shinobi is available in [11]. This work
is supported by very strong arguments. These are (1) It
can be implemented as add-in in Microsoft visual studio.
(2) Its clone detection process is very fast and automatic.
(3) It is very useful in clone detection while a developer
is working in a software maintenance phase. Although,
this technique is simple, fast and accurate it does not
provide any kind of compatibility with other development
environment like Java Netbeans, Oracle edition etc.

There are two types of code defects that may exist in
any of the source code file. These two issues are rule
violation defects and copy-and-paste problems. Zhang
[12] et al. have suggested a model that copes with these
two types of source defects. The authors have used the
data mining technique for their approach. This technique
is frequent pattern mining. It is not an easy task to detect
the programming defects. The proposed approach is
tested with a C source file having 4 million lines of code.
This approach is implemented in C++ and Python. They
perform various experiments. The results of these
experiments clearly show the efficiency and accuracy of
this technique. Since this approach can detects maximum
programming defects in one phase that is why testing
time is very much optimized with this method. The
authors have implemented the data mining techniques
effectively to identify and modify the programming
defects. Although this technique works fine, they have
not compared their experiment results with other
techniques, including [2] and [1] etc.

1. CRITICAL EVALUATION

This section primarily reflects the comparison and
contrast of the above reviewed literature regarding the
different clone detection techniques. It identifies the
similarities and differences among the various research
works on the clone detection algorithms. The critical
review is given in the Table-1(A), Table-1(B) and Table-
1(C), below. This will help for the future research in the
clone identification and deletion of the clone data.

©2014 ACADEMY PUBLISHER

The clone detection technique in [1] provided
sufficient experimental details of the methods with
implementation in C++ but the method [1] can detect
clones only in one language. In contrary the work [2] also
provided detailed experiments and with C++
implementation but the method [2] can detect clones in C
and C++ source codes. The clone detection approach for
java based source code is provided in. The authors in [4]
and [8] both have provided with sufficient details but [8]
is more accurate as it implements consist renaming
approach in detected clone.

Researchers in [6], [7], [8], [9] and [10] proposed
approaches for detection clones written in C language,
these have provided sufficient details and the results are
presented in tabular as well as graphically format except
[8] and [9]. The author [6] in his future work planned to
provide method which is more efficient and removal of
detected clones. In contrary authors from [8] and [9]
suggested in their future work to extend their approaches
for detecting clones in source code written in more than
one language, but the researcher in [10] has not discussed
any future work. To detect clones written in .Net
language the work [11] provided sufficient details but the
future work is not discussed. The work [12] is Python
based detection tool.

V. CONCLUSION AND FUTURE WORK

In this study, we have presented the summary
information of the different clone detection techniques.
These clone detection techniques are based on the CC-
Finder, CP-Miner, Abstract Syntax Tree, and Frequent
Itemset Technique. In addition, we also have highlighted
the research contributions and found out some limitations
in different research works. Consequently, this work also
depicts the critical evaluation in which comparison and
contrast have been taken out to show the similarities and
differences among different author’s works. The
spatiality of this work is that it reveals the literature
review of different clone detection techniques and
provides a vast amount of information under a single
paper. In our future work, we have planned to propose
our own technique based clone detection technique, and
provide its implementation and compare its results with
the different existing clone detection algorithms.

REFERENCES

[1] T. Kamiya, S. Kusumoto and K. Inoue, “CCFinder: A
Multilinguistic Token-Based Code Clone Detection
System for Large Scale Source Code”, IEEE, 2002.

[2] Z.Li,S. Lu, S. Myagmar and Y. Zhou,”CP-Miner: Finding
Copy-and-paste and Related Bugs in Large-Scale Software
Code”, IEEE, 2006.

[3] V. Wahler, D. Seipel, J. Wolff, V. Gudenberg and G.
Fischer,”Clone Detection in Source Code by Frequent
Itemset Technique”.

[4] H. A. Basit and S. Jarzabek,”Detecting Higher-level
Similarity Patterns in Programs”, ACM, 2005.

[5] B. Hummel, E. Juergens, L. Heinemann and M.
Conradt,”Index-Based Code Clone Detection: Incremental,
Distributed, Scalable”.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 115

[6] 1. Baxter, A.Yahin, L. moura, M. S. Anna and L.
Bier,”Clone Detection Using Abstract Syntax Trees”ICSM,
2005, p3.

