
1

DBSoft: A Toolkit for Testing Database
Transactions

Zuhoor A. Al-Khanjari
Sultan Qaboos University/Department of Computer Science, Muscat, Oman

Email: zuhoor@squ.edu.om

Youcef Baghdadi, Abdullah Al-Hamdani, and Sara Al-Kindi
Sultan Qaboos University/Department of Computer Science, Muscat, Oman

Email: {ybaghdadi, abd}@squ.edu.om; sara.al.kindy@gmail.com

Abstract—Databases (DBs) are used in all enterprise

transactions, which require attention not only to the

consistency of DB, but also to existence, accuracy and

correctness of data required by the transactions.

While the Atomicity, Consistency, Isolation, and

Durability (ACID) properties of a transaction ensure

that DB is consistent after the execution of each

transaction, it is not sure that the transactions retrieve

the correct data. Indeed, the testing phase of the

transactions, in the development process, is often

ignored. Therefore, there is a need for testing

techniques and tools. This paper proposes an

architecture, a design, and an implementation of a

tester, we refer to as DBSoft, to test transactions, in

terms of required data they need to access. The

architecture of DBSoft is a layered one. It is made of

five components having separate concerns and serving

each other: (C1) a parser to collect information,

specifically for the metadata, (C2) an input generator

to generate test cases, (C3) an output generator to

implement the test cases, (C4) an output validator to

validate test cases, and (C5) a report generator to

generate test reports. DBSoft aims at avoiding cost

effective transaction run-time errors.

Index Terms—Databases, Transactions, Testing Tools,

Metadata, XML

I. INTRODUCTION

Database Management Systems (DBMSs) play a
crucial role in storing, accessing, and managing data.
Most organizations deal with a certain form of DBMS, as
these systems provide, through a uniform interface that is
SQL, an easy, efficient access to large amount of data by
hiding the low-level details of how the data is physically
structured and accessed. All enterprise transactions
perform a kind of Create/Retrieve/Update/Delete
(CRUD) operations against DBs through SQL.

The handled data, through transactions, is used in day-
to-day activities or decision-making, which requires a
certain attention not only to the consistency of DB, but

also to existence, accuracy and correctness of data
required by the transactions.

Yet, when transactions running against the DBs abort
due to lack or inaccuracy of data can prove to be costly in
terms of time and money to organizations. While the
Atomicity, Consistency, Isolation, and Durability (ACID)
properties of the transaction ensure that the DB is
consistent after execution of each transaction, it is not
sure that the transactions match the correct data
description or value at run-time. When DBs and
transactions are not tested before implementation, errors
or bugs may appear at any time during the
implementation phase or the exploitation (e.g., data
population).

In the development process, guided by the three-level
architecture, the step that deals with the mapping external
schema/conceptual schema is often ignored. This would
ensure that the required data by all transactions map into
the conceptual schema and vice-versa. This critical
testing-kind step ensures that transactions retrieve the
correct data description or values, which avoids any
costly run-time errors.

One would think that the amount of research being
invested in the field would be vast given the importance
of DB systems. Unfortunately, the opposite is true.
Testing DBs is not easy [1]. For instance, relational DBs
have hundreds of interrelated tables structured in a
specific way, and described in a metadata (aka catalog),
which makes it complex. In addition to this complexity,
the metadata is not static as the DB administrator always
alters it when business requirements change. That is, the
schema and the states of these tables need to be
consistently validated to avoid transactions run-time
errors.

Therefore, there is a crucial need for techniques and
tools to test the correctness of data against the transaction
requirements in terms of data. These techniques and tools
should be integrated within the development process,
preferably before the implementation, i.e., at the mapping
interface between transactions and DB.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013 205

©2013 ACADEMY PUBLISHER
doi:10.4304/jetwi.5.3.205-212

mailto:@squ.edu.om
mailto:ybaghdadi,
mailto:ybaghdadi,
mailto:sara.al.kindy@gmail.com

2

We propose an architecture, a design, and an
implementation of tester, DBSoft, to test transactions, in
terms of required data, against DBs they access. The
architecture of DBSoft is a layered one. It is made of five
components having separate concerns, and serving each
other:

C1. A parser: this component generates XML files from
the metadata about the input DB to test.

