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Abstract—The most common technique in the normalization 
of 3D objects is the Principal Component Analysis (PCA). 
However, it is well known that the principal axes generated 
by the PCA may be different for similar shapes. To 
overcome the limitations of the PCA we propose in this 
paper a normalization method to give robustness to 
remeshing, rotations and reflections of meshed 3D objects. 
This method is based on the integration of the mesh volume, 
the use of barycentric coordinates and the CPCA 
(Continuous Principal Component Analysis).   
 
General Terms—Image Processing. 
 
Index Terms—Normalization, PCA, barycentric coordinates. 

I. INTRODUCTION 

Duplicating real-world object in a digital environment 
was an interesting task for many applications. The quality 
of the obtained models was often limited by the capacity 
of the existing hardware and software. However, recent 
advances in scanning technology and three-dimensional 
modeling helped to visualize and manipulate complex 
models with ease. 3D objects are usually given in an 
arbitrary orientation and scale. To improve the accuracy 
of the use of these objects, and more particularly the 
search by content systems, a near-normalization treatment 
is often necessary. Thus, the normalization of a 3D object 
is to orient it correctly in a canonical marker. 

The normalization method proposed in this paper aims 
at addressing problems related to meshing resolution and 
the orientation of the principal axes of normalized objects. 
Our method is based on an integration of the mesh 
volume [15], using the barycentric coordinates of the 
vertex [14] to generate the matrix of moments (order 2). 
After generating the matrix of two-order moments, we 
apply the PCA [1] of the matrix to define a canonical 
marker for the object. At the end, we will consider a 
reflection coefficient inspired from the CPCA 
(Continuous Principal Component Analysis) [2]. 

We present in the beginning of this article an overview 
on 3D normalization. Next, we describe our proposal to 

standardize a 3D object. At the end of this article we 
present our experimental results with a qualitative and 
quantitative evaluation of the proposed method.  

II A OVERVIEW ON 3D NORMALIZATION 

The most commonly used technique for normalization 
of a 3D object is based on Principal Component Analysis 
(PCA), in which the center of gravity is chosen as the 
origin, the size of the bounding box as a scale factor of 
the form and the determining canonical axes based on the 
calculation of the eigenvalues and eigenvectors of the 
covariance matrix of the set of points representing the 
object in question. The eigenvalues are sorted in a 
descending order, the eigenvectors are chosen on the 
basis of this ranking, the first vector is aligned with the 
first axis (x), the second with the second axis (y) and the 
third vector with the third axis (z) ( Paquet et al). [1].  

The PCA has been extended by Vranic et al. [2], 
leading to the PCA continues (Continuous Principal 
Component Analysis), the proposed approach is more 
accurate than  traditional ACP (discrete), but it is a little 
more expensive in execution time. 

Several Normalization approaches have been 
developed recently. Ricard et al. [12] proposed a method 
to integrate a 3D object without using a discrete 
representation but directly from its bounding. Their 
method is based on the contour's integration of the object 
for generating the moments' matrix; it is robust against 
remeshing of 3D objects. The proposed method uses the 
discrete PCA, on moments's matrix, with its limitations. 

Tedjoknsumo et al. [3] proposed a normalization 
method based on bilateral symmetry planes (PSB). In 
their method, they calculate the three axes of the PCA 
and the three planes normal to its axis. Subsequently, 
they consider that the plan ACP generates the smallest 
error of symmetry (a feature introduced by the authors). 
Then, they pivot this plane around the three axes of 
rotation with predefined increments to generate the plane 
which minimizes the error of symmetry. After projecting 
all the points of the 3D object on this plan, and applying 
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PCA 2D on the projected points for generate the first and 
second main axes, it turned out that their method is time 
consuming due to the procedure of research the planes of 
symmetry. 

H. Fu et al. [4] presented a solution for detecting the 
vertical orientation of the object. Their method is based 
on the assumption that most objects in real life are 
symmetrical with respect to a plane, but this method is 
not appropriate when dealing with deformable shapes. 

Chaouch et al. [5] proposed a method based on the 
symmetry properties of Minovic et al. [6] by considering 
the interesting properties of reflection symmetries of the 
PCA. The axes of the PCA are considered and the axes 
for initial’s shape are studied. They introduced a measure 
for assessing local symmetry of translational invariance 
(CILT) whose main objective is to provide optimal 
directions (principal axes) for characterization compact 
and relevant of the 3D shape. The limitation of this 
method it is based on assumptions derived from human 
perception. 

