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Abstract—Opinion targets identification is an important 
task of the opinion mining problem. Several approaches 
have been employed for this task, which can be broadly 
divided into two major categories: supervised and 
unsupervised. The supervised approaches require training 
data, which need manual work and are mostly domain 
dependent. The unsupervised technique is most popularly 
used due to its two main advantages: domain independent 
and no need for training data. This paper presents a review 
of the state of the art unsupervised approaches for opinion 
target identification due to its potential applications in 
opinion mining from user discourse. This study compares 
the existing approaches that might be helpful in the future 
research work of opinion mining and features extraction. 
 
Index Terms—Opinion Mining; Sentiment Analysis; 
Opinion Targets; Machine Learning  

I. INTRODUCTION 

What other people think is naturally important for 
human guidance. Through opinions, humans can flux 
together diverse approaches, experiences, wisdom and 
knowledge of people for decision making.  Humans like 
to take part in discussions and present their points of view. 
People often ask their friends, family members, and field 
experts for information during the decision making 
process. They use opinions to express their points of view 
based on experience, observation, concept, beliefs, and 
perceptions. The point of view about something can 
either be positive (shows goodness) or negative (shows 
badness), which is called the polarity of the opinion. 

Opinions can be expressed in different ways. The 
following example sentences show different ways of 
opinion representations. 
 
 

Shahid is a good Cricket player.  
The meal was quite good. 
The hotel was expensive. 
Terrorists deserve no mercy! 
Hotel A is more expensive than B. 
Coffee is expensive but tea is cheap.  
This player is not worth any price and I recommend 
that you don't purchase it. 
An opinion has three main components i.e. the 

opinion holder or source of opinion, the object about 
which the opinion is expressed and the evaluation, view 
or appraisal which is called the opinion. For opinion 
identification, all these components are important. 

Opinion can be collected from different sources e.g. 
individual interaction, newspapers, television, internet 
etc.; however, the internet is the richest source of opinion 
collection. Before the World Wide Web (WWW), people 
collected opinions manually. If an individual was to make 
a decision, he/she typically asked for opinions from 
friends and family members. Organizations conducted 
surveys through focused groups for collecting public 
opinion. This type of survey was expensive and laborious. 
Now, the internet provides this information with a single 
click and a very little cost. 

With the advent of web 2.0, the internet allows web 
users to generate web content online and post their 
information independently. Due to this facility of the 
internet, web users can participate in a collaborative 
environment around the globe. Hence, the internet has 
become a rich source for social networks, customer 
feedback, online shopping etc. According to a survey, 
more than 45,000 new blogs are created daily along with 
1.2 million new posts each day [1]. The information 
collected through these services is used for various types 
of decision making e.g. social network for: political, 
religious, security, and policy making; customer feedback 
for: products sales, purchases, and manufacturing. The 
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trend of online shopping portals is increasing day by day. 
The vendors collect customer feedback for future trend 
prediction and product improvement through these 
portals. Opinion is the key element which has provided 
the inspiration for this work. 

Although the internet is a rich source of opinions, 
having millions of blogs, forums and social websites with 
a large volume of updated information, unfortunately the 
web data is typically unstructured text which cannot be 
directly used for knowledge representation. Moreover, 
such a huge volume of data cannot be processed 
manually. Hence, efficient tools and potential techniques 
are needed to extract and summarize opinions. Research 
communities are trying for efficient utilization of the web 
information for knowledge requisition; this is in order to 
present it to the user in a well understandable and 
summarized manner. With the emergence of web 2.0, the 
task of posting and collecting opinions through the Web 
has become easy; however, the quality control, 
processing, compilation, and summarization have become 
potential research problems. 