C2. An input generator: this component creates test cases
by using the information generated by the parser.

C3. An output generator: this component runs the DB
tests by using the populated test cases and saving the
results.

C4. An output validator: this component validates the
results produced by the output generator.

C5. A report generator: this component produces reports,
graphs, and other information about the executions
of the test.

DBSoft aims at avoiding cost effective transaction run-
time errors.

In this paper, we present the architecture and design of
the DBSoft, but we limit the implementation to the
crucial component of the toolkit that is the parser. This
component parses the metadata, generated by the DBMSs
during the creation phase of the DB schema, in order to
extract the required information in a standard XML
format. Then the XML documents will be used in
generating test cases and their expected outcome as well
as generating a DB test.

The remainder of the paper is organized as follows:
Section 2 provides an overview of related work and
existing tools. Section 3 discusses DBMS metadata
required by the toolkit. Section 4 presents the architecture
of DBSoft. Section 5 details the DBSoft parser. Section 6
presents an implementation of the parser component.
Section 7 includes concluding remarks and future
direction of the work and research.

II. RELATED WORKS AND TOOLS

The closely related work to what is being proposed in
this paper is done by Chays et al. [1][2][3] with the
AGENDA toolkit. It is composed of five components: a
parser, a state generator, an input generator, a state
validator and an output validator. AGENDA parses a
database transaction, generates test cases, and validates
the result. The AGENDA parser is the focal step of
interest for now. Based on a modified form of
PostgreSQL's [4], the internal parser collects relevant
information about a DB supplied to it and stores the
information in an internal DB called the AGENDA DB.

In [5], a framework is presented to perform efficient
regression tests on DB transactions. In [6], issues with the
automatic running of DB regression tests are listed. A
framework for creating a test database is presented in [7]
and [8], while in [9], the framework tests the features of

DBMSs and also includes an automatic DB generator
called QAGen.

Due to security and confidentially issues tied with
"live" DB data, an automatic data generating tool is
proposed in [10]. It is called ADG. Automatic Data
Generation is also highly useful in terms of its ability to
create a desired problem situation within a DB for testing.

A number of different methods in creating the test
cases exist, and these are discussed in [11], [12], [13] and
[14].

There is no evident related work in the academic
community to collecting information from DBMS
metadata to be used in DB testing, and it is safe to say
that DBSoft toolkit is the first to apply this concept.

The main two differences between our approach and
AGENDA are:

1. Instead of developing a new parser, we extract
relevant information from DBMS metadata.

2. DBSoft toolkit does not store the information in
tables, but represents it as standard XML
documents. Indeed, storing the information in an
internal DB as done by AGENDA is not efficient
in terms of simplicity and specifically
extensibility. DBSoft uses XML document to store
information due to its nature of being self-
descriptive, easily processed and human-readable.
However, XML tags and attributes are based on
AGENDA DB tables.

One of the aims of the DBSoft toolkit is to enable
performing regression tests on DB while they are
updated. DBSoft will generate test cases and a test DB
state by means of the information stored in XML
documents that are produced in the data extraction step.
The test cases will be used to run the test DB.

III. DBMS METADATA

There exist many definitions of the concept metadata.
The most general is “data about data”. In DB systems, a

metadata describes and provides information about all the
objects of a DB such as tables, views, indexes, sequences,
stored procedures, functions, etc. For example, in Oracle,
a table is described by more than fifty data such as name,
number of columns, number of rows, etc. In PostgreSQL,
objects are described in Information_schema.

The SQL standard defines a uniform interface to
access this data, but not all DBMSs implement this
feature. Hence, a number of different mechanisms have
evolved with accessing metadata over different systems:
For instance:

 Oracle has data dictionary and metadata registry.

 PostgreSQL provides system catalogs and
Information_Schema.

206 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER

3

 SQL Server and MySQL contain system catalogs and
the Information_Schema, but the method for
querying it differs from that of PostgreSQL.

Additionally, due to the nature of where the
information is being collected from, it is safe to say that
the integrity of the information collected is increased and
hence more trustworthy.

