
 

 
Abstract—Parallel computing methods decrease the 
processing time in mobile distributed systems compared to 
the conventional sequential computing techniques. But as 
they are developed from smaller mobile clusters to extensive 
mobile grids, they are prone to issues like high latency/jitter, 
processing speed, communication overhead, and low data 
transfer rate. So, an efficient and optimized parallel 
computing paradigm known as Distributed Shared Proxy 
Object Model (DSPOM) is developed based on Surrogate 
Object Model (SOM) integrated with Distributed Shared 
Object (DSO) for mobile grid. SOM is chosen to enhance the 
resource sharing of mobile grid computing, while DSO is 
chosen to reduce the computational complexity. The unused 
computing determinant is utilized by SOM to save the 
processing time. The transparency of the DSO model in 
terms of distribution and heterogeneity reduces the 
computational complexity. DSO also enhances the load 
adaptability and fault-tolerance to parallel programs on the 
mobile grid. The DSPO model performs better in terms of 
query time, query latency, packet loss, load adaptability, and 
fault-tolerance. 
 
Index Terms—Control Object, Distributed Shared Proxy 
Object (DSPO), Mobile Host (MH), Peer-to-Peer (P2P), 
Proxy Object (PO), and Surrogate Object Model (SOM). 

I. INTRODUCTION 

ARALLEL computing is an important aspect in 
mobile distributed systems to reduce fault-tolerance, 
computational time and overhead. It assigns the 

computations in an adaptive manner according to the work 
load. When parallel computing techniques are developed 
from smaller mobile clusters to extensive mobile grids, 
they are prone to issues like high latency/jitter, processing 
speed, communication overhead, and low data transfer rate 
[1]. 

Parallel and distributed mobile computing fully utilizes 
the computing power in mobile systems. These systems 
must ideally offer flexible communication, unlimited 
computing capacity and higher availability of the mobile 
distributed information [2]. The computing resources of a 
distributed mobile system are combined to work in a 
common system, forming mobile clusters. A group of 
mobile clusters forms a mobile grid, which can be defined 
further as a mobile cluster of mobile clusters. 

When MHs form a part of the mobile grid, they can be 
represented as both ‘consumer’ and ‘provider’ of services 
and other data resources. In mobile grids the tasks are 
computationally complex and need to be distributed across 

multiple hosts. This requires collaborative processes 
between distributed tasks. When MHs are provider of 
services and resources, the user needs to be confirmed that 
the service can complete the assigned task. Parallel 
computing on mobile distributed systems decreases the 
computation time, but also brings forth some issues like 
load variation, limited node availability, and heterogeneity 
in processor speed, network speed, operating system (OS), 
and architecture. 

A mobile distributed system consisting of 
interconnected mobile clusters handles a vast load 
fluctuation on individual mobile nodes. The unused 
network computing capacity must be utilized in every way 
for maximum efficiency. The programs executed on the 
mobile grid should be load adaptive. Conventionally, the 
communication processes are executed as a collection of 
processes (COP). Using the COP model, a programmer 
will not be able to recognize the varying network load 
patterns. The initiator node gets heavily loaded during the 
program execution, which decreases the performance of 
the system. 

Generally, mobile distributed systems involve varying 
numbers of active and inactive mobile nodes over a period 
of time. This should not affect the computation time, but 
there would be a significant change with larger differences 
in the number of mobile nodes [3]. When two different 
program instances use different number of mobile nodes, 
the occurrence of node failures is less relative to a single 
program execution. When a mobile node or a connection 
crashes during a subtask computation, the mobile node 
may be activated before the completion of the program 
execution. 

The variations in the network speeds and processor 
speeds results in the higher communication overhead of 
the mobile distributed systems. This makes them suitable 
only for common parallelism. When the communication 
overhead is increased, the speedup of parallel processes is 
decreased. The processors in a heterogeneous cluster have 
varying speeds and the effective capacity may vary due to 
severe loading. Thus, appropriate grain sizes must be 
selected during the runtime as an effect of load variation. 
So, the programming paradigm must be designed for 
flexible task grain size. 

The interconnected mobile clusters possess 
heterogeneity in system architectures and operating 
clusters. This issue is fixed by mobile distributed operating 
systems [4] and mobile distributed file systems [5]. The 

An Optimized Parallel Computing Paradigm for 
Mobile Grids Based on DSPOM 

Aghila Rajagopal*, M.A. Maluk Mohamed** 
Software System Group, MAM College of Engineering, Affiliated to Anna University Chennai. 

*E-mail: ssg_akila@mamce.org 
**E-mail: ssg_malukmd@mamce.org

P

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 119

© 2014 ACADEMY PUBLISHER
doi:10.4304/jetwi.6.1.119-132



 

heterogeneity in system architectures has more impact 
than that of operating systems. 

Some of the existing methods to solve the issues in 
parallel computing are discussed. Parallel and distributed 
computing has been performed using methods like DP [6], 
Moset [7], ADM [8], Sprite [9], EMPS [10], Condor [11], 
Piranha [12], Batrun [13], Comet [14], Imapreduce [15] 
and NOW [16]. Mobile telemedicine is a recent 
application of parallel and distributed computing [17]. A 
general telemedicine system consists of a small group of 
hospitals which can provide remote healthcare services. 
But, in developing nations there is a requirement for larger 
Internet-based telemedicine systems due to the large 
population is in the rural areas. A variable Internet-based 
P2P architecture is applied in these telemedicine networks. 
The principle of this system is based on a distributed 
context-aware scheduler and a store and forward model. 

A transparent programming model can be used for the 
parallel communication in a grid [18]. The GDP 
(Distributed Pipes with grid abstraction) model performs 
the inter-process communication between machines. This 
permits the random migration of parallel tasks 
corresponding to the grid dynamics. It can support both 
sequential load and parallel load. But this model does not 
provide support for mobile systems. 

The mobility of the mobile hosts (MHs) may lead to 
message loss in a distributed mobile computing 
environment [19]. The battery power can be greatly saved 
when the message delivery is guaranteed exactly once.  
The limited resources of MHs involved in the mobile grid 
need an efficient communication protocol for delivering 
the messages exactly once and avoiding further 
retransmissions. So, an exactly once multicast protocol 
(EOMP) is used to enhance the power efficiency. An 
unreliable wireless MAC layer multicast is used to 
transmit the messages to the MHs. This protocol tolerates 
the system failures at the mobile support station (MSS) by 
switching the MSS as stateless. 

