
Solving Problems of Imperfect Data Streams by

Incremetnal Decision Trees

Hang Yang

Department of Computer and Information Science

University of Macau

Macau SAR, China

henry.yh@gmail.com

Abstract—Big data is a popular topic that attracts highly

attentions of researchers from all over the world. How to

mine valuable information from such huge volumes of data

remains an open problem. Although fast development of

hardware is capable of handling much larger volume of data

than ever before, in the author’s opinion, a well-designed

algorithm is crucial in solving the problems associated with

big data. Data stream mining methodologies propose one-

pass algorithms that discover knowledge hidden behind

massive and continuously moving data. These provide a

good solution for such big data problems, even for

potentially infinite volumes of data. In this paper, we

investigate these problems and propose an algorithm of

incremental decision tree as the solution.

Index Terms—Data stream Mining; Big data; Decision

Trees; Classification Algorithms.

I. INTRODUCTION

Big data has become a hot research topic, and how to

mine valuable information from such huge volumes of

data remains an open problem. Many research institutes

worldwide have dedicated themselves to solving this

problem. The solutions differ from traditional methods,

where learning process must be efficient and incremental.

Processing big data presents a challenge to existing

computation platforms and hardware. However, according

to Moore’s Law, CPU hardware may no longer present a

bottleneck in mining big data due to the rapid

development of the integrated circuit industry. Then, what

is the key point of big data mining?

In author’s opinion, a well-designed mining algorithm

is crucial in solving the problems associated with massive

data. The methodology shall efficiently discover the

hidden information behind massive data and then present

the real-time findings in a user-friendly way.

One on hand, amongst those methods of data mining,

fortunately, the decision tree is a non-linear supervised-

learning model, which classifies data into different

categories and makes a good prediction for unseen data.

The decision model is into a set of if-then-else rules within

a tree-like graph. The high-degree comprehension of tree-

like model makes it easy to understand the discovered

knowledge from massive and big data, for both human

and machine. Based on data stream mining, incremental

decision tree has become a popular research topic.

On one hand, however, imperfect data problem is a

barrier of the mining process. Missing data, either value-

or case-based, will increase difficulties to data mining

process. Noisy data are usually the culprits when

contradicting samples appear. Bias data causes an

irregular class distribution that will influence the

reliability of evaluating model. On the other hand,

decision tree model will face tree size explosion and

detrimental accuracy problems when including imperfect

data. In the past decade, incremental decision trees

algorithms [1,2,3,4] apply the Hoeffding bound with a tie-

breaking threshold, for dealing with the problem of tree-

size explosion. This threshold is a fixed user-defined value.

We do not know what the best configuration is unless all

possibilities have been tried, but undesirable in practical.

Although the pre-processing technique is to handle these

imperfections, it may not be possible because of the nature

of incremental access to the constantly incoming data

streams. In addition, concept-drift problem is a

characteristic of time-changing data, referring to that the

most types of an attribute remain the same while only

particular type changes with time. This problem will

reduce the utility of a decision model that increases the

difficulties of data mining.

II. IMPERFECT DATA STREAMS

A. Nosiy Data

A significant advantage of decision tree classification

is that the tree-like graph has a higher degree of

interpretability. Ideally we want a compact decision tree

model that possesses just sufficient rules for classification

and prediction with certain accuracy and interpretability.

One culprit that leads to tree size explosion is noisy data, a

well know phenomenon is called over-fitting in decision

trees. Noise data in data samples are considered as a type

of irrelevant or meaningless data, which do not typically

reflect the main trends but makes the identification of

these trends more difficult. However, prior to the start of

the decision tree induction, we do not know which

samples are noise data; filtering noise is thus difficult.

Noise data is considered a type of irrelevant or

meaningless data that does not typically reflect the main

trends but makes the identification of these trends more

difficult. Non-informative variables may be potentially

322 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER
doi:10.4304/jetwi.5.3.322-331

random noise in the data stream. It is an idealized but

useful model, in which such noise variables present no

information-bearing pattern of regular variation. Tree size

explosion problem, not only exists in incremental trees

[1,2], but also in traditional trees [5,6,7]. However, data

stream mining cannot eliminate those non-informative

candidates in preprocessing before starting classification

mining, because the concept-drift problem may also bring

non-informative variables into informative candidates.