With the growing need of opinion analysis a new 
area called Opinion Mining is gradually emerged in the 
field of Natural Language Processing (NLP) and Text 
Mining. OM is a procedure used to extract opinion from a 
text. “OM is a recent discipline at the crossroads of 
information retrieval, text mining and computational 
linguistics which tries to detect the opinions expressed in 
natural language texts” [1]. OM is a field of knowledge 
discovery and data mining (KDD) which uses NLP and 
statistical machine learning techniques to differentiate 
opinionated text from factual text. OM tasks involve 
opinion identification, opinion classification (positive, 
negative, and neutral), target identification, source 
identification and opinion summarization. Hence, OM 
tasks require techniques from the field of NLP, 
Information Retrieval (IR); and Text Mining. The main 
issue is how to automatically identify opinion 
components from unstructured text and summarize the 
opinion about an entity from a huge volume of 
unstructured text. An overview of the OM concept is 
shown in the Figure 1. 

 

 

Figure 1. Overview of opinion mining process 

The focus of this study is opinion target identification for 
the opinion mining process. The problem of opinion 
target identification is related to the question: “opinion 
about what?’. Opinion target identification is essential for 
opinion mining.  For example, the in-depth analysis of 
every aspect of a product based on consumer opinion is 
equally important for consumers, merchants and 
manufacturers. In order to compare the reviews, it is 
required to automatically identify and extract those 
features which are discussed in the reviews. Furthermore, 
analysis of a product at feature level is more important 
e.g. which features of the product are liked and which are 
disliked by consumers [2] . Hence, feature mining of 
products is important for opinion mining and 
summarization. The task of feature mining provides a 
base for opinion summarization[3]. There are various 
problems related to opinion target extraction. Generally 
speaking, if a system is capable of identifying a target 
feature in a sentence or document, then it must be able to 
identify opinionated terms or evaluative expressions in 
that sentence or document. Thus in order to identify 
opinion targets at sentence or document level, the system 
should be able to identify evaluative expressions. Also, 
some features are not explicitly presented and are 
predicted from term semantics called implicit features. 
The focus of this paper is on explicit feature. 

Opinion target identification is basically a 
classification problem which is defined as: to classify 
noun phrase or term as opinion target or not [4]. There 
are two widely used classification methods i.e. supervised 
and unsupervised. The supervised method needs prior 
knowledge annotated through manual process. 
Unsupervised classification depends on heuristics 
procedures and rules which do not need previous 
knowledge. Hence there are two main advantages of 
unsupervised method over supervised: Supervised 
technique need training data which manually labeled 
while unsupervised do not need hand-crafted training 
datasets, moreover  supervised techniques are generally 
domain dependent as training data are manually labeled 
for specific domain [5, 6]. This paper provides a review 
of existing unsupervised approaches which has been 
popularly employed for opinion targets extraction within 
the past few years. The main goal of this work is to 
identify potential techniques for opinion targets 
extraction that might be helpful in the future research 
work in opinion mining. Hence the main contribution of 
this paper is the analysis of the factors that affect the 
existing unsupervised learning techniques of the opinion 
target extraction.     

The entire paper is organized as follows: Section II 
explains related work and existing unsupervised 
approaches for opinion target extraction from 
unstructured reviews. Section III provides comparative 
analysis of the existing approaches and Section IV 
Concludes the paper. 

II. UNSUPERVISED APPROACHES FOR OPINION TARGETS 
IDENTIFICATION 
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The unsupervised techniques has been popularly 
used for opinion target identification [6-17].  

Popescu & Etzioni [9] used an unsupervised 
technique to extract product features and opinions from 
unstructured reviews. This paper introduces the OPINE 
system based on the unsupervised information extraction 
approach to mine product features from reviews. OPINE 
uses syntactic patterns for semantic orientation of words 
for identification of opinion phrases and their polarity.  

Carenini, Ng et al. [15] developed a model based on 
user defined knowledge to create a taxonomy of product 
features. This paper introduces an improved unsupervised 
method for feature extraction that uses the taxonomy of 
the product features. The results of the combined 
approach are higher than the existing unsupervised 
technique; however, the pre-knowledge base mechanism 
makes the approach domain dependent.  

Holzinger, Krüpl, & Herzog [10]  use domain 
ontologies based on tabular data from web content to 
bootstrap a knowledge acquisition process for extraction 
of product features. This method creates a wrapper for 
data extraction from Web tables and ontology building. 
The model uses logical rules and data integration to 
reason about product specific properties and the higher-
order knowledge of product features. 