Computational mobile grid can also be regarded as an 
integration of mobile clusters [20]. Mobile cluster 
computing can also be designed using IPv6 protocol [21]. 
An iterative grid-based application for parallel and 
distributed computing is designed in a distributed solution 
environment [22]. The environment is based on mobile 
agent systems. 

The process interactions in distributed computations are 
studied in [23]. They are programs whose communications 
depend on the transmission of messages. These programs 
generally execute on network architectures such as 
distributed parallel machines or NOW (Network of 
Workstations) [24]. Few example models for process 
interaction in distributed computations are heartbeat 
algorithms, network of filters, decentralized servers, 
broadcast algorithms, bag of tasks, token-passing 
algorithms, and echo/probe algorithms. These models 
consist of modules such as, computing network topology, 
parallel sorting, and termination detection. 

Distributed computing can also be tested using tools 
such as OptimalGrid which is a middleware pattern for the 
computation of larger problems in distributed computing 

applications [25]. OptimalGrid comprises of an automatic 
problem partitioning, runtime management, problem 
deployment, and dynamic redeployment. CADP 2011 tool 
is another tool used for the construction and analysis of 
distributed processes [26]. Grumbach and Wang designed 
a rule-based language for distributed programming [27]. 

A cost-effective computing was proposed for the cloud 
infrastructure in [28]. This method utilized dynamic 
resource management to provide the advantages to the 
cloud infrastructure services. An integrated architecture 
was proposed to enable migration of virtual machines and 
live resource scaling. Shanmugam and Mohamed proposed 
a data management scheme for the mobile cloud using 
surrogate object [29]. A Surrogate Object based Cloud 
Caching (SOCC) procedure was proposed to provide 
self-healing ability. The data required for the transfers 
between several surrogate objects over the cloud were 
saved and the customer requirements were analyzed. Gang 
scheduling algorithm was used to schedule the parallel 
tasks on the cloud [30]. The surrogate model was evolved 
for a transaction management scheme in mobile cloud [31]. 
The mobile nodes in the cloud transmit the transaction 
request to its proximate surrogate object. The surrogate 
objects enhanced the network lifetime by checking its data 
cache for the execution of the transactions. The fault 
tolerance and reliability were enhanced by transferring the 
transaction request to surrogate object, while the network 
lifetime was increased by transferring the surrogate 
objects to the least loaded base stations. 

An efficient and optimized mobile grid parallel 
computing paradigm known as Distributed Shared Proxy 
Object Model (DSPOM) is developed based on Surrogate 
Object Model (SOM) [32] and Distributed Shared Object 
(DSO) [33]. Grid computing is integrated with service 
composition procedure to enhance the accessibility and 
computational capability of mobile distributed systems. 
The object model comprises of a combination of 
middleware solutions, resource-sharing solutions, and 
wireless resource access. The mobile distributed system 
involving the computational and data resources is modeled 
as a Peer-to-Peer (P2P) model [34]. Service composition is 
enabled by virtualizing the data resources as services. 

Each mobile host (MH) in the wired network is 
represented by a proxy object that uses application defined 
data structures and methods. These MHs have limited 
resources under high mobility. The proxy objects contain a 
data cache in the MH and decrease the wireless data 
transfers [32]. The location management issue is solved by 
providing a unique agent for MH location details. 

The optimized parallel computing on the mobile grid is 
performed by the distributing and sharing the states of the 
local objects [33]. Here, the local objects are the proxy 
objects. The unused computing ability in the network is 
utilized by this technique. The communication processes 
is executed as a single element comprising of many 
loosely connected distributed shared proxy objects. 

By integrating SOM and DSO, the following benefits 
can be achieved: 
• DSO is used to increase the information processing 

capacity, service sharing by providing context and 

120 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER



 

location sensitive information, while the issues due to 
the asymmetry of the mobile distributed systems in 
network connectivity, mobility, and computing power 
are solved by SOM. 

• The heterogeneity in operating systems, system 
architectures, and load variations are solved in a fair 
manner by the DSO technique, while the unused 
computing determinant is utilized by SOM to save the 
processing time. 

• The transparency of the DSO model in terms of 
distribution and heterogeneity reduces the 
computational complexity, while SOM is chosen to 
enhance the resource sharing of mobile grid 
computing. 

• DSO also enhances the load adaptability and 
fault-tolerance to parallel programs on the mobile 
grid. 

The remaining part of the paper is organized as follows: 
Section II involves the detailed description of the DSPOM 
based mobile grid. Section III involves the design issues 
observed during the implementation of the DSPOM. 
Section IV involves the performance evaluation and 
comparison of the DSPOM with SOM and DSO. The 
paper is concluded in Section V. 

II. DSPOM BASED MOBILE GRID 

The proposed mobile grid is defined as a cluster of 
mobile clusters [32]. Each cluster is a combination of MHs 
and static hosts (SHs) grouped logically/virtually. The 
MHs are served by a conventional mobile support station 
(MSS). Each cluster is managed by a SH designated as 
cluster head (CH). The role of a CH is to manage the 
services and resources within its cluster. MSS and CH can 
be assigned to the same host when the MSS load is less. 
The communication between the CHs of the mobile grid is 
performed by a P2P overlay [35]. 

A. Visualization of Mobile Grid 
An example mobile grid structure in terms of distributed 

shared proxy objects is shown in Fig. 1. The mobile grid 
consists of Mobile Clusters (MCs), Cells, Mobile Support 
Stations (MSSs), proxy objects, Cluster Head (CH) which 
is also a Static Host (SH), P2P overlay for the 
communication between the CHs, and Mobile Hosts 
(MHs). The states of the distributed proxy objects alone 
are shared. 

Each MH is visualized by a proxy object (PO) in the 
wired network. This ensures the conservation of 
transparency to the imbalance in wireless communication. 
An active PO monitors the information pertaining to the 
current state. When a MH comes into a specific cell it 
transmits a control signal to the MSS of the cell, which 
contains the address of the MH’s former MSS. When a 
MH enters the cluster for the first time, the address of the 
former MSS is specified as NULL, and a PO is created for 
complete encapsulation of the mobile device. The object 
pointer to a new PO is transferred to its MH for its further 
communication with the PO. A unified object model can 
be accomplished by visualizing the other MHs and SHs as 
independent objects. The multiple interface of an object 

represents the multiple nodal services. The mobile nodes 
involved in the computations are optimized into 
distributed mobile objects and the mobile grid is converted 
from a nodal collection into a distributed mobile objects. 
These mobile objects form the basic blocks of the mobile 
grid. 