Metadata is the most relevant input to the testing step,
as it should describe all the data required by the
transactions running against the DB.

IV. DBSOFT ARCHITECTURE

The architecture of DBSoft is a layered one. It is made
up of components having separate concerns, but serving
each other as shown in Figure 1. This ensures:

 A smooth and independent design and
implementation of the components.

 A straightforward wrapping of the components into
services for an easy adoption of Service-Oriented
Architecture (SOA).

 A replacement of any of the components by other
components when some non-functional requirements
such as reliability or performance.

 Security of the components.

Figure 1. DBSoft Architecture

The components are specified as follows:

C1. A parser: this component is involved in collecting
information from the metadata about the DB to test.
It generates XML files consisting of the collected
information for the DB test.

C2. An input generator: this component creates test cases
by using the information in the XML files generated
by the parser component. It populates the DB test

with test cases and creates an XML file of the
expected results of each test case.

C3. An output generator: this component runs the DB
tests by using the populated test cases and saving the
results.

C4. An output validator: this component validates the
results produced by the output generator by
comparing them with the expected results from the
input generator.

C5. A report generator: this component produces reports,
graphs, and other information about the executions
of the test.

The aforementioned architecture guides us towards a
testing process that consists of five steps. Each
component translates into a step in the testing process.

1. Step 1: information collection

2. Step 2: test case generation

3. Step 3: test case implementation

4. Step 4: test case validation

5. Step 5: report generation

The stepping-stone into the DBSoft testing tool is the
parser. In this work, much of attention is given to the
parser, as it constitutes the corner stone of the system.
Through the correct design and implementation of the
parser, we would ensure that the rest of the components
will work properly, thus meeting the requirements of
DBSoft as a powerful tool for testing DBs.

V. DBSOFT PARSER

Using the parser, a DB could be parsed; and relevant
information would be extracted into XML documents.

In order to be able to create an efficient and real-world
usable tool for DB testing, the first consideration is that
DBs need to be transformed into a uniform object, as
there is a number of DBMS in existence today with
different metadata, catalogs, and physical storage
mechanisms.

The creation of standard XML documents, outlining
the details of the physical organization and structure of
DB schema, will also aid in:

(i) the creation of efficient test cases, and a test DB
for testing.

(ii) the generation of test data for DB population.

(iii) the validation of the results of the test runs.

A. DBSoft parser functioning

The following are the sub-steps taken by the DBSoft
parser:

1. User inputs location of DB

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013 207

©2013 ACADEMY PUBLISHER

4

The DBSoft parser collects the relevant information
from the metadata in the DBMS. The program needs to
be pointed to the location of the DB, to be tested, in order
to access the metadata. The user will provide the correct
information on the location of the DB. This includes the
host, the port number, the DB name, the username, and
the password.

2. DBSoft parser creates connection

Once the location of the database is input correctly, the
DBSoft parser opens a connection to the DB.

3. Information collected from the metadata

The DBSoft parser will begin collecting the relevant
information from the metadata. This is done by querying
the metadata by means of relevant commands through the
JDBC API as shown in Figure 2. Since the mechanism of
accessing metadata differs from one DBMS to another,
the commands issued will be according to the DBMS in
question.

Figure 2. DBSoft Parser Component: Collecting Information from

Metadata

4. Information extracted into XML document

The information that has been collected in the parsing
step will be organized and extracted into XML
documents, such as:

 Tables (containing information on tables, number of
attributes, type, etc).

 Attributes (containing information on attributes,
tables they are contained in, type, etc).

 Boundary values (containing information on
boundary values, range, type, etc).

 Table relationships (relationships between tables in
the database and their associated attributes).

Figure 3 illustrates a standard structure for XML
documents to represent relational databases maintained in
different DBMS. For each database system, an XML tree
is generated by extracting information from its DBMS
metadata. The database is composed of a set of table
elements. Each table is composed of three main elements:
name (the table name), attributelist (list of attributes in
the table with their types and constraints), and constraints
(other constraints in the table such as the primary key,
foreign keys, unique attributes). Information about each
table can be extracted from the tables in the DBMS
metadata catalog.