Bloom, Garg, & Argamon [14] describe an 
unsupervised technique for features and appraisal 
extraction. The authors believe that appraisal expression 
is a fundamental task in sentiment analysis. The appraisal 
expression is a textual unit expressing an evaluative 
attitude towards some target. Their paper proposed 
evaluative expressions to extract opinion targets. The 
system effectively exploited the adjectival appraisal 
expressions for target identification.  

Ben-David, Blitzer et al. [16] proposed a structural 
correspondence learning (SCL) algorithm  for domain 
classification. The idea depends on perception to get a 
prediction of new domain features based on training 
domain features; in other words, the author describes 
under what conditions a classifier trained on the source 
domain can be adapted for use in the target domain? This 
model is inspired by feature based domain classification. 
Blitzer, Dredze et al. [17] extended the structural SCL 
algorithm for opinion target identification. 

Lu and Zhai [18]  proposed automatic integration of 
opinions expressed in a well-written expert review with 
opinions scattered in various sources such as blogs and 
forums. The paper proposes a semi-supervised topic 
model to solve the problem in a principled way. The 
author performed experiments on integrating opinions 
about two quite different topics, i.e. a product and 
political reviews. The focus of this paper is to develop a 
generalized model that should be effective on multiple 
domains for extraction of opinion targets.  

Ferreira, Jakob et al. [11] describe an extended 
pattern based feature extraction using a modified Log 
Likelihood Ratio Test (LRT), which was initially 
employed by [7] for target identification. This paper also 
presented an extended annotated scheme for product 
features, which was initially presented by [8] and a 

comparative analysis between feature extraction through 
Association Mining and LRT techniques. 

The association rule mining for target extraction is 
initially implemented by [8] for target extraction, and 
extended by Chen et al. [12] using semantic based 
patterns for frequent feature refinement and identification 
of infrequent features.  

One of the latest work on feature level analysis of 
opinion is reported by [6]. This paper describes a semi-
supervised technique for feature grouping. Feature 
grouping is an important task for summarization of 
opinion. Same features can be expressed by different 
synonyms, words or phrases. To produce a useful 
summary, these words and phrases are grouped. For 
feature grouping the process generate an initial list to 
bootstrap the process using lexical characteristics of 
terms. This method empirically showed good results. 

Goujon [4] presents a text mining approach based on 
linguistic knowledge to automatically detect opinion 
targets in relation to topic elements. This paper focuses 
on identification of opinion targets related to the specific 
topic. This approach exploits linguistic patterns for target 
identification. 

The two most frequently reported unsupervised 
approaches for target and opinion identification are 
Association Mining (AM) [19]   and Likelihood Ratio 
Test (LRT)  approach [20]. The following sub sections 
provide a detail overview these two approaches. 

A. Association Mining Approach 
The Association Mining approach for product 

features extraction (AME ) was employed by  [8] for the 
first time. In this work, they extract frequent features 
through association rule mining technique [19]. This 
algorithm was originally used for market basket analysis 
which predicts dependency of an item sale on another 
item. Based on the analogy of the market basket analysis 
the authors in [8] assume that the words in a sentence can 
be considered as bought items. Hence the association 
between terms can predict features and opinion words 
association. The implementation of this technique was 
very successful in features extraction. Later on this 
approach is extended by  [12] for the same task with 
semantic based pruning for frequent features refinement 
and identification of infrequent features. The subsequent 
approach improved the results of opinion target 
identification through association rule mining algorithm. 

The AME approach formulates the process of 
opinion target identification into two steps. In the first 
step, it extracts frequent features through the Apriori 
algorithm and in the second step it employs a pruning 
algorithm to refine the candidate features from irrelevant 
features. The overall process is shown in a block diagram 
Figure 2.   

The Apriori algorithm is called the king of data 
mining techniques as it was introduced in the early stages 
of the data mining field and has been potentially 
exploited for data mining and knowledge discovery. This 
algorithm has two steps: in step 1, it generates frequent 
item sets from a set of transactions that satisfies a user’s 
specified minimum support, and in the second step, it 
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These patterns present noun phrases (BNP) with the 
definite article “the” before the BNP. The idea behind 
these patterns is that some proper nouns start with the 
article “the” therefore these patterns are useful for named 
entity extraction 

• Beginning Definite Base Noun Phrases (bBNP) 

This pattern presents a sequence of definite noun 
phrases followed by verbs. This pattern describes that the 
noun phrase in between the article “the” and a verb are 
mostly observed as features. 

