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Abstract—The classification of remotely sensed images 
knows a large progress taking in consideration the 
availability of images with different resolutions as well as 
the abundance of classification’s algorithms. A number of 
works have shown promising results by the fusion of spatial 
and spectral information using Support vector machines 
(SVM) which are a group of supervised classification 
algorithms that have been recently used in the remote 
sensing field.  

For this purpose we propose a methodology exploiting 
the properties of Mercer’s kernels to construct a family of 
composite kernels that easily combine multi-spectral 
features and Haralick texture features as data source.  

The proposed approach was tested on common scenes of 
urban imagery. The three different kernels tested allow a 
significant improvement of the classification performances 
and a flexibility to balance between the spatial and spectral 
information in the classifier. The experimental results 
indicate an accuracy value of 92.55% which is very 
promising. 
 
Index Terms—SVM, Classification, Composite Kernels, 
Haralick features, Satellite image, Spectral and spatial 
information. 
 

I. INTRODUCTION 

With the commercial emergence of the optical satellite 
images of sub-metric resolution (Ikonos, Quickbird) the 
realization as well as the regular update of numerical 
maps with large scales become accessible and 
increasingly frequent. The classification of such images is 
similar to that of other image types, it follows the same 
principle, and it is a method of analysis of data that aims 
to separate the image into several classes in order to 
gather the data in homogeneous subsets, which show 
common characteristics. It aims to assign to each pixel of 
the image a label which represents a theme in the real 
study area (e.g. vegetation, water, built, etc) [1]. 

Several classification algorithms have been developed 
since the first satellite image was acquired in 1972 [2-4]. 
Among the most popular and widely used is the 
maximum likelihood classifier [5]. It is a parametric 

approach that assumes the class signature in normal 
distribution. Although this assumption is generally valid, 
it is invalid for classes consisting of several subclasses or 
classes having different spectral features [6]. To 
overcome this problem, some non-parametric 
classification techniques such as artificial neural 
networks, decision trees and Support vector machines 
(SVM) have been recently introduced. 

SVM is a group of advanced machine learning 
algorithms that have seen increased use in land cover 
studies [7, 8]. One of the theoretical advantages of the 
SVM over other algorithms (decision trees and neural 
networks) is that it is designed to search for an optimal 
solution to a classification problem whereas decision 
trees and neural networks are designed to find a solution, 
which may or may not be optimal. This theoretical 
advantage has been demonstrated in a number studies 
where SVM generally produced more accurate results 
than decision trees and neural networks [5, 9]. SVMs 
have been used recently to map urban areas at different 
scales with different remotely sensed data.  High or 
medium spatial resolution images (e.g., IKONOS, 
Quickbird, Landsat (TM)/ (ETM+), SPOT) have been 
widely employed on urban land use classification for 
individual cities for ; building extraction, road extraction 
and other man-made objects extraction [10, 11]. 

On other hand, the consideration of the spatial aspect 
in the spectral classification remains very important, for 
this case, Haralick described methods for measuring 
texture in gray-scale images, and statistics for quantifying 
those textures. It is the hypothesis of this research that 
Haralick’s Texture Features and statistics as defined for 
gray-scale images can be modified to incorporate spectral 
information, and that these Spectral Texture Features will 
provide useful information about the image. It is shown 
that texture features can be used to classify general 
classes of materials, and that Spectral Texture Features in 
particular provide a clearer classification of land cover 
types than purely spectral methods alone. 

The proposed method consists of combining spatial 
and spectral information to obtain a better classification. 
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We start with the extraction of spectral and spatial 
information (Haralick texture features) [12]. Then, we 
apply the SVM classification to the result file.  

We exploit the properties of Mercer’s kernels to 
construct a family of composite kernels that easily 
combine spatial and spectral information. The three 
different kernels tested demonstrate enhanced 
classification accuracy as compared to traditional 
approaches that take into account the spectral information 
only, and a flexibility to balance between the spatial and 
spectral information in the classifier 

This paper is organized as follows. In the second 
section, we discuss the extraction of spatial and spectral 
information especially the Grey-Level Co-occurrence 
Matrix (GLCM) and Haralick texture features used in 
experimentations. In section3, we give outlines on the 
used classifier: Support Vector Machines (SVM). 
Section4 describe the three different composite kernels 
used in experimentations. In section5, the results are 
presented as well as the stating of numerical evaluation. 
Finally, conclusions are given in section6. 