On one hand, a previous study [8] reenacts this

phenomenon that the inclusion of noise data reduces the

accuracy and increasing model size. This consequence is

undesirable in the decision tree classification. There has

been an attempt to reduce the effect of noise by using

supplementary classifiers for predicting missing values in

real-time and minimizing noise in the important attributes

[9]. Such methods still demand extra resources in

computation.

B. Missing Data

 It is known that a major cause of over-fitting in a

decision tree is the inclusion of contradicting samples in

the learning process. Noisy data and missing values are

usually the culprits when contradicting samples appear.

Unfortunately, such samples are inevitable in distributed

communication environments such as wireless sensor

network (WSN). Two measures are commonly employed

to define the extent of values missing from a set of data

[10]: the percentage of predictor values missing from the

dataset (the value-wise missing rate) and the percentage of

observation records that contain missing values (the case-

wise missing rate). A single value missing from the data

usually indicates transmission loss or malfunctioning of a

single sensor. A missing data value record may result

from a broken link between sensors. In WSN, can

distinguish the missing data to two categories:

 Incomplete data with lost values: Because of an

accidence of sensor itself, like a crash or a reboot,

the instant data of the last event before the

accidence will be lost. Hence, such kind of missing

values is permanent, which is lost forever.

 Unstable data with late arrival: Because of temporal

disconnection or network delay, data stream capture

faces asynchronous issues. The missing value

caused by asynchronous is not permanent, which is

temporally lost and will arrive in a short while.

C. Bias Data

Bias data is also called imbalanced distribution data.

The term “imbalanced” refers to irregular class

distributions in a dataset. For example, a large percentage

of training samples may be biased toward class A, leaving

few samples that describe class B. Imbalanced

classification is a common problem. This problem occurs

when the classifier algorithm is trained with a dataset, in

which one class has only a few samples, and there are a

disproportionally large number of samples in the other

classes. Imbalanced data causes classifiers to be over-

fitted (i.e., produce redundant rules that describe duplicate

or meaningless concepts), and, as a result, perform poorly,

particularly in the identification of the minority class.

Most of the standard classification algorithms assume

that training examples are evenly distributed among

different classes. In practical applications where this was

known to be untrue, researchers addressed the problem by

either manipulating the training data or adjusting the

misclassification costs. Resizing training data sets is a

common strategy that attempts to downsize the majority

class and over-samples the minority class. Many variants

of this strategy have been proposed [10,11,12]. A second

strategy is to adjust the costs of misclassification errors to

be biased against or in favor of the majority and minority

classes, respectively. Using the feedback from the altered

error information, researchers then fine-tune their cost-

sensitive classifiers and post-prune the decision trees in

the hope of establishing a balanced treatment of each class

in the new imbalanced data collected by the network

[12,13]. However, they are not suitable for data stream

mining because of the nature of incremental access to the

constantly incoming streams.

D. Concept-drift Data

Data stream is also an infinite big data scenario that

the underlying data distribution of newly arrival data may

be appeared differently from the old one in the real world,

so called concept-drift problem. For example, click-

streams of user’s navigating e-commerce website may

reflect the preferences of purchase through the analysis

systems. When people’s preferences of product change,

however, the old user’s behavior model is not applicable

any more that the drifting of concepts appears.

The hidden changes in the attributes of data streams

will cause a drift of target concept. In terms of the

occurring frequency, commonly it can be distinguished in

two kinds: abrupt drift and gradual drift. For data streams,

the data arrive continuously that the concept-drift is local,

for instance, only particular types of attribute may change

with time while the others remain the same.

III. INCREMENTAL DECISION TREE ALGORITHMS

A. Decision Tree Learning using Hoeffding Bound

 A decision-tree classification problem is defined as

follows: N is the number of examples in a dataset with a

form (X, y), where X is a vector of I attributes and y is a

discrete class label. I is the number of attributes in X. k is

the index of class label. Suppose a class label with the kth

discrete value is yk. Attribute Xi is the i th attribute in X,

and is assigned a value of xi1, xi2… xiJ, where 1 ≤ i ≤ I and

J is the number of different values of Xi. The

classification goal is to produce a decision tree model

from N examples, which predicts the classes of y in future

examples with high accuracy. In stream mining, the

example size is very large or unlimited that N∞.