The abstraction of MH into PO addresses most of the 
critical issues affiliated with the MH [36]. Some of the 
relevant aspects of proxy objects are as follows: 
• It gives a solution to the mobile asymmetry problem 

due to difference in wired and wireless bandwidths. 
• It avoids the location management issue by defining a 

storage point for MH location details. 
• It reduces the query response time and avoids data 

loss by caching the host specific data and buffering 
the user requests temporarily when MH is 
disconnected. 

• It ensures the optimal utilization of wireless 
bandwidth. 

The distributed and decentralized nature of the proxy 
objects enhance the resource sharing in the mobile grid. 
The proxy objects represent the active hosts and the wired 
network represents them. The mobility of the MHs does 
not degrade the provision of the services because of the 
full-state maintenance of hosts. The proxy objects are fully 
dynamic, secure, and autonomous i.e., the operational 
capabilities of POs even after the MHs are not reachable 
and disconnected. The PO may be related to MHs of three 
cases: 
1. MH outside the local but inside the same MC. 
2. MH outside any MC. 
3. Foreign MH. 

The dynamicity of the mobile grid architecture is 
enabled by permitting the alteration of new services and 
extending the wired network. This aids the adaptability of 
the services based on the necessities of the mobile grid 
users. PO possesses the properties and characteristics of a 
host. The characteristics of a PO are represented as 
attributes, sub-objects, and methods. The attributes of a 
PO comprise the computational capability, bandwidth, and 
memory consumptions [32]. The sub-objects and the 
methods contain the services and other data resources 
offered by the host. The integration of the agreement and 
security policy by PO for all services specifies the 
operation mode of services. 

SOM operates in wireless connectivity mode when the 
surrogate objects are transferred to the wired network from 
the MHs. The state information is used to maintain the 
services of PO, even when the MH is disconnected. The 
data and services results can be delivered once the MH 
reconnects. This programming principle (or) paradigm 
enhances security by integrating authority schemes within 
the POs to operate the objects and services. 

MHs are also information service providers [36]. The 
energy and bandwidth consumption can be reduced by 
contacting the PO for information rather than contacting 
the MHs. Congestion can also be avoided by replicating 
the POs, thereby enhancing the system scalability. 
 

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 121

© 2014 ACADEMY PUBLISHER



 

 
 

Fig. 1.  Proposed mobile grid architecture based on DSPOM. 
 

122 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER



 

B. Management of Services 
The mobile grid comprises of services as the basic 

blocks for large-scale computations [32]. The main issues 
in the mobile grid are service detection and cooperation, 
i.e. to synchronize a group of services executing on 
heterogeneous resources under various controls in order to 
solve a unified problem. The computational resources and 
their functionalities are defined as composable services. 
Mobile grid applications can be constructed by creating 
these services at a higher abstraction level. 

Service composition is an important function which 
permits various autonomous services to be formed into a 
new service with a unique functionality and permits 

development of independent and modular services. 
Service composition is dependent on the location of the 
users and focuses on management of the integrated 
services for task completion [32]. 

Mobile grid formed by MHs poses new obstacles for 
service composition. The service results are not displayed 
when a user requests a service from a host, but moves to 
another host with higher functionality. The result becomes 
invalid when the user moves across various access points 
for location dependent services. The infrastructure for 
service composition of the mobile grid is given in Fig. 2. 

 

 
The distributed proxy objects structure the principles 

through which services are defined and used for resource 
sharing in the mobile grid. The services are virtualized as 
software functional components which involves 
abstraction of pre-defined functionalities. The services are 
announced and discovered using inspection and directories. 
After service detection, an appealing element can connect 
to the selected mobile device and begin the communication 
with its explicit functions via platform autonomous 
protocols. A vast conglomeration of composable software 
and hardware resources can be obtained by integrating the 
services with virtualized hardware resources. 

Service detection is an important step, as the system 
must find a service before it could utilize it. The mobile 

grid should be capable of supporting variable service 
announcement and discovery. The service detection is 
based on the characteristics, location, and functionality of 
the services [36]. Runtime connection enhances reliability 
and load balancing of the system. It also supports a wide 
range of application compatibility in terms of network 
configurations and platforms. When the task is completed 
the services are returned back to the conglomeration for 
assignment to other users. 

1) Service characterization 
The service providers need to issue the constraints and 

features of the services. These descriptions are sent to CH 
for registration. A discovery protocol is required to map 
the services to the application queries. This service model 

Static and Mobile Hosts

Static and Proxy Objects

Distributed Shared Objects

Service Discovery

Service 
Compostion

Application

Fig. 2.  Layered reference architecture for services management in mobile grid. 
 

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 123

© 2014 ACADEMY PUBLISHER



 

has the following advantages: 
• No particular schema is needed for the system to work 

in a heterogeneous environment. 
• Freedom to express conditions on the services the 

model is ready to serve. 
The characterization of services involves attributes and 

conditions [32]. The attributes of the service model 
comprise of the resource characteristics such as CPU usage, 
location, and free memory. Dynamic characteristics of the 
services can be obtained by DPSOs running on the data 
resource. Conditions include the limitation expression 
given by the service provider for service allocation. 

The services are maintained by an exchange service 
repository. The logical mobile clusters contain a service 
directory in the CH, which is the center for services 
registry. A MH that desires to give its services avails the 
information in the service directory. 

2) Service detection 
The services must be identified in order to coordinate 

with other mobile users and utilize them. The present 
methods for service detection constrain the interoperability 
and lead to expressive power loss during component 
characterization. The DPSOM gives a clear differentiation 
between global service management and local service 
management. Global service management groups the data 
from the cells into large mobile clusters, thus availing the 
data available to the users [36]. It also comprises global 
tracking services and search methods for clients. Local 
service management controls the services within a logical 
mobile cluster or a domain like cell. The directory service 
regards the location of two processes in a similar cell also 
as same. 

Local service management occurs in CH of each logical 
mobile cluster. A service is affiliated with the Proxy 
Object Identifier (POID) depending on the client’s needs. 
The basic requirements for this management are execution 
monitor, information database, and scheduler. 
• The information related to the data resources and 

services are stored in the information database. 
• The scheduler computes an association of objects with 

services based on the information database. 
• This connection is used to contact the objects and 

affirm the schedule. All these processes are managed 
by the execution monitor. 