II EXTRACTION OF INFORMATION 

2.1 Spectral Information 
The most used classification methods for the 

multispectral data consider especially the spectral 
dimension. The set of spectral values of each pixel is 
treated as a vector of attributes which will be directly 
employed as entry of the classifier. According to Fauvel 
[13] this allows a good classification based on the 
spectral signature of each area. However, this does not 
take in account the spatial information represented by the 
various structures in the image. 

2.2 Spatial Information 
Information in a remote sensed image can be deduced 

based on their textures. A human analyst is able to 
distinguish man-made features from natural features in an 
image based on the ‘regularity’ of the data. Straight lines 
and regular repetitions of features hint at man-made 
objects. This spatial information is useful in 
distinguishing the different field in the remote sensed 
image. 

Many approaches were developed for texture analysis. 
According to the processing algorithms, three major 
categories, namely, structural, spectral, and statistical 
methods are common ways for texture analysis. Grey-
Level Co-occurrence Matrix (GLCM) [14] is one of the 
most widely used methods, which is a powerful technique 
for measuring texture features; it contains the relative 
frequencies of the two neighbouring pixels separated by a 
distance on the image.  

Haralick assumed that the texture information is 
contained in the co-occurrence matrix, and texture 
features are calculated from it. A large number of textural 
features have been proposed starting with the original 
fourteen features described by Haralick et al [15], 
however only some of these features are in wide use. 
Wezska et al [16] used four of Haralick features. Conners 
and Harlow [17] use five features. Conners, Trivedi and 

Harlow [18] introduced two new features which address a 
deficiency in the Conners and Harlow set. 

We found that the five features used by Conners and 
Harlow are commonly used because seen that the 
fourteen are much correlated with each other, and that the 
five sufficed to give good results in classification [19].  

In this work, we have used these five features: 
homogeneity (E), contrast (C), correlation (Cor), entropy 
(H) and local homogeneity (LH), and co-occurrence 
matrices are calculated for four directions: 0°, 45°, 
90°and 135° degrees.   

Let us recall their definitions:  
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Where iμ and iσ are the horizontal mean and the 

variance, and jμ and jσ  are the vertical statistics. 
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Each texture measure can create a new band that can 
be incorporated with spectral features for classification 
purposes. 

III SVM CLASSIFICATION 

In this section we briefly describe the general 
mathematical formulation of SVMs introduced by Vapnik 
[20, 21]. Starting from the linearly separable case, 
optimal hyperplanes are introduced. Then, the 
classification problem is modified to handle non-linearly 
separable data and a brief description of multiclass 
strategies is given.  

3.1 Linear SVM 
For a two-class problem in a n-dimensional space Rn, 

we assume that l training samples xi ∈Rn, are available 
with their corresponding labels yi = ±1, S = {(xi, yi) | 
i∈ [1, l]}. The SVM method consists of finding the 
hyperplane that maximizes the margin, i.e., the distance to 
the closest training data points for both classes [22]. 
Noting w∈Rn as the normal vector of the hyperplane and 
b ∈R as the bias, the hyperplane Hp is defined as: 

pHxbxw ∈∀=+ ,0,    (6) 

Where  xw,  is the inner product between w and x. If 

x∉Hp then f(x) =  xw, + b is the distance of x to Hp. 
The sign of f corresponds to decision function y = sgn 
(f(x)).  

Finally, the optimal hyperplane has to maximize the 
margin: w2 . This is equivalent to minimize 2w  and 
leads to the following quadratic optimization problem: 
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For non-linearly separable data, the optimal parameters 
(w, b) are found by solving:  
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Where the constant C control the amount of penalty 
and iξ  are slack variables which are introduced to deal 
with misclassified samples. This optimization task can be 
solved through its Lagrangian dual problem: 
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The solution vector is a linear combination of some 
samples of the training set, whose iα  is non-zero, called 
Support Vectors. The hyperplane decision function can 
thus be written as: 
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Where xu is  an unseen sample. 

3.2 Non-Linear SVM 
Using the Kernel Method, we can generalize SVMs to 

non-linear decision functions. With this way, the 
classification capability is improved. The idea is as 
follows. Via a non-linear mappingΦ , data are mapped 
onto a higher dimensional space F: 
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The SVM algorithm can now be simply considered 
with the following training samples:  (S)Φ ={( )(xiΦ , yi) | 
i∈  [1, l]}. It leads to a new version of the hyperplane 
decision function where the scalar product is now: 

)(x ),(x ji ΦΦ . Hopefully, for some kernels function k, 

the extra computational cost is reduced to: 
),()(),( jiji xxkxx =ΦΦ     (13) 

The kernel function k should fulfill Mercers’ 
conditions.  