 VFDT [1] constructs an incremental decision tree by

using constant memory and constant time-per-sample. It

is a pioneering predictive technique that utilizes the

Hoeffding bound (HB) that √ (

) , where

R is the range of classes distribution and n is the number

of instances which have fallen into a leaf. Sufficient

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013 323

©2013 ACADEMY PUBLISHER

statistics is used to record the counts of each value of

attribute belonging to class . The solution, which

doesn’t requiring the full historical data, is a node-

splitting criterion using a HB. To evaluate a splitting-

value for attribute , it chooses the best two values.

Suppose is the best value of H(.) where
 ; suppose is the second best value

where ; suppose

is the difference of the best two values for attribute ,

where . Let n be the

observed number of instances, HB is used to compute

high confidence intervals for the true mean of

attribute to class that

where ∑

 . If after observing examples,

the inequality holds, then ,

meaning that the best attribute observed over a

portion of the stream is truly the best attribute over entire

stream. Hence, a splitting-value of attribute can be

found without full attribute-values, even when we don’t

know all values of (from to).

 When data contains imperfect values, it may confuse

the values of heuristic function. The difference of the best

two heuristic evaluation for attribute , where

 ̅ , may be negligible. To

solve this problem, a fixed tie-breaking , which is a user

pre-defined threshold for incremental learning decision

tree, is proposed as a pre-pruning mechanism to control

the tree growth speed [2]. This threshold constrains the

node-splitting condition that ̅ . An

efficient guarantees a minimum tree growth in case of

tree-size explosion problem. must be set before a new

learning starts, however, so far there has no a unique

suitable for all problems. In other words, there is not a

single value that works well in all tasks. The choice of τ

hence depends on the data and their nature.

B. Evoluation in the Past Decade

According to node-splitting process of a decision tree,

we can distinguish it into two categories: singletree

algorithm and multi-tree algorithm. Singletree is a

decision model that only builds one tree in the tree-

building approach while does not require any optional

branches or alternative trees. Multi-tree builds a decision

tree model dependent on many other trees at the same

time. The advantage of singletree is lightweight favored

for data streams environment and easy to implement,

although in some cases, multi-tree may bring a higher

accuracy.

VFDT is the pioneer singletree of using HB to

construct incremental decision tree for high-speed data

streams, but it can’t handle concept drift. Functional tree

leaf is originally proposed to integrate to incremental

decision tree [3]. Consequently, Naïve Bayes classifier on

the tree leaf has improved classification accuracy. The

functional tree leaf is able to handle both continuous and

discrete values in data streams. OcVFDT [14] provides a

solution to deal with unlabeled samples based on VFDT

and POSC4.5. The experiment shows four fifths of

samples are unlabeled, while the performance still gets

close to VFDT of fully labeled streams. OcVFDT is a one-

class classification that classifiers are trained to

distinguish only a class of objects from all other objects.

FlexDT [15] proposes a Sigmoid function to handle noisy

data and missing values. Sigmoid function is used to

decide what true node-splitting value, but sacrificing

algorithm speed.

For handling concept-drift problem, CVFDT [2]

proposed a fixed size of sliding-window that integrated to

VFDT. It constructs an alternative tree in the tree growing.

When tree model is out-of-date within a window, the

alternative branch will replace the old one so that it adapts

to concept-drift data. HOT [16] proposes an algorithm

producing some optional tree branches at the same time,

replacing those rules with lower accuracy by optional ones.

The classification accuracy has been improved

significantly while learning speed is slowed because of the

construction of optional tree branches. ASHT [4] is

derived from VFDT adding a maximum number of split

nodes. ASHT has a maximum number of split nodes.

After one node splits, if the number of split nodes is

higher than the maximum value, then it deletes some

nodes to reduce its size.

IV. HYPOTHESIS AND MOTIVATION

A. Hypothesis

The research is on the basic of the following

assumptions:

One-pass Process The feature of proposed method

implement as a one-pass approach, which requires loading

and computing the data records only one time. Therefore,

this is potentially applicable for big data, even unbounded

data problem.

Data Volume The data is multi-dimensional, with

bounded and constant values of attributes. The data is also

labeled. A data record is called the instance. The data has

a large scale of instances, even infinite. The algorithm

builds an incremental decision tree, in which suppose

there enough instances for the node splitting using the HB.

Imperfect Data The imperfect data include: the noisy

data, the data with missing values, the data with

imbalanced class distribution, as well as the data with

concept-drift.