The attributelist element for each table is composed of
a list of attribute elements to represent information about
each attribute such as name, type, default value,
maximum and/or minimum values. The information
about each attribute element in the XML tree can be
extracted from the attributes and the boundary values in
the metadata catalog. The constraint element is composed
of a list of constraints, including primary, foreign keys,
and other constraints on the database. In the
implementation section, we illustrate how an XML
document is generated using the proposed XML tree
structure for an existing database system as shown in
Figure 7.

Database

table table

name attributelist constraints name attributelist constraints

table table

attribute attribute

name type default …... name type minvalue …...maxvalue

Primary key Foreign key Foreign key
……. …….

Figure 3. XML Tree Structure for a Relational Database

B. Transactions of DBSoft Parser

The XML files produced by the DBSoft parser can be
employed in several testing transactions. The aim for the
DBSoft toolkit is to cover most if not all DB testing
methods.

Analysis can be made in regards to whether the
transaction program is behaving as specified, i.e.,
checking correctness, in addition to reflecting upon
whether the DB schema correctly models the
organization of real-world data.

Test cases can be produced by using the information in
the XML files, such as creating specific queries that will
make a DB transaction ‘break’. Data tailored for specific

problem areas found within the DB can be generated, and
in turn will be populated within a test DB that has been
built using the information in the XML documents.

Regressions tests can be performed on databases when
they are updated, ensuring that everything still work as
specified. Validity of the results will be made using the
information extracted in the parsing step (constraints,
types, etc) in addition to looking into other automatic
means.

VI. IMPLEMENTATION

To implement DBSoft, we have used PostgreSQL [15]
DBMS and the same approach can be used to extract
metadata from other DBMSs. It is an object-relational
DBMS, originally developed at UC Berkeley. It is open-
source. In this work, we will be dealing with the

208 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER

5

PostgreSQL’s (version 8.4.5) metadata, namely its

system catalogs and Information_Schema.

System catalogs in PostgreSQL are regular tables that
store the schema or metadata on a parallel DB. There are
about 60 system catalog tables, each catalog deals with a
specific type of metadata.

The Information_Schema is a set of views that
provides information about objects defined in the current
DB. It is portable and more stable, as it is defined with
SQL standard, contrary to the system catalogs mentioned
above which are specific to PostgreSQL. There are about
51 views.

The information stored within each form of metadata
is nearly the same. However, there exist some differences
between the two with the amount of information stored.
Hence, they complement each other in terms of the
information they contain. Thus, we can extract
information from both metadata rather than concentrating
on one only.

PostgreSQL metadata storages can be accessed using
an Application Programming Interface (API) such as Java
Database Connectivity API (JDBC) [15]. JDBC is a
middleware that consists of a set of classes that enables
transactions developed with Java to interact with DBs,
whereas the relevant information can be extracted from
the metadata sources using SQL commands. This makes
both the system catalogs and the Information_Schema, a
trove of information fit to be employed in parsing a
PostgreSQL DB. Figure 4 shows an example of query
that gets the names of all the tables in a DB by means of
the Information_Schema. The last part of the command
ensures that the names of the tables contained within the
system catalogs and the Information_Schema will be
retrieved as well.

Figure 4. Querying the Schema to get Table Information

A. Parser front-end

The UI of the DBSoft toolkit gives users the ability to
parse an input DB, output the DBSoft schema, and to
recreate the information collected from the parsing stage
as the SUT DB as shown in Figure 5 and Snapshot 1.

Figure 5. The Internal Build of the Parser

Snapshot 1. The User Interface of DBSoft

B. Schema Creation

At the end of parsing the input database, by means of
both SUTBuilder and ParsePostgreSQL, and storing the
relevant information in the DBSoft database-type objects,
the DBSoft schema is finally created as shown in the
Snapshot 2.

As mentioned before, this is based on tables in the [5]
AGENDA DB. The main difference however is that the
AGENDA DB is an actual DB that will be used in
replicating the original input DB i.e., it will be queried
for the information collected. This is contrary to the
DBSoft schema that is an internal representation of a
schema within the DBSoft Java application.