With the use of kernels, it is possible to work 
implicitly in F while all the computations are done in the 
input space. The classical kernels used in remote sensing 
are the polynomial kernel and the Gaussian radial basis 
function: 
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3.3 Multiclass SVMs 
SVMs are designed to solve binary problems where the 

class labels can only take two values: ±1. For a remote 
sensing application, several classes are usually of interest. 
Various approaches have been proposed to address this 
problem [23]. They usually combine a set of binary 
classifiers. Two main approaches were originally 
proposed for a k-classes problem. 
• One versus the Rest: k binary classifiers are applied 

on each class against the others. Each sample is 
assigned to the class with the maximum output. 

• Pairwise Classification: 2)1( −kk binary classifiers 
are applied on each pair of classes. Each sample is 
assigned to the class getting the highest number of 
votes. A vote for a given class is defined as a 
classifier assigning the pattern to that class. 

IV COMPOSITE KERNELS 

In the following section, we present three different 
kernel approaches for the joint consideration of spectral 
and textural information for multispectral image 
classification. 

4.1 The Stacked Features Approach 
The most commonly adopted approach in multispectral 

image classification is to exploit the spectral content of a 
pixel (xi). However, performance can be improved by 
including both spectral and spatial information in the 
classifier. This is usually done by means of the ‘stacked’ 
approach, in which feature vectors are built from the 
concatenation of spectral and spatial features. Note that if 
the chosen mapping Φ  is a transformation of the 
concatenation xi ≡ {xi-spat, xi-spect}, then the corresponding 
‘stacked’ kernel matrix is: 

{ } )(),(),(, jijiSpaSpect xxxxkk ΦΦ=≡   (16) 

which does not include explicit cross relations between xi-

spa and xi-spect. 

4.2 The Direct Summation Kernel 
A simple composite kernel combining spectral and 

textural information naturally comes from the 
concatenation of nonlinear transformations of xi-spat and 
xi-spect. Let us assume two nonlinear transformations ( ).1ϕ  
and ( ).2ϕ into Hilbert spaces H1 and H2, respectively. Then, 
the following transformation can be constructed: 

( ) ( ){ }spaispectii xxx −−=Φ 21 ,)( ϕϕ   (17) 
and the corresponding dot product can be easily 
computed as follows: 
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4.3 The Weighted Summation Kernel 
By exploiting properties of Mercer’s kernels, a 

composite kernel that balances the spatial and spectral 
content in (19) can also be created, as follows: 
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where μ is a positive real-valued free parameter (0 < μ < 
1), which is tuned in the training process and constitutes a 
tradeoff  between the spatial and spectral information to 
classify a given pixel. This composite kernel allows us to 
introduce a priori knowledge in the classifier by 
designing specific μ profiles per class, and also allows us 
to extract some information from the best tuned μ 
parameter. 
Note that solving the minimization problem in all kinds 
of composite kernels requires the same number of 
constraints as in the conventional SVM algorithm, and 
thus no additional computational efforts are induced in 
the presented approaches. 

V EXPERIMENTS 

We developed a two stages classification process: the 
first one is the extraction of the spatial and spectral 
features, so we compute Grey Level Co-occurrence 
Matrix (GLCM) to extract Haralick texture features that 
we add to spectral information. The second one is the 
classification stage; with SVM, a supervised kernel 
learning algorithm widely used.We have selected 
SVMlight which is an implementation of Support Vector 
Machines (SVMs) in C language [24] with composite 
kernels. 

To use jointly spatial and spectral information, we used 
three different kernel approaches presented in section 4; 
which are the stacked features approach (16), the direct 
summation kernel (18) and the weighted summation 
kernel (19). 

In the case of the weighted summation kernel, μ was 
varied in steps of 0.1 in the range [0, 1]. For simplicity 
and for illustrative purposes, μ was the same for all 
classes in our experiments. The penalization factor in the 
SVM was tuned in the range C = {10−1… 107}. 

We used the Gaussian RBF kernel (15) (with σ = 
{10−1… 103}) for the two kernels. spectk  uses a spectral 

information while spak  uses Haralick features. 
Concerning data we have used a multispectral satellite 

image (IKONOS) represented in Fig 1 (a), with size 800 
by 600 pixels; at the last we will have, for this image 4 
131 individuals (pixels) for learn, 4 952 for validation 
and 480 000 to classify, divided on six classes (Table 1). 