Performance Measures Accuracy is the number of

correctly classified instances divided by the number of

total instances. Tree size is the number of the rules in a

decision tree. This also equals to the number of leaves in

the tree model. Learning speed is the time to construct the

decision tree. It is an immediate time in the incremental

learning process. Memory cost is the memory size used to

build the tree model.

Classifier Due to the one-pass process, the incremental

decision tree implements a test-then-train process. When a

new instance arrives, it will traverse from the root to a leaf

according to the tree model. This is also a testing process.

During the traversing, the node splitting is triggered so

that tree model is trained incrementally. Besides, the post-

pruning mechanism is infeasible since the nature of fast-

moving data scenario. No extra time is allowed to stop

tree building and prune tree structure.

324 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER

Application The result of the proposed methodology is

a decision tree model, which presents rules from the root

to the leaves. The tree-like structure shows a collection of

complex rules intuitively in terms of IF-THEN-ELSE

rules. Both human and machine can understand this rules

easily.

B. Motivation

In this paper, we propose an incremental decision tree

learning method that is suitable for big data analysis.

What is the difference between traditional decision tree

learning and incremental decision tree learning?

In Figure 1, we provide an example of traditional

decision tree learning. The criteria of splitting-node

selection is based on heuristic function. For example, ID3

algorithm uses the information entropy while C4.5 applies

the information gain as the heuristic function. In general,

the traditional tree learning requires loading the full data

and analyzes the whole training data to build a decision

tree. The splitting criteria is according to the heuristic

result, splitting from the attribute with the larger heuristic

value, until all candidates become internal nodes.

Data
Designate attribute variables for

analysis, with a class variable

Calculate H(.) of correlation of

attributes and class

Sorted the result and choose

attribute Ai with the best H(.) the

splitting node

Let A be the attribute with the best H(.)

value among attributes

Let {aj|j=1,2…m} be the values of Ai

Let {Sj|j=1,2...m} be the subset of S

consisting respectively records with value aj

Return a tree with root labeled A

Splitting nodes labeled a1, a2, … am to

the trees using the H(.)

Let Q be a set of

attributes {Aj|j=1,2...m}

Remove Ai from Q

LOOP

Until Q is empty

Decision Tree

Figure 1. Workflow of Buiding A Traditional Decision Tree.

Differently in Figure 2, incremental learning process

using Hoeffding bound in the splitting criteria. It does not

require loading the full data, instead, it only needs a part

of data to train decision tree model. When new data

arrives, the sufficient statistics are updated. If checking

condition satisfied, it will compare splitting candidates

with the best and the second best heuristic result. In this

case, the tree model is updated incrementally, with newly

arrival data.

Data
Sort it to leaf using HT:

Count Xij → yk : nijk

Splitting-Check

ni(l)>=nmin

Calculate H(.) by nijk

ΔH(.) >HB

or ΔH(.)<HB<=r

Calculate ΔH(.) nijk :

ΔH(.)=H(Xa)-H(Xb)

Split Xa as branch

Xm = X – Xa, let leaf lm

Do not split:

Not update

Decision Tree

Do split:

Update Decision Tree

Let Xi = Xm – X0 :

 Reset nijk

Most frequent class at lm:

Gm(X0)

NO

NO

YES

YES

Figure 2. Workflow of Buiding An Incremental Decision Tree.

 From the comparison above, obviously, the traditional

method is not suitable for big data scenario, because

loading full data is inapplicable in practical. That is why

we propose an incremental method to deal with big data.

The incremental process is applicable for continuously

arrival data, even infinite data scenario.

V. METHODOLOGY DESIGN

A. Overall Workflow

 The proposed methodology, which inherits the use

of HB, implements on a test-then-train approach

(Figure 3) for classifying continuously arriving data

streams, even for infinite data streams. The whole test-

then-train process is synchronized such that when the

data stream arrives, one segment at a time, the decision

tree is being tested first for prediction output and

training (which is also known as model updating) of

the decision tree then occurs incrementally.

Figure 3. Test-then-train Workflow.

B. Auxiliary Reconciliation Control

The Auxiliary Reconciliation Control (ARC) is a set

of data pre-processing functions used to solve the problem

of missing data streams. The ARC can be programmed as

a standalone program that may run in parallel and in

synchronization with the test-and-train operation.