SELECT table_name

 FROM information_schema.tables

WHERE table_type = 'BASE TABLE'

 AND table_schema NOT IN

 ('pg_catalog',

'information_schema');

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013 209

©2013 ACADEMY PUBLISHER

6

Snapshot 2. End of Parsing Message

The users have an option of outputting the DBSoft
schema as an actual schema, but this will not make a
difference to the replication of the DB, and the creation
of test cases, as the DBSoft DB-type objects will be used
in this point.

C. XML document Generation

To evaluate the proposed approach, we have used a
simple PostgreSQL database application with two tables
(Department and Employee) as shown in Figure 6.

Figure 6. UML Diagram for Company Database Schema

The DBSoft was used to extract the metadata for the
database in Figure 6 from PostgreSQL database, and the
corresponding XML file was generated as shown in
Figure 7. The XML file is composed of a single database
element <database> that contains one or more <table>
elements (each corresponds to a relational database).
Each <table> element is composed of <name> (relational
table name), <attributelist> (list of table attributes) and
<constraints> (list of constraints in the table such as the
primary keys <primarykey> and foreign keys
<foreignkey>).

Each <attributeList> element contains one or more
<attribute> elements that corresponds to all attributes in a
given relational database table. The <attribute> element is
composed of serious XML element including attribute
name <name>, attribute type <type>, default value
<default>, maximum value <maxvalue>, minimum value
<minvalue> and maximum field length <maxlength>
elements.

The XML file can be used to generate test cases for the
database using XML tags such as <types>, <maxlength>,
<maxvalue>, <minvalue>, <default>,.., etc. Also, the
XML file can be used to validate SQL queries such as
checking the validity for the table names, attribute names,
and constant ranges.

<?xml version="1.0" ?>

<!-- An XML file generated for a test database named

 myTestDatabase composed of two tables-->

<database >
<dbname>SQU Test Database</dbname>
<!--Department table definition -->
<table>
<name>Department</name>
<attributelist>

<attribute>
<name>Dno</name>
<type>integer</type>
<default> 1</default>
 <minvalue>1</minvalue>
<maxvalue>99</maxvalue>

</attribute>
<attribute>

<name>Name</name>
<type>String</type>
<maxlength>30</maxlength>

</attribute>
<attribute>

<name>location</name>
 <type>String</type>

<!-- Employee table definition -->
<table>
<name>Employee</name>
<attributelist>

<attribute>
<name>EID</name>
<type>integer</type>
<minvalue>10000</minvalue>
<maxvalue>99999</maxvalue>

</attribute>
<attribute>

<name>firstName</name>
 <type>String</type>
<maxlength>25</maxlength>

</attribute>
<attribute>

<name>lastName</name>
 <type>String</type>
<maxlength>50</maxlength>

</attribute>
<attribute>

<name>Dnumber</name>
 <type>integer</type>

</attribute>

210 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER

7

<maxlength>20</maxlength>
<default>Muscat, Oman </default>

</attribute>
<attribute>

<name> ManagerID</name>
<type>integer</type>

</attribute>
</attributelist>
<constraints>

<primarykey> Dno </primarykey>
<unique>Name</unique>

 <foreignkey>
 <attribute> ManagerID <attribute>

 <reftable> Employee </reftable>
 <refattribute>EID<refattribute>

<foreignkey>
</constraints>
</table>

<attribute>
<name>salary</name>
 <type>double</type>
<minvalue>200</minvalue>
<maxvalue>3000</maxvalue>

</attribute>
</attributelist>
<constraints>

<primarykey>Dnumber</primarykey>
<foreignkey>

<attribute> ManagerID <attribute>
<reftable>Department</reftable>
 <refattribute>Dno<refattribute>

<foreignkey>
</constraints>
</table>
</database>

Figure 7. XML File for a Company Database

VII. CONCLUSION AND FUTURE DIRECTION

Nowadays, the need for an automated tool in testing
DB transactions is crucial and critical. DBs support large
organization activities if not all, and hence would need to
behave correctly to avoid errors and bugs.