The classification map presented on Fig 1(b), is 
obtained when the classification is performed using the 
stacked features approach. When the classification is 
performed using the direct summation kernel, we obtain 
the corresponding classification map which is presented 
on Fig 1(c). A visual analysis of classification maps 
shows those areas are more homogeneous for the maps 
obtained using the direct summation kernel. 

TABLE 1.  
DIFFERENT CLASSES 

Class 
N° Class name Train 

samples 
Validation 

samples 
1 Asphalt 1 386 978 

2 Green area 480 1 034 

3 Tree 196 1 154 

4 Soil 813 954 

5 Building 920 688 

6 Shadow 336 144 
 
The fusion of the spectral and the spatial features using 
the weighted summation kernel give us the classification 
map presented on Fig 1(d). The classification map is less 
noisy and the classification performances are increased 
globally as well as almost all the classes. It matches well 
with an urban land cover map in terms of smoothness of 
the classes; and it also represents more connected classes. 
Table 2 lists the accuracy estimates for the study area, all 
models are compared numerically (overall accuracy and 
kappa coefficient), and table 3, table 4 and table 5 
presents respectively the confusion matrix results for 
SVM classification using the stacked features approach 
(16), the direct summation kernel (18) and the weighted 
summation kernel (19). 
In conclusion, composite kernels offer excellent 
performance for the classification of multispectral 
satellite images by simultaneously exploiting both the 
spatial and spectral information. 

TABLE 2.  
OVERALL ACCURACY (%) OF CLASSIFIED IMAGE 

Method OA Kappa 
Coefficient

The stacked features 
approach 92.13% 0.91 

The direct summation 
kernel 92.38 % 0.92 

The weighted 
summation kernel 92.55% 0.92 

VI CONCLUSION 

Addressing the classification of high resolution 
satellite images from urban areas, we have presented 
three different kernel approaches taking simultaneously 
the spectral and the spatial information into account (the 
spectral values and the Haralick features). The weighted 
summation kernel allows a significant improvement of 
the classification performances when compared with the 
two other approaches. 

As perspectives, the workflow of this study can be 
used in other remote sensing application, especially, in 
rural areas for thematic land cover, and more 
sophisticated texture techniques to describe the spatial 
structure of the classes. 
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(a)                                         (b)                                  (c)                                        (d) 
Fig1: (a) Original image, (b) Classification Map obtained using the stacked features approach, (c) Classification Map obtained using the direct 

summation kernel and (d) Classification Map obtained using the weighted summation kernel.(Asphalt, Green area, Tree, Soil, Building, Shadow) 
 

TABLE 3.  
CONFUSION MATRIX RESULTS (%) FOR SVM CLASSIFICATION USING THE STACKED FEATURES APPROACH. 

GLOBAL ACCURACY = 92.13% 

Class name Asphalt Green area Tree Soil Building Shadow 

Asphalt 90,12 1,41 3,92 0 2,63 1,92 

Green area 1,13 94,99 0 1,08 1,54 1,26 
Tree 0,28 1,07 90,82 2,5 2,82 2,51 
Soil 4,84 0,95 0 91,87 2,34 0 

Building 3,01 1,16 2,69 2,47 90,67 0 
Shadow 0,62 0,42 2,57 2,08 0 94,31 

TABLE 4.  
CONFUSION MATRIX RESULTS (%) FOR SVM CLASSIFICATION USING THE DIRECT SUMMATION KERNEL. 

GLOBAL ACCURACY = 92.38% 

Class name Asphalt Green area Tree Soil Building Shadow 

Asphalt 89,93 2,34 0 3,62 2,12 1,99 

Green area 1,13 93,27 4,71 0 0,53 0,36 
Tree 1,18 2,62 91,22 1,08 0,6 3,3 
Soil 0 0,98 0 93,95 5,07 0 

Building 6,04 0,46 1,81 0,09 91,58 0,02 
Shadow 1,72 0,33 2,26 1,26 0,1 94,33 

TABLE 5 
. CONFUSION MATRIX RESULTS (%) FOR SVM CLASSIFICATION USING THE WEIGHTED SUMMATION KERNEL. 

GLOBAL ACCURACY = 92.55% 

Class name Asphalt Green area Tree Soil Building Shadow 

Asphalt 89,36 2,04 1,92 1,5 3,32 1,86 

Green area 5,13 92,21 0 1,03 1,54 0,09 
Tree 1,18 1,52 93,15 1,92 0,03 2,2 
Soil 1,75 1,13 0,64 93,04 3,44 0 

Building 1,96 2,78 2,72 0,87 91,67 0 
Shadow 0,62 0,32 1,57 1,64 0 95,85 
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