3) Service composition 
The combination of high and low performance devices 

interconnected to each other makes the integration and 
execution of heterogeneous tasks a tough task [32]. Service 
composition is used to construct complex services from 
basic services, thus resulting flexibility of new service 
creations. It can be shown as a variable integration of 
multiple services in the mobile grid in response to a client 
request. 

The critical issue in service composition involves the 
management of disconnections during the execution of 
services and formulating context dependent service 
execution. The execution of service composition is 
performed based on optimal computing resources under 
conditions like data resource reliability and execution cost. 

A user initializing a service composite request can also 
indulge in another service composition. The P2P overlay 
within the CHs ensures the fault-tolerance of the system. 

C. Distribution and Sharing of Proxy Objects 
A DSO makes use of multiple interfaces, each 

composing of a group of methods [33]. The proxy objects 
act as local objects in a DSPO. The mobile objects in this 
model are passive, while the user threads use these mobile 
objects by executing the code for their methods. A single 
mobile object can be accessed by multiple processes 
simultaneously. The modifications to a mobile object’s 
state by a process are visible by the other processes. The 
distributive nature of the mobile shared objects enables the 
active copies of a mobile object’s state to be stored 
simultaneously on multiple machines. But, the 
communication protocols, distribution/migration of states, 
and replication methodologies are embedded in the 
interface. 

A significant difference between DPSOs and remote 
objects is that there is no priori differentiation between 
users and servers. The processes that communicate via 
method invocation combine in its object implementation. 

1) Merits of DPSOs 
Some of the advantages of DPSOs are: 

• A distributed proxy object enables well-structured 
interfaces to its applications. The user is separated 
from the communication and replication processes. 

• Complete encapsulation of communication and 
persistence in a distributed proxy object. This implies 
that the implementation of a distributed system is not 
bounded to a small group of consistency algorithms or 
communication protocols. 

• Ability to load object implementations at runtime. 
• A process consists of a local implementation of the 

distributed proxy object’s interface in its own address 
space. A DSPO is visualized only as a local object in 
the perspective of a process. 

2) Architecture of DSPO 
The distributed proxy objects are a group of local proxy 

objects that communicate and furnish the user of the object 
with the delusion of the shared state [33]. This 
characteristic is advanced over a remote object model since 
it is not bounded to a small set of predefined 
communication patterns. The example architecture of a 
DSPO is shown in Fig. 3. 

The distributed proxy object is used in four address 
spaces, where each address space comprises of a proxy 
object. The group of proxy objects forms the distributed 
proxy object. The proxy objects utilize the communication 
services of a network to operate on the distributed proxy 
object and maintain the distributed proxy object. 

The proxy object implementation is assorted from an 
application via an explicit interface table comprising of 
method pointers [33]. The interface table is triggered when 
the process connects to the object. The contents of the 
interface table are variable over time. This enables the 
dynamic adaption of the distributed object’s local 
implementation. The adaption process does not affect the 

124 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER



 

interface to the application that triggers its methods. 

The implementation of a distributed proxy object can 
utilize random communication patterns while 
communicating with local objects. The communication 
process can also integrate data placement and replication. 
This scheme is applicable for efficient implementations of 
various communication paradigms. There are no 
limitations on the predefined operations since the 
interfaces are completely user-defined. 

D. Transparent Communication 
The developer of the distributed proxy object requires 

being isolated from the data placement and replication [33]. 
So, a standard hierarchy is developed for the 
implementation of a distributed proxy object. The 
hierarchy of a local object is given in Fig. 4. 

The distributed proxy object’s developer is segregated 
from communication, consistency management, and 
replication by using a communication object and a 
replication object. The object developer implements the 
semantics object which enables the actual functionality of 
the distributed proxy object, while the communication and 
replication objects are chosen from a library. A control 
object is used to manage the interactions between the 
replication objects and the sematic objects as a 
consequence of method invocation by an application. The 
control object can generated automatically. 

The proxy object is capable of exporting methods that 
can execute on internal state. A control object is produced 
based on the interface to the semantics object. The access 
of the control object is synchronized with that of the 
distributed proxy object by serializing permissions to the 
semantics object. This prohibits the race conditions by 
triggering the replication object to stabilize the state of the 
distributed proxy object. The interface exported by the 
control object is similar to that of the semantics object. 

 
The implementation of a method invocation by the 

control object is performed via three consecutive steps: 
1. The start method controls the execution of global state 

functions. During remote execution, the control object 
passes the mobilized arguments of the method 
invocation to the replication object. The execution of 
the replication object occurs according to a specific 
replication protocol and returns the mobilized results 
to the control object according to the remote method 
invocation. 

2. During local execution, the control object triggers the 
related method on the semantics object. During active 
replication with a local copy, the control object offers 
the replication object with the mobilized arguments of 
the method invocation. Then, the replication object 
executes the protocol to transfer the arguments to all 
replicas. This enables the synchronization with the 
other replicas. 

3. Finally, the control object triggers the corresponding 
method on the semantics object. 

The control object triggers the finish method on the 
replication object, which yields the replication object an 
opportunity to update the remote replicas. Two extensions 
are needed in this model to enhance its practical 
performance. 
1. The control object and replication object needs to 

distinguish various operation types. It is also required 
to differentiate operations that alter only a part of the 
global state, which may occur in the case of nested or 
segmented objects. 

2. Few extensions are required on specific criteria to 
handle synchronization since the semantic operations 
are serialized and not permitted to block for a long 
time. 

The operations can be secured by providing blocks on a 
conditional basis. The status information is returned to the 
control object after the possible alterations are made. The 

Fig. 4.  Hierarchy of a proxy object. 
 

 

User-defined 

Control

Proxy object 

Receive 
(callback) 

Replicatio

 

 

Control 
object 

 

 

Semantics 
object 

 

 

Replication 
object 

 

 

Communication 
object 

User-defined 

Send

 

Fig. 3.  Example architecture of a DSPO. 

  

  

  

  

 

Address 
Distribute
d proxy 
object 

State

Communicatio
n network 

Proxy 
object

Interfac

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 125

© 2014 ACADEMY PUBLISHER



 

control object will delay the execution of the operation 
until the next state alteration. 

This model of shared state comprising of operations 
results in passive objects, where the activity is given by the 
threads executing in the processes. For seamless 
integration of communication in this model, pop-up 
threads are instantiated with the incoming messages [33]. 
So, the communication object will open a new thread to 
handle an incoming message. The communication object 
inside the new thread triggers a method on the replication 
object’s callback interface. The replication object requests 
the control object’s callback interface with the mobilized 
arguments of the request. 

