
 

 

Comparative Study of PCA, ICA, LDA using 
SVM Classifier  

 

Anissa Bouzalmat 
Sidi Mohamed Ben Abdellah 

University 
Department of Computer Science 

Faculty of Science and 
Technology 

Route d'Imouzzer B.P.2202 Fez 
30000 Morocco 

anissabouzalmat@yahoo.fr 

Jamal Kharroubi  
Sidi Mohamed Ben Abdellah 

University  
Department of Computer Science 

Faculty of Science and 
Technology  

Route d'Imouzzer B.P.2202 Fez 
30000 Morocco 

jamal.kharroubi@yahoo.fr

Arsalane Zarghili 
Sidi Mohamed Ben Abdellah 

University 
Department of Computer Science 

Faculty of Science and 
Technology 

Route d'Imouzzer B.P.2202 Fez 
30000 Morocco 

a.zarghili@ieee.ma
 
 
 

Abstract—Feature representation and classification are two 
key steps for face recognition. We compared three 
automated methods for face recognition using different 
method for feature extraction: PCA (Principle Component 
Analysis), LDA (Linear Discriminate Analysis), ICA 
(Independent Component Analysis) and SVM (Support 
Vector Machine) were used for classification. The 
experiments were implemented on two face databases, The 
ATT Face Database [1] and the Indian Face Database (IFD) 
[2] with the combination of methods (PCA+ SVM), 
(ICA+SVM) and (LDA+SVM) showed that (LDA+SVM) 
method had a higher recognition rate than the other two 
methods for face recognition. 
 
Index Terms—Face Recognition, SVM, LDA, PCA, ICA. 
 

I. INTRODUCTION 

Face Recognition is a term that includes several sub-
stages as a two step process: Feature extraction and 
classification. 

Feature extraction for face representation is one of 
central issues to face recognition systems, it can be 
defined as the procedure of extracting relevant 
information from a face image. 

There are many feature extraction algorithms, most of 
them are used in other areas than face recognition. 

Researchers in face recognition have used, modified 
and adapted many algorithms and methods to their 
purpose . For example, Principle component analysis 
(PCA) was applied to face representation and recognition 
[3, 4, 5].  

The PCA method [5] is obviously of advantage to 
feature extraction, but it is more suitable for image 
reconstruction because of no consideration for the 
separability of various classes. Aiming at optimal 
separability of feature subspace, LDA (Linear 
Discriminate Analysis) can just make up for the 
deficiency of PCA [6]. ICA (Independent Component 
Analysis) is a method that finds better basis by 
recognizing the high-order relationships between the 
pixels images [7], once the features are extracted, the next 

step is to classify the image .A large margin classifiers 
are proposed recently in machine learning such as 
Support Vector Machine (SVM) [8]. The method was 
used in this step is SVM (Support Vector Machines) 
which have been developed in the frame work of 
statistical learning theory, and have been successfully 
applied to a number of applications, ranging from time 
series prediction, to face recognition, to biological data 
processing for medical diagnosis [9,10]. VC (Vapnik-
Chervonenkis) dimension theory and SRM (Structural 
Risk Minimization) principle based SVM can well 
resolve some practical problems such as small sample 
size, nonlinear, high dimensional problems, etc. [11,12] .  

In this paper SVMs were used for classification using 
different method for feature extraction: PCA, LDA, ICA, 
the experiments were implemented on two face databases, 
The ATT Face Database [1] and the Indian Face Database 
(IFD) [2] . 

The face recognition system is shown as Fig. 1. 
 

 
Fig 1: The face recognition system  

 
The outline of the paper is as follows: Section 2 feature 

extraction and classification. In section 3 contains 
experimental results. Section 4 concludes the paper.  
 
 
 

  
Training 
Images 

Test 
Images 

PCA 

ICA 

LDA 

Input 

 

Features 
Extraction 

SVM 
Classifier

Classifier 

64 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 1, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jetwi.6.1.64-68



 

 

II FEATURE EXTRACTION 

Feature extraction involves several steps - 
dimensionality reduction, feature extraction and feature 
selection. We have a large features vector which 
considers the whole image that needs a reduction of 
dimension and selection the important features.  Then 
these new features will be used for the training and 
testing of SVM classifier .In this paragraph we describe 
three techniques of extraction feature, Principal 
component analysis (PCA), independent component 
analysis (ICA) and linear discriminate analysis (LDA).  