Relevance Scoring  

Yi, Nasukawa et al. [7] presented unsupervised 
technique for relevance scoring of candidate features.  
This paper employed two unsupervised techniques, i.e. 
The Mixture Model, and LRT. However, the results show 
that the LRT performed relatively good. The likelihood 
ratio test is formulated as: 

Let Dc denoted topic relevant collection of 
documents and Dn represents collection of documents not 
relevant to the topic. Then a base noun phrases occurring 
in the Dc are candidate feature to be classified as topic 
relevant or topic irrelevant using the likelihood ratio test 
as: if the likelihood score of BNP satisfies the predefined 
threshold value then BNP is considered as target feature.  
The LRT value for any BNP x is calculated as: 

Let n1 denotes the frequency of a BNP in a Dc, n2 
represents sum of frequencies of all BNPs in Dc except x, 
n3 denoted frequency of x in Dn, and n4 represents the 
sum of frequencies of all BNPs in Dn except the 
frequency of x.  

Then the ratios of relevancy of the BNP x to topic 
and non-topic, which are presented by r1 and r2 
respectively, can be calculated as below. ݎଵ ൌ భభାమ 																																																																											ሺ	4ሻ ଶݎ   ൌ ݊ଷ݊ଷ  ݊ସ 																																																														ሺ5ሻ	
                                                                             

Thus the combined ratio is calculated as: 

ݎ ൌ ݊1  ݊ଷ݊ଵ  ݊ଶ  ݊ଷ  ݊ସ 																																												ሺ6ሻ	
                                                                                                

Hence to normalize the ratios with log: ݈ݎ ൌሺ݊ଵ  ݊ଶሻlogሺݎሻ  ሺ݊ଷ  ݊ସሻ logሺ1 െ ሻݎ െ݊ଵ logሺݎଵሻ െ݊ଷ logሺ1 െ ଵሻݎ െ ݊ଶ logሺݎଶሻ െ ݊ସ logሺ1 െ  ଶሻ                (7)ݎ

Hence the likelihood ratio is calculated as below. 

െ2 log ʎ ൌ ൜െ2 ∗ ଶݎ	݂݅		ݎ݈ ൏ ଶݎ	݂݅												,ଵ0ݎ                                        ( 8)	ଵݎ

The likelihood is directly proportional to the value 
of	െ2 log ʎ.  

D. Likelihood Approach by Ferreira et al. (2008) 

A more extensive study of the LRT approach for 
opinion target identification is presented by this paper. As 
mentioned in the previous sub section, the LRT was 
employed by [7]; however, due to non-availability of 
proper data sets for evaluation measures the author only 
calculated precision. 

Ferreira et al. (2008) performed an evaluation on the 
state-of the art datasets, which are manually, annotated 
corpuses created by [8]. Furthermore, they have modified 
the algorithm using subsequent similarity measures based 
on the following two rules. 

 Identification of Feature Boundaries for Patterns 

The earlier work [7] used BNPs, dBNPs and bBNPs 
for candidate feature identification. Noun phrases in these 
patterns are considered as candidate features. However, 
there is no rule mentioned for multiple matches. For 
example, in the pattern “battery life“, three features can 
be reflected:  “battery life”, “battery”, and “life”. The 
recent work [11] extended the earlier algorithm, which 
only selects the longest BNP patterns. For example, in the 
above expression this rule considers only “battery life” as 
a feature.  

Classification of Patterns with an Adjective Noun 
(JJNN)   

Most of the candidate BNPs is combinations of 
JJNN patterns. The adjective sometimes represents 
features e.g. “digital images” and sometimes it represents 
an opinion e.g. beautiful image; hence, it is required to 
classify the subsequent adjectives in the candidate 
patterns. Subsequent similarity rule is employed by [11], 
which have improved the results. Another main 
contribution of this paper is the new annotation scheme 
of the features in the existing dataset that were originally 
employed by [8]. According to the revised annotation 
scheme, the number of features was increased as their 
focus was on all features. 