III. DESIGN ISSUES 

The performance of the DSPO scheme depends on the 
mobility of the nodes, tolerance to network traffic, and 
node density. The number of mobile nodes entering a 
group of cells should be managed properly. The parallel 
computing on mobile grid depends upon several key issues 
such as, mobility of nodes, fault-tolerance, connectivity of 
mobile nodes, uneven nodal distribution, transmission time, 
heterogeneity of nodal performances, and uneven load in 
the network. 

A. Load Balancing 
The optimum number of implementation processes and 

their granularities can be computed from the details 
respective to the availability of nodes and load in the 
network. The various mobile nodes contain partitioned 
computation sub-domains. The granularity of each 
subdomain depends upon the load ratio on each mobile 
node. The heterogeneous load conditions are handled by 
issuing load indices (threshold values). The load can be 
balanced by nullifying the mobile nodes for which the load 
indices cross a specific value. The processing power of 
individual elements also contributes to the load balancing 
in a heterogeneous group of mobile nodes. 

B. Bandwidth 
The nodes possess high variations in the network 

bandwidth, depending on whether it is a static node or a 
mobile node, and on the type of connection to the present 
cell. The DSPO model distinguishes the type of 
connectivity and provides flexibility in terms of network 
bandwidth and task size. 

The proxy objects does not support flexible wireless 
bandwidth, which is overcome in the DSPO model by 
differentiating the type of connectivity in a cell of the 
mobile cluster. 

C. Handoff Process 
When a MH moves from a cell to another, the transition 

process is termed as handoff. The channel resources should 
be monitored to preserve the connectivity of the network 
during handoff. The channel used in the previous cell may 
not be reusable in the present cell because of co-channel 
interference or adjacent channel interference or low signal 
strength. So the transiting mobile device gets separated 
from the rest of the mobile cluster. When a fresh channel 

has not been allotted to the mobile node within a limited 
time span, the messages transmitted in the network are 
delayed, resulting in a retransmission of data. 

The transmission time can be limited and the 
retransmission of data can be averted by using various 
topologies based management schemes. Two types of 
topology of nodes are used such as, tree topology and ring 
topology. The tree topology consists of an organizational 
structure of nodal levels forming a tree. The number of 
nodes in the lower level of the tree is greater than that of 
the previous level of the tree. Each mobile node in the ring 
topology consists of exactly two neighbors forming a 
planar structure. This structure rearranges the MHs 
arranged in a mobile grid of rows and columns. A 
fragmented topology is reframed prior to the deletion of 
the pre-defined topology during the traversing of a mobile 
node. The reconstruction of the fragmented topology is 
based on an optional node to the migrated node. The 
reconstruction time should be least for the satisfactory 
performance of the mobile grid computing. 

The handoff issue was not properly addressed by the 
proxy objects, but it is efficiently handled by the topology 
scheme introduced in the DSPO model. 

D. Disconnectivity of Mobile Nodes 
Timers are maintained for the detection of mobile node 

disconnectivity from its affiliated cell. A mobile host when 
it does not return to its cell within the time set in the timer 
and then the sub-process is retransmitted to some other 
mobile node. The disconnectivity issue was not properly 
addressed by the proxy objects, but it is efficiently handled 
by the timer scheme introduced in the DSPO model. 

E. Tolerance to Network Traffic 
The network traffic generated during the migration of 

PO is managed by a real-time queue model. A robust queue 
estimation algorithm can be applied for managing the 
dynamic network traffic. Reliable and accurate queue 
information controls the network traffic of mobile grids 
adaptively to the real traffic queue sizes. A primitive 
conservation model is used to estimate the queue size 
(system state) with the flow-in and flow-out readings. 
These results are updated with a measurement equation 
based on the time occupancies from link-entrance and 
mid-link loop detectors. This model also consists of a 
single point correction technique which resets the 
estimated results to avoid the counting errors over time. 

The network traffic issue was not properly addressed by 
individual proxy objects, but it is efficiently handled by the 
queue introduced in the DSPO model. 

IV. PERFORMANCE ANALYSIS 

The DSPO is compared with SOM [32] and ARC [37] in 
terms of the following parameters, query time and query 
latency with respect to packet loss and migration 
frequencies, number of messages exchanged, speedup, and 
processing time. Speedup is the ratio of sequential 
execution time to the parallel execution time. The network 
architecture consists of a heterogeneous combination of 30 
mobile and static nodes in a simulated area of 100 * 100 m. 

126 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER



 

There are 5 mobile clusters with a cluster head for each 
cluster. The nodal velocity is varied from 5 to 30 m/s. 

A section of the simulation field is shown in Fig. 5. The 
yellow colored links between the CHs represent the P2P 
overlay. A CH and their respective nodes are linked by a 
DSPO as highlighted by black colored links. The radio of 
each node is given as green colored circles. The routing 
path of a particular node n11 is highlighted in red colored 

lines as shown in Fig. 6. 
The frequency of the presence of the mobile nodes in the 

respective mobile clusters is computed. Each mobile 
cluster is represented by their cluster node (or) home node. 
The messages to be communicated in packets are created at 
consequent time intervals in the corresponding source 
nodes. The messages are relayed to intermediate nodes and 
then received by the final destination nodes. 

 
Fig. 5.  Section of the simulation field. 

 

 

Fig. 6.  The routing path of node n11 is highlighted in red colored lines.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 127

© 2014 ACADEMY PUBLISHER



 

 
A. Query Time and Latency with Respect to Packet Loss 

The query latencies are analyzed in terms of query time 
for a caching application using SOM and DSPO. The 
comparative analysis is performed against simulation time 
for four packet loss probabilities of 0%, 1%, 3%, and 5% 
as shown in Fig. 7. 

The results show that the query time for DSPO model 
decreases almost gradually, but the decrease for SOM in 
the cases of packet loss probabilities of 0%, 1%, and 3% is 
smaller compared to that of the former model. For a packet 
loss probability of 5% in SOM there is an increase in query 
time after simulation time greater than 1 x 104 s. The query 
time for the DSPO model is about 14% lesser than SOM 
with respect to four packet loss probabilities of 0%, 1%, 
3%, and 5%. 