2.1 Principal Component Analysis (PCA)  
Principal component analysis (PCA) is a powerful tool 

for feature extraction as proposed by Turk and Pentland 
[13]. The main advantage of PCA is that it can reduce the 
dimension of the data without losing much information. 
Suppose there are N images Ii(i=l,2,---,N), each image is 
denoted as a column vector xi , and the dimension is M. 
The mean of the images is given by:  

( )
1

1
N

i

i

x
x

N=

=∑  

the covariance matrix of images is given by 

( )( ) ( )
1

1 1 2
N

T T
i i

i

C x x x x XX
N N=

= − − =∑  

Where [ ]1 2, ,..., NX x x x x x x= − − −  the projection space 
is made up of the eigenvectors which correspond to the 
significant eigenvalues when M>>N, the computational 
complexity is increased .we can use the singular value 
decomposition (SVD), theorem to simplify the 
computation .the matrix X, whose dimension is M*N and 
rank is N, can be decomposed as:  

( )
1
2 3TX U V= Λ  

( )
1
2 4U X= ∨ Λ  

Where : 
[ ]1 2 1 2, ,..., , ...N Ndiag λ λ λ λ λ λΛ = ≥ ≥ ≥ , are the nonzero 

eigenvalues of  TXX  and TX X .
[ ] [ ]1 2 1 2, ,..., , , ,...,M NU u u u V v v v= =  are orthogonal 

matrices. 
iu  is the eigenvector of TXX , iv is the eigenvector of 

TX X and the iλ   is the corresponding eigenvalue.  

iu   is calculated by following : 

( )1 1,2,..., 5i i
i

U Xv i N
λ

= =  

The p eigenvectors 1 2, ,..., pU u u u p N⎡ ⎤= ≤⎣ ⎦  
corresponding to the p significant eigenvalues are 
selected to form the projection space and the sample 
feature is obtained by calculating. 

2.2 Analyse discriminate linear (LDA) 
LDA also known as Fisher’s Discriminate Analysis, is 

another dimensionality reduction technique, it determines 

a subspace in which the between-class scatter (extra 
personal variability) is as large as possible, while the 
within-class scatter (intrapersonal variability) is kept 
constant. In this sense, the subspace obtained by LDA 
optimally discriminates the classes-faces.  

We have a set of C-class and D-dimensional samples
({ ( ( }1 2, ,... Nx x x  

1N of which belong to class 1w , 2N to class 2w  and cN  
to class cw , In order to find a good discrimination of 
these classes we need to define a measure of separation, 
We define a measure of the within-class scatter by Eq. (6):   

( )( ) (6)
i

c
T

i i i
x w

S x xμ μ
∈

= − −∑  

Where: 
1

c

w i
i

S S
=

=∑ and   1

i

i i
x wi

x
N

μ
∈

= ∑  

And the between-class scatter Eq. (7) becomes: 

( )( )
1

(7)
C

T
B i i i

i

S N μ μ μ μ
=

= − −∑  

 Where: 
1

1 1 C
i ii

x

x N
N N

μ μ
=

∀
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Matrix T B WS S S= +  is called the total scatter similarly, 
we define the mean vector and scatter matrices for the 
projected samples as: 

 ( )( )
1 i

c
T

W i i
i y w

S y yμ μ
= ∈

= − −∑∑  

( )( )
1

c
T

B i i i
i
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Where:   1 1,
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i
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N N

μ μ
∈ ∀

= =∑ ∑             

From our derivation for the two-class problem, we can 
write: T

B BS W S W=  and T
W WS W S W=  

Recall that we are looking for a projection that 
maximizes the ratio of between-class to within-class 
scatter. Since the projection is no longer a scalar (it has 
C−1 dimensions), we use the determinant of the scatter 
matrices to obtain a scalar objective function Eq. (8): 

( ) (8)
T

B B
T

WW

S W S W
J W

W S WS
= =  

And we will seek the projection matrix W* that 
maximizes this ratio it can be shown that the optimal 
projection matrix W* is the one whose columns are the 
eigenvectors corresponding to the largest eigenvalues of 
the following generalized eigenvalue problem Eq. (9): 

( )*
1 2 1.. argmax (9)

T
B

c B i W iT
W

W S W
w w w w S S W

W S W
λ∗ ∗ ∗ ∗

−
⎡ ⎤= = ⇒ −⎣ ⎦  

SB is the sum of C matrices of rank ≤1 and the mean 

vectors are constrained by : 
1

1 C

i
ic

μ μ
=

=∑  

Therefore, SB will be of rank (C−1) or less and this 
means that only (C−1) of the eigenvalues  will be non-
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rest classes. In our experiments the one-against-all 
method was used for classification.  