III. COMPARATIVE ANALYSIS 

This section describes the analysis of the 
unsupervised approaches that has been potentially 
employed for opinion targets extraction. As explained in 
section II there are most popular used techniques that 
have been employed for opinion targets extraction. 

A. Analysis of Factors Affecting the Existing 
Approaches  
This section explains the analysis of the factors 

affecting the existing unsupervised techniques of opinion 
targets extraction. We have performed analysis on the 
bench mark dataset that have been employed by the 
existing approaches. The experimental setup is divided 
into two broad categories. The first category is related to 
candidate selection based on linguistic patterns while the 
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second one is focusing on features selection based 
relevance scoring.      

B. Datasets 
This section describes the datasets that have been 

used for the analysis and evaluation in this work. In this 
work, benchmark datasets of the customer reviews about 
five different products are employed. These datasets have 
been reported in numerous works for opinion mining and 
target identification. These datasets are crawled  from 
amazon review sites and are  manually annotated by [8]. 
The datasets are freely available from the authors’ 
website 1 . In these datasets, each product feature with 
opinion scoring is properly tagged in each sentence 
through a manual process according to a prescribed 
annotation scheme as shown below. 

• A sentence is considered as opinionated if it 
contains positive or negative comments about 
features of the product.  

• Positive and negative comments are opinion 
statements containing adjectives that either have 
a positive or negative orientation. 

• A product feature is the characteristic of the 
product about which opinions are expressed by 
the customers. 

The datasets contain customer reviews about four 
different electronic products, i.e. Camera (Canon G3 and 
Nikon Coolpix 4300), DVD player (Apex AD2600 
Progressive-scan), mp3 player (Creative Labs Nomad 
Jukebox Zen Xtra 40GB) and cell phone (Nokia 6610). 
The summary of each dataset is given in Tables 1: 
including the total number of reviews (number of 
documents), total number of sentences, number of 
sentences with opinions and targets with percentage, total 
distinct base noun phrases which count each distinct BNP 
as 1; the total target features shows the count of all target 
features in each dataset, the average target features shows 
target features out of the total distinct BNPs, the target 
types show the number of distinct target features in each 
dataset and the ratio of target features to the total target 
occurrence. 

C. Experimental Setup 
Although the results are of the aforementioned 

techniques have been already given in the respective 
papers and there is no need to reproduce it. However in 
order to empirically prove the factors affecting the 
existing approach we have performed analysis on the 
factors that affect the performance of the existing 
approaches. 

As mentioned in the existing approaches there are 
two phases of the target extraction techniques. The first 
phase is related to candidate selection while the second 
phase is related to relevance scoring. In the candidate 
selection process patterns of language elements with 
grammatical relations are employed to identify candidate 
features. In relevance scoring phase the candidate 
features are refined using unsupervised machine learning 
techniques. Hence our experimental setup is divided into 
                                                      
1 http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html  

the following two phases to identify strength and 
limitations of the existing approaches in each phase. 

D. Analysis of Patterns for Candidate Selection  
This section provides a comparative analysis of the 

linguist patterns that have been employed for candidate 
selection. As mentioned earlier both AME and LRT 
approaches are using noun phrase for candidate selection. 
However there is a difference between the selections. 
AME uses association between the noun phrases and top 
features with highest frequency is selected that qualify 
the minimum support as target features. While The LRT 
select the noun phrases based on grammatical sequence 
of terms. In order to investigate best patterns for 
candidate selection the following patterns are examined: 
Base noun phrase (BNP), Definite based noun phrases 
(dBNP), Beginning definite base noun phrases (bBNP), 
and Combined base noun phrase pattern (cBNP). The 
first four patterns have already been discussed. While the 
cBNP pattern is employed by [23] which is set of patterns 
defined as below. 