The query time increases as the packet loss probability 
also increases in SOM. However, in DSPOM this increase 
is not much greater compared to the same in SOM. It can 
also be noted that the maximum query time with null 
packet loss probability is higher in SOM, compared to the 
maximum query time in DSPOM, even with 5% packet 
loss probability. The percentage increase in query time for 
three packet loss probabilities is observed in Fig. 8. 

In the case of packet loss probability equal to 0.3, the 
difference in increase of task time between SOM and 
DSPOM is about 16%, with SOM possessing higher 
increase in query time. The maximum increase in query 
time is higher in SOM (19%) compared to the DSPO 
model (18%). 

B. Query Time and Latency with Respect to Migration 
Frequency 

The migration of PO to any node in the wired network 

and the distributed and shared computing contributes an 
advantage over the conventional SOM and DSO methods. 
This enhances the load balancing, failure recovery, and 
network latency reduction of the system. The effect of PO 
migration on the query latency for different migration 
frequencies in SOM and DSPOM is analyzed in Fig. 9. 

 

17

18

19

20

21

22

23

0 1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 ti

m
e 

(s
)

Simulation time (x104 s)

5% 3% 1% 0%

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 ti

m
e 

(s
)

Simulation time (x104 s)

5% 3% 1% 0%

Fig. 7.  Comparison of query latencies for various packet losses in: (a) SOM, and (b) DSPOM. 
 

(a) (b) 

Packet Loss Packet Loss 

Fig. 8.  Increase in query time over increasing packet loss 
probability. 

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0.1 0.3 0.5

In
cr

ea
se

 in
 q

ue
ry

 ti
m

e

Pakcet loss probability

SOM DSPOM

128 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER



 

 
The results show that the query time for DSPO model 

decreases almost gradually in the cases of migration 
frequencies of 1 and 3 and decreases only a bit in the case 
of migration frequency of infinity.  The query time for 
SOM decreases randomly in the cases of migration 
frequencies of 1 and 3. It increases randomly in the case of 
migration frequency of infinity after a simulation time of 2 
x 104 s. The query time for the DSPO model is about 11.56% 
lesser than SOM with respect to three migration 
frequencies of 1, 3, and infinity. 

The query latencies become high when the PO is 
migrated for every movement of MH. This is due to the 
higher amount of time for migration. But, when the 
migration frequency is decreased, the query time is 

increased because the MH moves to various cells but the 
PO moves only once. This implies that the query time 
remains constant when the PO is static and MH moves 
many times. This is due to the fact that the query response 
time is dependent on the PO nearness to the initial MSS. 
Thus, queries are randomly generated from various parts 
of the network. 

C. Network Traffic 
The network traffic generated due to PO migration is 

analyzed for the determination of the freedom of PO 
migration. The increase in the number of messages 
exchanged relative to simulation time at different 
migration frequencies is shown in Fig. 10. 

17.6
17.7
17.8
17.9

18
18.1
18.2
18.3
18.4
18.5
18.6

0 1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 ti

m
e 

(s
)

Simulation time (x104 s)

1 3 ∞

14

14.5

15

15.5

16

16.5

0 1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 ti

m
e 

(s
)

Simulation time (x104 s)

1 3 ∞

Fig. 9.  Comparison of query times in: (a) SOM, and (b) DSPOM. 
 

(a) (b) 

Migration 
frequency

Migration frequency 

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 129

© 2014 ACADEMY PUBLISHER



 

 
The results show that the number of messages 

exchanged increases randomly in DSPO model and 
linearly in SOM for migration frequencies of 1, 5, and 100. 
It is observed that the number of messages exchanged in 
the DSPO model is about 12.1% higher than SOM with 
respect to the migration frequency of 100. The maximum 
number of messages exchanged is higher in SOM (4.183 x 
106) compared to the DSPO model (4.635 x 106). 

It is observed that the magnitude of the traffic is higher 
when the PO moves for every movement of MH. But as the 
migration frequency decreases, the generation of traffic is 
much lesser. The migration frequency value other than 
unity does not influence the network traffic. This proves 
that it is better not to move the PO whenever the MH 
moves. 
D. Speedup and Processing Time 

The mobile grid architecture is realized using a cellular 
model with seven nodes as MSSs, and the remaining nodes 
are designated as MHs of the mobile grid. The MHs are 
partitioned into seven groups, where communication 
occurs between the MH of a group with other nodes 
through the relative MSSs. Each MH consists of a client 
and a DSPO. The clients are involved in the task 
submission, while the MHs are involved in the distributed 
mobile processing. The performance analysis displays the 
speedup attained by the parallel execution of the problem. 
TABLE I compares the speedup achieved using the mobile 
grid under a different number of participating MHs with 
mobility and without mobility conditions. 

 
TABLE I shows that the speedup in DSPO model is 

higher than that of SOM with and without mobility 
conditions. The average speedup for the DSPO model is 
about 5.38% higher than that of SOM without mobility 
considering MH quantities equal to 4, 8, 16, 32, and 42. 
The average speedup for the DSPO model is about 11% 
higher than that of SOM with mobility considering MH 
quantities equal to 4, 8, 16, 32, and 42. It is observed that in 
the case of with mobility, the speedup decreases relatively 
in both the cases due to higher processing time taken by 
moving devices. 

TABLE I 
COMPARISON OF SPEEDUP IN SOM AND DSPOM 

No. of 
MHs

Without Mobility – Speedup With Mobility – Speedup 

SOM DSPOM SOM DSPOM 

4 2.745 2.956 2.6 2.754
8 3.889 3.957 3.37 4.245

16 6.778 7.256 5.453 6.235
32 9.948 10.687 8.443 9.256
42 15.632 16.425 12.665 13.687

 
 

 

4.06

4.08

4.1

4.12

4.14

4.16

4.18

4.2

4.8 4.82 4.84 4.86 4.88 4.9

N
um

be
r 

of
 m

es
sa

ge
s e

xc
ha

ge
d 

(x
10

6 )

Simulation time (x106 s)

1 5 100

3.5

3.6

3.7

3.8

3.9

4

4.1

4.8 4.82 4.84 4.86 4.88 4.9N
um

be
r 

of
 m

es
sa

ge
s e

xc
ha

ng
ed

 (x
10

6 )

Simulation time (x106 s)

1 5 100

Fig. 10.  Comparison of number of messages exchanged in: (a) SOM, and (b) DSPOM. 
 