In real world problems we often have to deal with 
2n ≥  classes. Our training set will consist of pairs 

( ),i ix y , where n
ix R∈  and { }1,..., , 1..iy n i l∈ =   for 

extending the two-class to the multiclass case this method 
will be described briefly below.  
3.2.1 One vs. all approach  

In the one-Vs-all approach n SVMs are trained. Each 
of the SVMs separates a single class from all remaining 
classes [20,21]  ,A more recent comparison between 
several multi-class techniques [22] favors the one-vs-all 
approach because of its simplicity and excellent 
classification performance.  Regarding the training effort, 
the one-vs-all approach is preferable over the one-vs-one 
approach since only n SVMs have to be trained compared 
to ( 1) / 2n n − SVMs in the pairwise approach (one-vs-one) 
[23], [24], [25] . The construction of a n-class classifier 
using two-class discrimination methods is usually done 
by the following procedure: 

Construct n two-class decision functions 
( ) , 1,..,kd x k n=  that separate examples of class k from 

the training points of all other classes,  

( ) 1 if x belongs to class k
1 otherwise

d xk
⎧ ⎫+⎪ ⎪

= ⎨ ⎬
−⎪ ⎪⎩ ⎭

 

In the face database of n individuals, 10 face images 
for everyone. 5 images among the 10 images of every one 
were taken to compose training samples and the rest 5 
ones compose test samples. 

Five images of first individual was taken and marked 
as positive samples, the all images of other training 
samples as negative samples. Both positive samples and 
negative samples were taken as input samples to train a 
SVM classifier to get corresponding support vectors and 
optimal hyperplane. The SVM was labeled as SVM1. In 
turn we can get the SVM for every individual and labeled 
as SVM1, … , SVMn respectively. 

The n SVMs can divide the samples into n classes. 
When a test sample was in turn inputted to every SVM, 
there would be several cases: 
• If the sample was decided to be positive by SVMi and 

to be negative by others SVMs at the same time, then 
the sample was classified as class i. 

• If the sample was decided to be negative by several 
SVMs synchronously and to be positive by other SVMs, 
then the classification was false. 

• If the sample was decided to be negative by all SVMs 
synchronously, then the sample was decided not 
belonging to the face database. 

IV. EXPERIMENTATION AND RESULTS 

Our experiments were performed on two face 
databases, The ATT Face Database [1] and the Indian 
Face Database (IFD) [2] the ATT database contains 
images with very small changes in orientation of images 
for each subject involved, while the IFD contains a set of 
10 images for each subject where each image is oriented 
in a different angle compared to the other.   

These two databases both contains 10 classes, each 
class have 5 images for training and 5 images for testing 
Fig 3 and Fig 4. We use these Databases for comparison 
of different face recognition algorithms such as 
PCA+SVM, LDA+SVM and ICA+SVM. We extract 
different features from a training set and testing set using 
PCA, LDA, ICA methods. Using these feature we trained 
the classifier SVM and find the accuracy of the three 
methods, the recognition rates of the three methods 
PCA+SVM, LDA+SVM, ICA+SVM were shown as Fig. 
5. 

(a) 

(b) 
Fig 3: Examples of (a) training and (b) test images of (ATT) Face 

Database 

(c) 

(d) 
Fig 4: Examples of (c) training and (d) test images of (IFD) Face 

Database  
The comparison is done on the basis of rate of 

recognition accuracy. Comparative results obtained by 
testing the PCA+SVM, LDA+SVM, ICA+SVM 
algorithms on both the IFD and the ATT databases Fig.5.                        
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Fig  5: Comparative of  the combination algorithms 

PCA+SVM,LDA+SVM,ICA+SVM On the basis Of recognition 
accuracy 

It is observed that recognition rate of the method 
LDA+SVM is 93.9% obtained on ATT face database and 
70% on IFD face database it is the higher as compare to 
PCA+SVM and ICA+SVM methods for both IFD and 
ATT databases. 

CONCLUSION  

We presented a face recognition method based on 
SVM classifier combined with LDA feature extraction. 
We implemented experiments on IFD and ATT face 
database. First, LDA for dimension reduction and SVM 
for classification. The experimental results showed that 
LDA+SVM method had a higher recognition rate than the 
other two methods for face recognition. 
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