• Noun Phrase-Verb Phrase-Adjective (NP VB JJ) 
• Noun Phrase-Verb Phase-Adverb Adjective (NP 

VB RB JJ)  
• Noun Phrase-Verb Phase-Adverb Adjective NN 

(NP VB RB JJ NN)  
• Definite Base Noun Phrase (dBNP) 
• Preposition Based Noun Phrase (iBNP) 
• Subjective Base Noun Phrase (sBNP) 
In order to extract these patterns from the datasets 

the Stanford part of speech tagger and textSTAT software 
has been used, The Stanford part of speech tagger is 
employed for part of speech tagging [21], while TextStat 
3.0 is employed for pattern extraction and test analysis 2. 
This software is simple and has been used by a number of 
works for searching terms and strings in English texts 
[22]. 

The comparative results are shown in figures 4, 5 
and 6.  The precision of bBNP is higher than the other 
patterns as it extracts fare number of features. While the 
recall of BNP pattern is higher as it extracts all BNPs, 
however, its recall is very low due to its false negative 
features. The F-score of our proposed cBNP is 
significantly higher than the other patterns. Thus the 
overall performance of cBNP is good. 

 
Figure 4: Precision of candidate selection based on dependency patterns 

                                                      
2 http://neon.niederlandistik.fu-berlin.de/en/textstat/  
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Figure 5: Recall of candidate selection based on dependency patterns 

 

Figure 6: F-Score of candidate selection based on dependency patterns 

E. Analysis of Frequency Based Relevance Scoring   
This section demonstrates how the target extraction 

techniques are affected by the threshold values. In order 
to analyze this problem, we conducted experiment for 
finding infrequent features on each data set. Table 2 
shows the sample of target features which have zero LRT 
values due to their rear occurrence in the review dataset. 
Hence based on the low frequency distribution a number 
of target features cannot be predicted by the unsupervised 
learning. Table 3 shows the ratio of infrequent features 
classified by LRT technique.     

Refer to the results in Sections B and C there are two 
main issues related to the extraction of opinion targets. 
The first issue is related to linguistic patterns that have 
been employed for candidate selection. The results can be 
greatly improved with the use of proper patterns. As 
shown in the graphs in figures 4, 5 and 6, the F-score is 
significantly improved with the use of combination of 
patterns.        

The other main issue is related to frequency based 
relevance scoring for features selection. It has been 
observed that even within large documents there exist a 
lot of features which have very low frequency hence 
cannot be detected even by adjusting a small value of 
threshold. Hence the recall of the unsupervised 
techniques is greatly affected due high ratio of false 
negative value. 

As discussed in the previous sections the existing 
unsupervised approaches exploit linguistic patterns and 
frequency based relevance scoring techniques to identify 
opinion targets. However there are certain issues related 
to both patterns selection and relevance scoring that 
might affect the performance of the techniques. Since 
most of the work consider base noun phrases as opinion 
targets. However all base noun phrase in text cannot be 
opinion targets. Hence the existing research work has 
been primarily focused on the problem of selecting 
dependency patterns for targets identification. For 
example some sentences in a review document may not 
have opinion while other sentences may have more than 
one base noun phrases with few opinion targets. For 
example the sentences “The/DT camera/NN comes/VBZ 
with/IN a/DT second/JJ battery/NN. I/PRP 
purchased/VBD it/PRP in/IN a/DT departmental/NN 
store/NN.” do not have any opinion targets although it 
have base noun phrase. While in the sentence “The 
battery/NNP is/VBZ very/RB good/JJ even/RB 
when/WRB using/VBG flash/NN and/CC lcd/NN” there 
is only one opinion target “battery” although it has three 
different BNPs. Hence simply selecting BNPs provides a 
large false positive ratio. To overcome this issue the 
existing worked has proposed various solutions. For 
example the association mining approach assumes that 
opinion targets are frequently discussed in reviews. 
However this approach suffers from two major issues i.e. 
frequent but not opinion target and infrequent but opinion 
target. As mentioned earlier, to overcome these problems 
the existing works have proposed pruning. Although the 
performance have been improved with pruning rules. 
However, the results show that there is still gap for 
further improvement.  