[7] R. Falke, P. Frenzel and R. Koschke, “Clone Detection
Using Abstract Syntax suffix Trees”.

[8] P. Jablonski and D. Hou,” CReN*: A Tool for Tracking
Copy-and-Paste Code Clones and Renaming ldentifiers
Consistently in the IDE”, ACM, 2007.

[9] S. Uchida,T. Kamiya,A. Monden,K. Matsumoto,N. Ohsugi
and H. Kudo,”SOFTWARE ANALYSIS BY CODE
CLONES IN OPEN SOURCE SOFTWARE”,2005.

[10] Y. Jia, D. Binkley, M. Harman, J. Krinke and Makoto
Matsushita, “KClone: A Proposed Approach to Fast
Precise Code Clone Detection”, 2009.

[11] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y.
Kamei, M. Nagura and H. Lida, “SHINOBI: A Tool for
Automatic Code Clone Detection in the IDE”, 2009.

[12] Y. Zhang, Y. Liu and L. Zhang, “A data mining based
method: Detecting software defects in source code”, IEEE,
2010.

©2014 ACADEMY PUBLISHER

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

116

“WOISAS sisAjeue “POTIoOW SUTUTUI JOSTI)T
QuIes JY) UryIm 10J 9p0d 321N0S juonbaiy & Sursn Aq ST JUSIIPIP
Aniqe owmmmmﬁ (++0) eAelpasn Aoy, e © Ul SOUO[d SULLINO0-00 SpuL] (q)
o_mz?a opraoxd ORI O *©
6 m@ E:oz., m *$INSAI JuowLIodxd sauopo odurs (e) P [yhiseg
opraoxd Aoyy, e
dInyea} FuIpuBLIAp Surpuy 10y £30jopoyrow
©Jnoqe ssnosip oYL o o | 95BQ-USY0) UO Paseq st anbruydd Y[
“U01}99)aP SUO[D I0J
eAR[JO SaSeyord
JUQIOMJIP POSN AL e
*¢ 2d£) 3o souo[o ?E&Q) 7 o 1 $0dk 30 e ®»
10930p 03 WyLIoS[e J19Y) uonguowoIdiL e [re3op JuswLIadxa CPUE 3 [e]oiuem
SOUO[9 39239p 0} pasn sI yoroldde mou 1oy |,
PUQIX? 0} paLn ore Ay, JuaIoLyNS
opraoxd Aoy], e
*SUIQ)SAS
Sunerado yuaIoyyIp *039 J9pUL]-))) OI] SPOYISW UOT}OIP
PasSNISIp J0N (+-+0 pue O ur) D PR AE o Quo[o Joyjo 0) aredwod se JUSIOIJo
‘ uonejuowd(dwy e ‘S[relop e e
9A ST JQUIN-JD pue o1emijos agIe[ul
JuwLIdxd B2l 11z
JuaIoLNS opoo pajsed-pue-Adod 10930p Apusiadwod 0y
apIAO 1d Koyp sonbruyoe) Sururw ejep sosn yoeoidde 1oy g,
9ZIS BJEp SNOLIBA
(1A SUTeWop
‘sagenSue| (++D ur) opdnnuw wouiy -€}6P oY} WO SAUO[O
O%MMMHM H M%MMM HonsoRRIdl D) PR C 3s1031d 9e19US3 0} 19pI0 UI SIsATeue [T]ehAiwe
pedxo o) Fukn ore NGHEL papraoid are S[rEIop so1oudpuadop pue [BoIX9] SAUIQUIOd I]
[eyuowLIadxe
jusIoIng e
IO 3ININH Axejdwo) ABojopoyre N [l JUBWIdx3 S9.Inyes sJloyiny

SHNOINHOE [, NOILOALAd ANOT) SNORIV A 40 NOLLVNTVAH TYOLLI)

1[-d4714dV L

©2014 ACADEMY PUBLISHER

117

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

‘sogen3due] opdnnuw

"wiIoJ Je[nqe)