(a) (b) 

Migration frequency Migration frequency 

130 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER



 

 
TABLE II compares the processing time taken for SOM 

and DSPOM under a different number of participating 
MHs with mobility and without mobility conditions. 
TABLE II shows that the processing time in DSPO model 
is lesser than that of SOM with and without mobility 
conditions. The average processing time for the DSPO 
model is about 14.6% lesser than that of SOM without 
mobility considering MH quantities equal to 4, 8, 16, 32, 
and 42. The average processing time for the DSPO model 
is about 4.86% lesser than that of SOM with mobility 
considering MH quantities equal to 4, 8, 16, 32, and 42. 

A program for solving double precision matrix 
multiplication problem is loaded onto the DSO model and 
DSPO model. Their overheads are compared in terms of 
speedup at no load condition. TABLE III compares the 
speedup values achieved for different task sizes.  

 

 
TABLE III shows that the speedup in DSPO model is 

higher than that of SOM for various task sizes and numbers 
of nodes equal to 2, 3, 4, 5, 6, and 8. The average speedup 
for the DSPO model is about 8.5% higher than that of 
SOM considering various MH quantities and task sizes 
equal to “50 x 50”, “100 x 100”, “150 x 150”, and “200 x 
200”. It is seen that DSPOM possesses slightly lesser 
overhead than DSO technique, with retained features such 
as fault-tolerance, heterogeneity support, and load 
adaptability. 

V. CONCLUSION 

Parallel computing methods are preferred over 
sequential computing techniques to decrease the 
processing time in mobile distributed systems. But they are 
subject to many issues such as, high latency/jitter, 
processing speed, communication overhead, and low data 
transfer rate, when they are developed from smaller mobile 

clusters to extensive mobile grids. So, an efficient and 
optimized parallel computing paradigm known as 
Distributed Shared Proxy Object Model (DSPOM) is 
developed based on Surrogate Object Model (SOM) and 
Distributed Shared Object (DSO) for mobile grid. 

By integrating SOM and DSO, the following benefits 
can be achieved: 1) DSO is used to increase the 
information processing capacity, service sharing by 
providing context and location sensitive information, 
while the issues due to the asymmetry of the mobile 
distributed systems in network connectivity, mobility, and 
computing power are solved by SOM, 2) The 
heterogeneity in operating systems, system architectures, 
and load variations are solved in a fair manner by the DSO 
technique, while the unused computing determinant is 
utilized by SOM to save the processing time, 3) The 
transparency of the DSO model in terms of distribution and 
heterogeneity reduces the computational complexity, 
while SOM is chosen to enhance the resource sharing of 
mobile grid computing, and 4) DSO also enhances the load 
adaptability and fault-tolerance to parallel programs on the 
mobile grid. 

POM consists of a grid computing technique and service 
composition technology which combines the universal 
resource access and middleware solution for mobile 
computing to enhance the resource sharing solutions of 
mobile grid computing. The unused computing 
determinant is utilized to save the processing time. The 
proxy objects are distributed and shared to avail 
user-defined functions through distribution and replication 
of states. The transparency of the program model in terms 
of distribution and heterogeneity reduces the 
computational complexity. It also enhances the load 
adaptability and fault-tolerance to parallel programs on the 
mobile grid. The approach of DSPOM performs better in 
terms of query time, query latency, packet loss, load 
adaptability, and fault-tolerance. 

REFERENCES 

[1] S. W. Keckler, et al., "GPUs and the Future of Parallel 
Computing," Micro, IEEE, 2011, vol. 31, no. 5, pp. 7-17. 

[2] C. Delporte-Gallet, et al., "The disagreement power of an 
adversary," Distributed Computing, 2011, vol. 24, no. 3-4, 
pp. 137-147. 

[3] P. Kumar and R. Garg, "Soft-Checkpointing Based 
Coordinated Checkpointing Protocol for Mobile Distributed 
Systems," International Journal of Computer Science Issues, 
2010, vol. 7, no. 3, pp. 40-46. 

[4] D. Dib, et al., "Towards Multi-level Adaptation for 
Distributed Operating Systems and Applications," in 
Algorithms and Architectures for Parallel Processing. vol. 
7440, Y. Xiang, I. Stojmenovic, B. Apduhan, G. Wang, K. 
Nakano, and A. Zomaya, Eds., ed: Springer Berlin 
Heidelberg, 2012, pp. 100-109. 

[5] P. Donnelly and D. Thain, "Fine-Grained Access Control in 
the Chirp Distributed File System," in Cluster, Cloud and 
Grid Computing (CCGrid), 2012 12th IEEE/ACM 
International Symposium on, 2012, pp. 33-40. 

[6] B. K. Johnson, et al., "DP: a paradigm for anonymous 
remote, computation and communication for cluster 
computing," Parallel and Distributed Systems, IEEE 
Transactions on, 2001, vol. 12, no. 10, pp. 1052-1065. 

TABLE II 
COMPARISON OF PROCESSING TIME IN SOM AND DSPOM 

No. of 
MHs 

Without Mobility – 
Processing Time (s) 

With Mobility – Processing 
Time (s) 

SOM DSPOM SOM DSPOM 

4 279 256 302 292
8 197 185 233 225

16 113 105 144 138
32 77 64 93 85
42 49 32 62 59

 

TABLE III 
COMPARISON OF SPEEDUP IN DSO AND DSPOM 

Task size Node
s Speedup – DSO Speedup – DSPOM 

50 x 50 2 1.46 1.65 
100 x 100 2 1.75 1.89 
 4 3.2 3.67 
 5 3.8 4.05 
150 x 150 3 2.63 2.89 
 6 4.75 4.86 
200 x 200 4 3.48 3.78 
 5 3.48 3.85 
 8 6.24 6.92 

 

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014 131

© 2014 ACADEMY PUBLISHER



 

[7] M. A. M. Mohamed, et al., "Moset: An anonymous remote 
mobile cluster computing paradigm," Journal of Parallel 
and Distributed Computing, 2005, vol. 65, no. 10, pp. 
1212-1222. 

[8] J. Casas, et al., "Adaptive load migration systems for PVM," 
presented at the Proceedings of the 1994 ACM/IEEE 
conference on Supercomputing, Washington, D.C., 1994. 

[9] F. Douglis and J. Ousterhout, "Transparent process 
migration: Design alternatives and the sprite 
implementation," Software: Practice and Experience, 1991, 
vol. 21, no. 8, pp. 757-785. 

[10] G. J. W. van Dijk and M. J. van Gils, "Efficient process 
migration in the EMPS multiprocessor system," in Parallel 
Processing Symposium, 1992. Proceedings., Sixth 
International, 1992, pp. 58-66. 