The Likelihood Ratio Test approach assumes that the 
Base Noun Phrases with dependency patterns containing 
subjective adjective are best candidate for opinion targets 
instead of simply selecting base noun phrases. Hence this 
technique depends on opinionated expression. However, 
the question about how to identify opinionated 
expressions! is itself a challenging problem. There can be 
more than one noun phrases with adjective in sentences. 
For example the sentence “The/DT picture/NN 
quality/NN is/VBZ not/RB rich/JJ in/IN color/NN” have 
two candidate base noun phrases “Picture quality” and 
“Color”, and one adjective “rich”. Although the “color” is 
a feature that can be occurred many items in different 
sentences; however, in this case the “picture quality” is 
basically opinion target. According dBNP pattern 
mentioned earlier, “The picture quality” can to be 
correctly selected as opinion target from the above 
sentence. However these patterns are not effective in 
many cases. For example if we look into the review 
sentence “this dvd play is basically junk”; it has opinion 
targets “player”  but do not satisfy the dBNP pattern rules. 
Since LRT based approach also depends on frequency 
distribution therefore it also suffer from the same two 
main issues i.e. frequent but none opinion targets and 
rarely occurred but opinion targets. 
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TABLE 1:  
SUMMARY OF THE FIVE PRODUCT DATASETS WITH MANUALLY TAGGED OPINION TARGETS BY [8] 

 

Description 

Dataset 

Apex  Cannon  Creative  Nikon  Nokia 

Reviews 99 45 95 34 41 

Total sentences 739 597 1716 346 546 

Target types 110 100 180 74 109 

 
TABLE 2:  

SAMPLE SET OF INFREQUENT FEATURES  
Dataset Infrequent Features 

A
pe

x 

read,look,sound,price,door,size,design,quality,support,weight,case, 
forward,output,product,run,unit,video,work,code,direction,disk,display,finish,machine,m
otor,noise, panel, recognize, service, speed, use, apex 

C
an

no
n 

body,control,depth,design,display,feel,finish,focus,function,image,learning,look,made,no
ise,option,print,quality,remote,service,shape,shot,speed,use,weight,zoom 

C
re

at
iv

e 

alarm,appearance,balance,break,build,capacity,case,change,clock,control,cover,creative,d
eal,design,display,equipment,feature,feel,finding,game,look,looking,manage,memory,mu
sic,name,option,panel,pause,play,product,program,quality,recognition,recording,remote,r
emove,style,support,switch,thing,top,unit,use,value,volume,weight,wheel,work,sorting,n
avigation 

N
ik

on
 construction,control,delay,design,function,image,learn,menu,price,quality,size,software,t

ransfer,use,weight 

N
ok

ia
 

application,background,call,command,construction,design,game,keys,look,memory,mess
age,network,picture,plan,quality,resolution,ring,service,software, 
sound, speaker, tone, use, voice, work 

 

TABLE 3  
DISTRIBUTION OF INFREQUENT FEATURES IN EACH DATASET 

Dataset Total Frequent Infrequent %Infrequent 
Apex 110 78 32 29.09090909 
Cannon 98 73 25 25.51020408 
Creative 179 129 50 27.93296089 
Nikon 73 58 15 20.54794521 
Nokia 110 84 26 23.63636364 
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IV.  CONCLUSION 

This paper presents a systematic review of 
unsupervised approaches of opinion target 
identification from unstructured reviews. This study 
shows that there two main issued in unsupervised 
learning of opinion targets from unstruted reviews i.e. 
Frequent base noun pharse but not target features and 
Infrequent but target features. Besides a significant 
improvements in the opinion target identification 
techniques these two prolmes are still challenging. Our 
analysis shows that results can be greatly improved 
with the imrpovement in candidate selection and 
relevance scroing. We have proposed hybrid patterns 
based candidate selection that have shown considerable 
improvement in the true positive. We have also the 
affect of threshold value on  relevance scroing using 
Likelihood ratio test. It was found that 20 to 30 % 
infrequent features cannot be detected by the LRT 
technique due low frequency of the target feature. 
Hence the recall of the this method low due to high 
number of flase negative features. This shows that 
recall can be improved with the selection of infrequent 
features. Hence future should focus on dependecy 
patterns and infrequent features for the better 
improvement in the results.   
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