*[00} IOLLIEM QUO[O

os[e pue ¢ ad£) Jo auo[o
o} 30039p Je) swyILIoe
dotoasp 03 uerd Aay [,

'SUS30) OJUI PALISAUOD pue NSIp ©

WIOJJ PBaI ST 9P0OO 99INOS POYIOW SIY} U] o

0 SR el (O | ur uoArS 2 srejop € 9sn A9y} UOIBOJJUSPI J0] PUB SAUO[D 1212
ur) uoneyusua[duy JeyuduLIadxy : L [6]epiyon
9p09 JO UOI309)ap 10J [00} []] asn Kay],
‘110ddns wioj Ie[nqe) ul syuowgery o)sed-pue-£dod 2157
Surureual Ju)SISUOD (e UQAIS IR S[1ejop unym isnf SIayuUApI oY) Surreual Joy pasn s
apraoid pue j003 pasodoid ur) uonejudwaduuy [eyudwuLIadxyg ose SI [00} 119y} pue eAe[ul ur-3nyd asdrjoo peuolger
oY) 9ZI1eIdUA3 0, ue se pajuswadur st [003 pasodoid Jay T,
A[reoydeis ur
AZIS Se [[oMm Sk Ie[nge) ur .N-om £ 10§ UON31AP AUO[O
QUO[9 JO JUSWIINSBIW papiaoid a1e s[rejop
O 9seq uaY0) U AJ[e1dadso Jsej pue JUAIOJO e
o Bupmp sout] ur) uonejuawo[dw [euatLadxa 259G L AJOA SI PO Ho& 119 , *S991) XBIUAS Sm.bm © VA :)
JO PEa)SUI S)UN0d UdO) S 1 UOAIS a1e S[1eIdp . Mo%o S oo :% ot St DOUIow 113] el
® sosn pue daoxdwr o reyuswadxy . 12 PHE- 03 pasity st oottt HoUL
‘poyowr pasodoid ayy
jo sourwwIojiad Suseasou] Aqpeorydess ur sonbruyo9) uon2933p 2uo[d JayJ0 Aredurod
(Se [[om Se Je[nqe) ur Se 9p09 AU WOIJ SAUO[O 9JBINOIL I} JO)IP
‘[9] o113 901n0s © N ——_— 9%_ papraoid are s[rejop ued pue JUIdJo puk sonbruyod) Suroaep ol me
Ul P2393)ap SAUO[O PO JO st 19| eyuswniadxo osoy L QUO[O Y} JO 1591 o1} 0} paredwiod se auo 9llewed
UDAIS D€ S[1E}Op odus o st 1SV yoeoxdde pasodoid may [
[BAOWIOI A} 9JeWIOINE O], [eyuswiLIdxXy
"SJUAUWINJOP
1X9} UI UO1}O)IP "9[1J 92IN0S Y} WOIJ SAUO[O JO [BASLI}I
wstrersed 10y j0o) aseq o %ﬁ%&%ﬂ% JUSIOLYES Sy I0F [MYISN ST POYIOW SIYL, @ P
XOpUI JI9Y) PuoIxd 03 ue[d| wyoneyoumorduy | 1oy apraoid Aoy [Slpwwny

©2014 ACADEMY PUBLISHER

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

118

010 [¢] pue [1]

Aqreoryders ur
Se [[om Se Je[nqe) ut

‘poyjowu STy} Yim pazrumdo

9YI[S[00} UOI}I)P SAUO[D (uoyAd pue ++> T Tt) yonuw AI9A ST dwn 3unsa) Aym st jey) aseyd e ®»
9p0oo 13yj0 Yim yoeoidde ur) uonejuauweduwy wﬁw.oaﬁ - oﬂo:ﬂ . ouo ur s30930p Jurwrerdord wnunxew | [gT] Bueyz
pasodoid oty aredwod o], TR A s[rejop 10930p 03 pasn st yoeoxdde pasodoid oy,
[euowdxy e
"0IPNJS [BNSIA JJOSOIIIA Ul PjeIZuI
Aqreoydersd
BRI (ou’ w) Ew; e powow siy 1, “souojo asay SIYSH | e [TT] 1
uonejusworduy ; pue SUIAJNUPI J0J PIsn pue UONOAAP | yonbeme M
S[rejap [eyuduiIadxy
: ‘ Quo[d aseq U0} SI [003 pasodoxd oy,
Aqreorydeis ur
Se [[9m Se Je[nqe) ur
Passnasi(] I0N o papraoid are s[rejop 'S[00) 3UNI9)P SAUO[D
[euowIadXo 9SAYL op092 1330 0} A1edWOd SB AIOWAU SSI| e
ur) uonejuswaduy » [oTerr

UQAIS aIe S[IE)op

[euowdxy e

saxmbai pue 3sej st yoeordde pasodoid oy,

©2014 ACADEMY PUBLISHER