DBSoft toolkit is proposed in this paper. It is an
efficient, practical tool for DB testing. This is realized
through the following milestones:

 Implementing the testing process has been realized
with the DBSoft parser that collects the required
information about the DB to be tested, specifically its
metadata.

 The creation of test cases helps in enhancing the
DBSoft tester to use a standard method of entering
DB information, i.e., XML documents produced by
the DBSoft parser. A range of different test cases will
be generated and employed in checking the
correctness of the DB.

 Another milestone is to enable the DBSoft tester to
use test cases for regression testing on DBs, since it
generates test cases that can be stored and run several
times.

We expect DBSoft to be a startup for DB testing
community towards the realization of a standard DBMSs
testing process. Although, the complete process has not
been presented in the paper, a stepping stone into it has
been with the standardizing transaction of the DBSoft
parser.

Further development first concerns with the
development of all the components. Then, we foresee a
DB testing method.

REFERENCES

[1] D., Chays, Y., Deng, P. G., Frankl, S., Dan, F. I., Vokolos
and E. J., Weyuker, An AGENDA for Testing Relational
Database Applications. Journal of Software Testing,
Verification and Reliability, 14(1), PP.17–44, March 2004.

[2] D., Chays, Y., Deng, P. G., Frankl, S., Dan, F. I., Vokolos,
and E. J., Weyuker, Demonstration of AGENDA Tool Set
for Testing Relational Database, ICSE '03 Proceedings of
the 25th International Conference on Software
Engineering, PP. 802-803, Published by IEEE Computer
Society, May 2003.

[3] Y., Deng, P., Frankl, and D., Chays, Testing database

transactions with AGENDA, Proceedings of the 27th
international conference on Software engineering (ICSE
05), ACM Press, PP. 88-96, May 2005.

[4] PostgreSQL. The PostgreSQL Global Development Group,

[Online] http://www.postgresql.org/ [accessed: 12 July
2012].

[5] F., Haftmann, D., Kossmann, and E., Lo., A Framework

for Efficient Regression Tests on Database Applications,
The VLDB Journal — The International Journal on Very
Large Data Bases, 16(1), PP.145-164, January 2007.

[6] F., Haftmann, D., Kossmann, and A., Kreutz, Efficient

Regression Tests for Database Applications. Conference
on Innovative Data Systems Research (CIDR), pp. 95-106,
2005.

[7] E., Lo, C., Binnig, D., Kossmann, M. T., Ozsu, and W.-K.,

Hon, A Framework for Testing DBMS Features. VLDB
Journal, 19(2), pp.203–230, April 2010.

[8] N., Bruno and S., Chaudhuri, Flexible database generators,

Proceedings of the 31st international conference on Very
large data bases, 2005.

[9] C., Binnig, D., Kossmann, E., Lo, and M.T., Özsu.,

QAGen: generating query-aware test databases,
Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, January 11-14, 2007.

[10] N. R., Lyons, An automatic data generating system for

data base simulation and testing, ACM SIGMIS
Database, 8(4), PP.10-13, 1977.

[11] T.Y., Chen, P.L., Poon, and T. H., Tse., A Choice

Relation Framework for Supporting Category-Partition
Test Case Generation, IEEE Transactions on Software
Engineering, 29(7), PP.577-593, July 2003.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013 211

©2013 ACADEMY PUBLISHER

http://www.postgresql.org/

8

[12] H., Bati, L., Giakoumakis, S., Herbert, and A., Surna, A

genetic approach for random testing of database
systems, Proceedings of the 33rd international
conference on Very large data bases, 2007.

[13] C., Mishra, N., Koudas, and C., Zuzarte, Generating

targeted queries for database testing, Proceedings of the
2008 ACM SIGMOD international conference on
Management of data, PP. 499–510, 2008.

[14] J., Tuya, M.J.S., Cabal, and C.de la, Riva, Mutating

database queries, Information and Software Technology,
49(4), PP.398-417, 2007.

[15] PostgreSQL JDBC Driver, The PostgreSQL Global
Development Group, Last published: 6 February 2012
[Online] http://jdbc.postgresql.org/ [accessed: 20 August
2012].

212 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER

http://jdbc.postgresql.org/