Yu-Shen et al. [7] proposed a method based on the 
LMS (Least Median of Squares) by considering the work 
of Fleishman et al. [8] to guide the calculation of the 
principal axes of the PCA. The proposed method gives 
good results for deformed objects. The main limitation of 
this method is that it is sensitive to the density of the 
samples. 

Recently, as part of a project funded by the National 
Science Foundation of China, Chao Wang et al. [9] 
proposed a normalization method articulated volumetric 
3D shapes. The main contribution of their work can be 
summarized in a proposed normalization algorithm to 
estimate the location and orientation of articulated 3D 
shapes, based on solving a problem using weighted least 
squares IRLS (Iteratively Reweighted Least Squares) and 
the implicit shape representation (IS-Rep: value 
introduced by the authors). A function of articulation 
insensitive natural weight is proposed to reduce the 
influence of the deformation articulated during the 
standardization process. The limitation of this method is 
that the orientation of the shape is not clear and is 
subjected to a large extent shape deformation. 

It appears from this study, that there is currently no 
satisfactory method to both the constraints of 
normalization's good quality and low complexity. 
However, the PCA (and  CPCA) remains the most 
adopted approach. 

III THE PROPOSED METHOD 

In this paper we suggest a normalization method, based 
on barycentric coordinates, inspired from [2, 12, 14, 15, 
16]. Using these coordinates to achieve robustness to 
rotations and reflections to remeshing of 3D objects. 

3.1 Barycentric Coordinates 
Definition: we consider a triangle T = <V1; V2; V3> 

non degenerate  representing one face of a 3D object, V a 
point of the tetrahedron D, composed from T and the 
center of gravity of the object. Consider a bi = bi(V) such 
as: 

V = b1V1 + b2V2 + b3V3  (1) 
With b1, b2 and b3 the barycentric coordinates of V 
relative to T. 

 
Fig. 1 Tetrahedron built from a surface of a 3D object 

Note: The barycentric coordinates for a point V 
belonging to D with respect to T are unique. Consider a 
V=(x, y, z)Tϵ Ɍ3 and Vi=(xi, yi, zi)Tϵ Ɍ3, with i=1,2,3. 
Then the system: ൭ݔଵ ଶݔ ଵݕଷݔ ଶݕ ଵݖଷݕ ଶݖ ଷ൱൭ܾଵܾଶܾଷ൱ݖ ൌ 	ቆݖݕݔቇ (2) 

 
admits a unique solution (since the triangle T is non-
degenerate). Using Cramer's method we obtain: 
 

b1 ൌ อݔ ଶݔ ݕଷݔ ଶݕ ݖଷݕ ଶݖ ଵݔଷออݖ ଶݔ ଵݕଷݔ ଶݕ ଵݖଷݕ ଶݖ ଷอݖ
, ܾ2 ൌ อݔଵ ݔ ଵݕଷݔ ݕ ଵݖଷݕ ݖ ଵݔଷออݖ ଶݔ ଵݕଷݔ ଶݕ ଵݖଷݕ ଶݖ ଷอݖ

	 
3ܾ	ݐ݁ ൌ อݔଵ ଶݔ ଵݕݔ ଶݕ ଵݖݕ ଶݖ ଵݔออݖ ଶݔ ଵݕଷݔ ଶݕ ଵݖଷݕ ଶݖ ଷอݖ

	ሺ3ሻ 
 
Theorem 1. Let T = <V1; V2; V3> and TR = 
<RV1;RV2;RV3> two non-degenerate triangles, with a 
diagonal matrix R. is a point of the tetrahedron formed by 
the center of gravity of the 3D object and the triangle T. 
Let bi, biR, with i=1, 2, 3 ; the barycentric coordinates of 
V on T and TR; satisfy the following equation: 
biR(RV)=bi(V). (4) 

The previous theorem shows that the barycentric 
coordinates are invariant under rotation [14]. 

3.2 Principal of Our Approach 
Normalization parameters of the 3D object are 

calculated by the integration of the tetrahedra containing 
the three points of the faces in addition to the center of 
gravity of the object. The geometrical moments of order 1 
are coordinates of the center of gravity g of the object. 
The alignment is done by calculating the eigenvectors of 
the moment’s matrix M (order 2), respecting the logic of 
the PCA. 

 
g = (M100 M010 M001)  (5) 

 

M=൥Mଶ଴଴ Mଵଵ଴ Mଵ଴ଵMଵଵ଴ M଴ଶ଴ M଴ଵଵMଵ଴ଵ M଴ଵଵ M଴଴ଶ൩ (6) 
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deformations. Applying the factor of reflection provides 
normalized objects independent of any parameter. The 
limitation of this method is the computational cost, for 
this reason we plan to improve it in order to overcome 
this limitation. 
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