[11] M. Litzkow and M. Solomon, "Supporting checkpointing 
and process migration outside the UNIX kernel," in Mobility, 
M. Dejan, cacute, D. Frederick, and W. Richard, Eds., ed: 
ACM Press/Addison-Wesley Publishing Co., 1999, pp. 
154-162. 

[12] D. Gelernter and D. Kaminsky, "Supercomputing out of 
recycled garbage: preliminary experience with Piranha," 
presented at the Proceedings of the 6th international 
conference on Supercomputing, Washington, D. C., USA, 
1992. 

[13] F. Tandiary, et al., "Batrun: utilizing idle workstations for 
large scale computing," Parallel & Distributed Technology: 
Systems & Applications, IEEE, 1996, vol. 4, no. 2, pp. 
41-48. 

[14] B. He, et al., "Comet: batched stream processing for data 
intensive distributed computing," presented at the 
Proceedings of the 1st ACM symposium on Cloud 
computing, Indianapolis, Indiana, USA, 2010. 

[15] Y. Zhang, et al., "iMapReduce: A Distributed Computing 
Framework for Iterative Computation," Journal of Grid 
Computing, 2012, vol. 10, no. 1, pp. 47-68. 

[16] T. E. Anderson, et al., "A case for NOW (Networks of 
Workstations)," Micro, IEEE, 1995, vol. 15, no. 1, pp. 
54-64. 

[17] S. Kailasam, et al., "Arogyasree: an enhanced grid-based 
approach to mobile telemedicine," Int. J. Telemedicine Appl., 
2010, vol. 2010, pp. 1-11. 

[18] D. Janakiram, et al., "GDP: A Paradigm for Intertask 
Communication in Grid Computing Through Distributed 
Pipes," in Distributed Computing and Internet Technology. 
vol. 3816, G. Chakraborty, Ed., ed: Springer Berlin 
Heidelberg, 2005, pp. 235-241. 

[19] M. A. M. Mohamed, et al., "EOMP: an exactly once 
multicast protocol for distributed mobile systems," 
International Journal of Parallel, Emergent and Distributed 
Systems, 2010, vol. 25, no. 3, pp. 183-207. 

[20] M. Mohamed, "Communication and Computing Paradigm 
for Distributed Mobile Systems," Journal on Information 
Sciences and Computing, 2007, vol. 1, no. 1, pp. 33-41. 

[21] A. Basit and C.-C. Chang, "Mobile cluster computing using 
IPV6," in Ottawa Linux Symposium, 2002, pp. 31-39. 

[22] K. Hairong, et al., "Iterative grid-based computing using 
mobile agents," in Parallel Processing, 2002. Proceedings. 
International Conference on, 2002, pp. 109-117. 

[23] G. R. Andrews, "Paradigms for process interaction in 
distributed programs," ACM Comput. Surv., 1991, vol. 23, 
no. 1, pp. 49-90. 

[24] N. Lopes and A. Rybalchenko, "Distributed and Predictable 
Software Model Checking," in Verification, Model 
Checking, and Abstract Interpretation. vol. 6538, R. Jhala 
and D. Schmidt, Eds., ed: Springer Berlin Heidelberg, 2011, 
pp. 340-355. 

[25] T. J. Lehman and J. H. Kaufman, "OptimalGrid: middleware 
for automatic deployment of distributed FEM problems on 
an Internet-based computing grid," in Cluster Computing, 
2003. Proceedings. 2003 IEEE International Conference on, 
2003, pp. 164-171. 

[26] H. Garavel, et al., "CADP 2011: a toolbox for the 
construction and analysis of distributed processes," 
International Journal on Software Tools for Technology 
Transfer, 2013, vol. 15, no. 2, pp. 89-107. 

[27] S. Grumbach and F. Wang, "Netlog, a Rule-Based Language 
for Distributed Programming," in Practical Aspects of 
Declarative Languages. vol. 5937, M. Carro and R. Peña, 
Eds., ed: Springer Berlin Heidelberg, 2010, pp. 88-103. 

[28] M. Razavi and K. Zamanifar, "Cost-Effective Computing in 
the Cloud Infrastructure," International Journal of Future 
Computer and Communication, 2013, vol. 2, no. 3, pp. 
184-187. 

[29] R. Shanmugam and M. A. M. Mohamed, "Data 
Management in the Mobile Cloud Using Surrogate Object," 
International Journal of Future Computer and 
Communication, 2012, vol. 1, no. 2, pp. 187-192. 

[30] R. Srivastava, "Evaluation of Response Time Using Gang 
Scheduling Algorithm for B2C Electronic Commerce 
Architecture Implemented in Cloud Computing 
Environment by Queuing Models," International Journal of 
Future Computer and Communication, 2013, vol. 2, no. 2, 
pp. 71-75. 

[31] R. Shanmugam, et al., "Evolving a Surrogate Model of 
Transaction Managementfor Mobile Cloud," International 
Journal of Future Computer and Communication, 2012, vol. 
1, no. 1, pp. 62-66. 

[32] M. Mohamed, "An object based paradigm for integration of 
mobile hosts into grid," International Journal of 
Next-Generation Computing, 2011, vol. 2, pp. 1-23. 

[33] K. Ørbekk, "Distributed Shared Objects for Mobile 
Multiplayer Games and Applications," Norwegian 
University of Science and Technology, 2012. 

[34] R. Rodrigues and P. Druschel, "Peer-to-peer systems," 
Commun. ACM, 2010, vol. 53, no. 10, pp. 72-82. 

[35] H. Liu, et al., "Neighbor Selection in Peer-to-Peer Overlay 
Networks: A Swarm Intelligence Approach," in Pervasive 
Computing, A.-E. Hassanien, J. H. Abawajy, A. Abraham, 
and H. Hagras, Eds., ed: Springer London, 2010, pp. 
405-431. 

[36] M. M. Mohamed, et al., "Surrogate Object Model: A New 
Paradigm for Distributed Mobile Systems," in Proceedings 
of the 4th International Conference on Information Systems 
Technology and its Applications (ISTA'2005), May, 2005, pp. 
124-138. 

[37] R. K. Joshi and D. J. Ram, "Anonymous remote computing: 
a paradigm for parallel programming on interconnected 
workstations," Software Engineering, IEEE Transactions on, 
1999, vol. 25, no. 1, pp. 75-90. 

 

 

132 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER


