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Abstract—The most common technique in the normalization
of 3D objects is the Principal Component Analysis (PCA).
However, it is well known that the principal axes generated
by the PCA may be different for similar shapes. To
overcome the limitations of the PCA we propose in this
paper a normalization method to give robustness to
remeshing, rotations and reflections of meshed 3D objects.
This method is based on the integration of the mesh volume,
the use of barycentric coordinates and the CPCA
(Continuous Principal Component Analysis).

General Terms—I| mage Processing.

Index Terms—Normalization, PCA, barycentric coor dinates.

I. INTRODUCTION

Duplicating real-world object in a digital environment
was an interesting task for many applications. The quality
of the obtained models was often limited by the capacity
of the existing hardware and software. However, recent
advances in scanning technology and three-dimensional
modeling helped to visualize and manipulate complex
models with ease. 3D objects are usually given in an
arbitrary orientation and scale. To improve the accuracy
of the use of these objects, and more particularly the
search by content systems, a near-normalization treatment
is often necessary. Thus, the normalization of a 3D object
is to orient it correctly in a canonical marker.

The normalization method proposed in this paper aims
at addressing problems related to meshing resolution and

the orientation of the principal axes of normalized objects.

Our method is based on an integration of the mesh
volume [15], using the barycentric coordinates of the
vertex [14] to generate the matrix of moments (order 2).
After generating the matrix of two-order moments, we
apply the PCA [1] of the matrix to define a canonical
marker for the object. At the end, we will consider a
reflection coefficient inspired from the CPCA
(Continuous Principal Component Analysis) [2].

We present in the beginning of this article an overview
on 3D normalization. Next, we describe our proposal to
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standardize a 3D object. At the end of this article we
present our experimental results with a qualitative and
quantitative evaluation of the proposed method.

II A OVERVIEW ON 3D NORMALIZATION

The most commonly used technique for normalization
of a 3D object is based on Principal Component Analysis
(PCA), in which the center of gravity is chosen as the
origin, the size of the bounding box as a scale factor of
the form and the determining canonical axes based on the
calculation of the eigenvalues and eigenvectors of the
covariance matrix of the set of points representing the
object in question. The eigenvalues are sorted in a
descending order, the eigenvectors are chosen on the
basis of this ranking, the first vector is aligned with the
first axis (x), the second with the second axis (y) and the
third vector with the third axis (z) ( Paquet et al). [1].

The PCA has been extended by Vranic et al. [2],
leading to the PCA continues (Continuous Principal
Component Analysis), the proposed approach is more
accurate than traditional ACP (discrete), but it is a little
more expensive in execution time.

Several Normalization approaches have been
developed recently. Ricard et al. [12] proposed a method
to integrate a 3D object without using a discrete
representation but directly from its bounding. Their
method is based on the contour's integration of the object
for generating the moments' matrix; it is robust against
remeshing of 3D objects. The proposed method uses the
discrete PCA, on moments's matrix, with its limitations.

Tedjoknsumo et al. [3] proposed a normalization
method based on bilateral symmetry planes (PSB). In
their method, they calculate the three axes of the PCA
and the three planes normal to its axis. Subsequently,
they consider that the plan ACP generates the smallest
error of symmetry (a feature introduced by the authors).
Then, they pivot this plane around the three axes of
rotation with predefined increments to generate the plane
which minimizes the error of symmetry. After projecting
all the points of the 3D object on this plan, and applying
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PCA 2D on the projected points for generate the first and
second main axes, it turned out that their method is time
consuming due to the procedure of research the planes of
symmetry.

H. Fu et al. [4] presented a solution for detecting the
vertical orientation of the object. Their method is based
on the assumption that most objects in real life are
symmetrical with respect to a plane, but this method is
not appropriate when dealing with deformable shapes.

Chaouch et al. [5] proposed a method based on the
symmetry properties of Minovic et al. [6] by considering
the interesting properties of reflection symmetries of the
PCA. The axes of the PCA are considered and the axes
for initial’s shape are studied. They introduced a measure
for assessing local symmetry of translational invariance
(CILT) whose main objective is to provide optimal
directions (principal axes) for characterization compact
and relevant of the 3D shape. The limitation of this
method it is based on assumptions derived from human
perception.

Yu-Shen et al. [7] proposed a method based on the
LMS (Least Median of Squares) by considering the work
of Fleishman et al. [8] to guide the calculation of the
principal axes of the PCA. The proposed method gives
good results for deformed objects. The main limitation of
this method is that it is sensitive to the density of the
samples.

Recently, as part of a project funded by the National
Science Foundation of China, Chao Wang et al. [9]
proposed a normalization method articulated volumetric
3D shapes. The main contribution of their work can be
summarized in a proposed normalization algorithm to
estimate the location and orientation of articulated 3D
shapes, based on solving a problem using weighted least
squares IRLS (Iteratively Reweighted Least Squares) and
the implicit shape representation (IS-Rep: value
introduced by the authors). A function of articulation
insensitive natural weight is proposed to reduce the
influence of the deformation articulated during the
standardization process. The limitation of this method is
that the orientation of the shape is not clear and is
subjected to a large extent shape deformation.

It appears from this study, that there is currently no
satisfactory method to both the constraints of
normalization's good quality and low complexity.
However, the PCA (and CPCA) remains the most
adopted approach.

IIT THE PROPOSED METHOD

In this paper we suggest a normalization method, based
on barycentric coordinates, inspired from [2, 12, 14, 15,
16]. Using these coordinates to achieve robustness to
rotations and reflections to remeshing of 3D objects.

3.1 Barycentric Coordinates

Definition: we consider a triangle T = <Vy; V,; V3>
non degenerate representing one face of a 3D object, V a
point of the tetrahedron D, composed from T and the
center of gravity of the object. Consider a bi = bi(V) such
as:
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V=bV,+bV,+bsV; (1)
With by, b, and b; the barycentric coordinates of V
relative to T.

o

Fig. 1 Tetrahedron built from a surface of a 3D object
Note: The barycentric coordinates for a point V
belonging to D with respect to T are unique. Consider a
V=(x, y, z2)'e R’ and Vi=(y, y;, )€ R’, with i=1,2,3.
Then the system:

Xy X3 X3\ /by X
<y1 Y2 }’3> <b2> = ()’) (2)
zZy 2y Z3/ \bg z

admits a unique solution (since the triangle T is non-
degenerate). Using Cramer's method we obtain:

X X, X3 X, X X3
Yy Y2 Y3 yi Y V3
_lz oz, z3 _lzy z zg
bl = X1 X2 X3 b2 = X1 Xz X3
Vi Y2 Y3 Yi Y2 Y3

X, X, X

yi Y2 ¥

oz z, z

b= xm &
Y1 Y2 V3
Z1 Zz Z3

Theorem 1. Let T = <V;; V,; V3> and TR =
<RV;RV;;RV3> two non-degenerate triangles, with a
diagonal matrix R. is a point of the tetrahedron formed by
the center of gravity of the 3D object and the triangle T.
Let b;, bir, with i=1, 2, 3 ; the barycentric coordinates of
V on T and TR; satisfy the following equation:
bir(RV)=bi(V). (4)

The previous theorem shows that the barycentric
coordinates are invariant under rotation [14].

3.2 Principal of Our Approach

Normalization parameters of the 3D object are
calculated by the integration of the tetrahedra containing
the three points of the faces in addition to the center of
gravity of the object. The geometrical moments of order 1
are coordinates of the center of gravity g of the object.
The alignment is done by calculating the eigenvectors of
the moment’s matrix M (order 2), respecting the logic of
the PCA.

g =Moo MgigMpo1)  (5)

Myoo Miz90 Migq
M=|Mi10 Mozo Mp1q (6)
Mig1 Mo1r Mooz
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[ ]
To ensure the invariance considerations, we compute the
signed distances from the surface of the object for thee
three planes (YOZ) (ZOX) and (XOY) defined as follows,

fe = Jfs sign(p,)lpxlds, , (7)
p =(px Py, Pz) point of meshed 3D objects. e
Ditto for f,, f,

Where, py, py and p, are respectively the projections
of p on the plans (YOZ) (ZOX) and (XOY)
A diagonal matrix defines the reflection matrix:

F = diag(sign(f,), sign(fy),sign(fz)) ®)

3.3 The Calculation of the Geometrical Moments

D; is a tetrahedron compound the points g(0, 0, 0),
Pi(XinYinsZil)s P2(Xiz,YiosZio), P3(Xis,yis.Zi3), the geometrical
moments of order (p+qt+r) can be calculated by
integrating:

My = [, XPydzidxdydz = [, f(x,y,z)dxdydz (9)

With [ f(x,y,z)dxdydz = [, |Ti|f(X,Y,Z)dXdYdZ
And di =<(0,0,0), (1,0,0), (0,1,0), (0,0,1)> is the
orthogonal tetrahedron unit.
Ti is the triangle formed by the points py, p, et p; and X,
Y et Z are the barycentric coordinates of V(x, y, z) with
respect to Ti=<p; ; p»; p3>.

fX,Y,Z) = (xin X+ yinY + 21 2)P(yi X + yi Y +

Zi2Z)1(xi3X + yizY + 2j32)" (10)

The moment of a 3D object can be seen as the sum of the
moments tetrahedra compounds and center of gravity of
the object and the faces of the meshing of the object [15]
[16].

m' o= |Til [ £(X,Y, Z)dXdYdZ(11)

Mpg= z:iN:Tl mipqr (12)
With Ny is the number of faces of the mesh and :

Xi1 X2 X3
[Ti| = |¥ir Viz Vis| (13)
Zin  Zi2 Zj3
therefore
Mzo0 Mi1o Mgy m'zge M'y;p M'yeq
Miso Mozo MOIl:Zi\E m'y;, miy, mig [(14)
Mio1 Mo1r Mooz mio; mig;; migg,

3.4 Evaluation Measure: Rectilinearity Normalized
Objects

Definition 1: A 3D mesh is rectilinear if the angles
between each two faces belong to the set {0, n /2, w, 31/
2} [19].

Definition: For a 3D object mesh (B) consisting of N

triangle {T1, T2, ..., TN}, its measurement of
rectilinearity:
_S®)
Rect(B) = ) (15)
and :
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S(B) = YN, S(T}) is the sum of surfaces of component
triangles of the object..

P(B) =P+ P, + P,

P, =YN,S(Ty) is the sum of the surfaces of the
projections of the triangles Ti on the plane (ZOY).

P, = yN.S (Tiy) is the sum of the surfaces of the
projections of the triangles Ti on the plane (XOZ).

P,=YN S(T,) is the sum of the surfaces of the
projections of the triangles Ti on the plane (XOY).

Fig. 2 Projections of a triangle with respect to the three plans [19]

Theorem 2: A 3D mesh (B) is rectilinear if and only if:
S(B)

Rect(B,a, B,y) = PBapy L for a,B,y € [0,2m]
angles of rotation relative to the planes (ZOY), (XOZ),
(XOY) respectively.
Proof. See [19] page 135.
Theorem 3: For a 3D object meshed (B):

1
— < Rect(B,a,B,y) <1
A (B, o, B,Y)

Proof. See [19] page 136.

IV EXPERIMENTAL RESULTS

The databases we have used for our tests are based on
SHREC'07 [10] and 3D Segmentation Benchmark [17].

SHREC'07 which was created as part of the contest
"3D Shape Retrieval Contests", was used to evaluate
research methods 3D. The database contains 400 models
SHREC'07 triangular mesh in format "OFF" divided into
20 categories (male, glasses, plane ...).

Benchmark "3D Segmentation Benchmark" was
created within the framework of the project "3D Models
And Dynamic Representation And segmentation models"
[18]. The purpose of this benchmark is to provide an
automated tool to evaluate, analyze and compare different
algorithms for automatic segmentation of 3D meshes.

4.1 Qualitative Evaluation

The main advantages of the PCA are its simplicity and
speed. It can be applied to most of the 3D models.

A first limitation of the PCA is that it is not robust to
the deformation of objects. Principal axes generated by
the PCA may be different for similar shapes. This
limitation is illustrated in Figure 3. This figure shows the
results of applying PCA to the object "12.off" [10] before
and after deformation.

To highlight the invariance of the proposed method
compared to deformations, we present in Figure 4, the
results obtained by our method for the same object.
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(d)

Fig. 3 PCA Normalization (b) for object (a), applying a deformation (c)
and normalization after deformation ( d)

0
+ K 4

(¢ (d]

(] (o)

Fig. 4 Barycentric Normalization (b) for object (a), applying a
deformation (c) and normalization after deformation ( d )

The application of PCA on two clouds of points where
the only difference between them is a rotation and / or
translation can lead to the same axis directions PCA but
not necessarily the same direction [13, 11] (Fig. 5).

(c) )y

Fig. 5 Problems related to the axis direction of the ACP for the same
object that has undergone to rotations [12]

Figures 6 and 7 show a comparison between the results
obtained by our method with PCA standard. The object
used is "octopus" [17], with and without the application

of a 120 ° rotation.
) (d)

(a) (b) (c

Fig. 6 PCA Normalization (b) for objet (a), applying a 120° rotation (c)
and normalization after rotation (d)
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% %
(a) (b) (c) (d)

Fig. 7 Barycentric Normalization (b) for objet (a), applying a 120°
rotation (c) and normalization after rotation (d)

The obtained results thus show the invariance of the
proposed method to rotations. Indeed, whatever the angle
of rotation of the initial object is, we obtain, unlike the
PCA, the same direction and ditto for axes direction.

4.2 Evaluation of the Rectilinearity for Normalized
Objects

To quantitatively evaluate our method, we are based on
the criterion of rectilinearity "Rect" presented above. We
used for the parameters, o, B and vy, the following values:
o=n/3, B=n/3 et y=n /3.

Table 1 presents measures of rectilinearity obtained
respectively for an initial object, the object after the
implementation of the PCA and the object after applying
our method. The objects used in this comparison are

extracted from the database [17].
TABLE 1
MEASURING RECTILINEARITY RECT

After

. Barycentric

. Initial After ACP L

Object RECT Normalization Normﬁllzatlo
alie 0,674 0,7047 0,7063
armadillo 0,6701 0,6687 0,6705
boy 0,6873 0,7094 0,7094
bunny 0,6698 0,6631 0,6802
homer 0,6678 0,6952 0,6954
robot 0,6818 0,7294 0,7333
vaselion 0,6655 0,6913 0,6925

The results obtained by our method, for objects: alien,
armadillo, boy, homer, and robot vaselion are almost
similar with respect to PCA. the rectilinearity
measurements obtained for the object "bunny" are
relatively distinct. For this purpose, our method
guarantees more rectilinearity.

V CONCLUSION

Our method can be seen as a hybrid method that is
based on the study made by the the integration of the
mesh volume [15] and adopted by [16, 12], barycentric
coordinates [14] and the CPCA. [2].

Extractiing  (Extracting) the  normaliization's
parameters on the surface of the object is independent of
the choice of the resolution discretization and provides a
normalization independent of the meshing and small
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deformations. Applying the factor of reflection provides
normalized objects independent of any parameter. The
limitation of this method is the computational cost, for
this reason we plan to improve it in order to overcome
this limitation.
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