Synchronization is facilitated by using a sliding window

that allows one segment of data to arrive at a time at

regular intervals. When no data arrive, the ARC simply

Data
Stream

TESTING TRAINING

Node-splitting Estimation

Tree Leaf Prediction

Decision
Tree

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013 325

©2013 ACADEMY PUBLISHER

stands still without any action. The operational rate of the

sliding window should be no greater than the speed at

which the decision tree building is operated and faster

than the speed at which the sensors transmit data.

Figure 4. The workflow of ARC in a gateway sensor node.

To tackle the problem of missing values in a data

stream, a number of prediction algorithms are commonly

used to guess approximate values based on past data.

Although many algorithms can be used in the ARC, that

deployed should ideally achieve the highest level of

accuracy while consuming the least computational

resources and time. Some popular choices we use here for

simulation experiments include, but are not limited to,

mean, naïve Bayesian, and C4.5 decision tree algorithms

for nominal data, and mean mode, linear regression,

discretized naïve Bayesian and M5P algorithms for

numeric data. Missing value estimation algorithms

require a substantial amount of past data to function. For

example, before using a C4.5 decision tree algorithm as a

predictor for missing values, a classifier must be built

using statistics from a sample of sufficient size.

C. Functional Tree Leaf

 Functional tree leaf [3], can further enhance the

prediction accuracy via the embedded Naïve Bayes

classifier.. In this paper, we embed the functional tree leaf

to improve the performance of prediction by HT model.

When these two extensions – an optimized node-splitting

condition (̅ or

or
) and a refined

prediction using the functional tree leaf – are used

together, the new decision tree model is able to achieve

unprecedentedly good performance, although the data

streams are perturbed by noise and imbalanced class

distribution.

 For the actual classification, iOVFDT uses a decision

tree model to predict the class label ̂ with

functional tree leaf when a new sample (X, y) arrives,

defined as ̂ . The predictions are made

according to the observed class distribution (OCD) in the

leaves called functional tree leaf . Originally in VFDT,

the prediction uses only the majority class MC. The

majority class only considers the counts of the class

distribution, but not the decisions based on attribute

combinations. The naïve Bayes NB computes the

conditional probabilities of the attribute-values given a

class at the tree leaves by naïve Bayes network. As a

result, the prediction at the leaf is refined by the

consideration of each attribute’s probabilities. To handle

the imbalanced class distribution in a data stream, a

weighted naïve Bayes WNB and an error-adaptive Adaptive

are proposed in this paper. These four types of functional

tree leaves are discussed in following paragraphs.

Let Sufficient statistics nijk be an incremental count

number stored in each node in the iOVFDT. Suppose that

a node Nodeij in HT is an internal node labeled with

attribute xij and k is the number of classes distributed in

the training data, where k≥2. A vector Vij can be

constructed from the sufficient statistics nijk in Nodeij,

such that Vij = {nij1, nij 2…nij k}. Vij is the OCD vector of

Nodeij. OCD is used to store the distributed class count at

each tree node in iOVFDT to keep track of the

occurrences of the instances of each attribute.

Majority Class Functional Tree Leaf: In the OCD

vector, the majority class MC chooses the class with the

maximum distribution as the predictive class in a leaf,

where MC: arg max r = {ni,j,1, ni, j, 2… ni, j, r… ni, j, k}, and

where 0<r<k.

Naïve Bayes Functional Tree Leaf: In the OCD

vector Vi,j = {ni,j,1, ni,j,2… ni,j,r… ni,j,k}, where r is the

number of observed classes and 0<r<k, the naïve Bayes

 NB chooses the class with the maximum possibility, as

computed by the naïve Bayes, as the predictive class in a

leaf. nij,r is updated to n’i,j,r by the naïve Bayes function

such that , where X is

the new arrival instance. Hence, the prediction class is

 NB: arg max r = { n’i,j,1, n’i,j,2… n’i,j,r… n’i,j,k }.

Weighted Naïve Bayes Functional Tree Leaf: In the

OCD vector Vi,j = {ni,j,1, ni,j,2… ni,j,r … ni,j,k}, where k is the

number of observed classes and 0<r<k, the weighted

naïve Bayes WNB chooses the class with the maximum

possibility, as computed by the weighted naïve Bayes, as

the predictive class in a leaf. ni,j,r is updated to n’i,j,r by the

weighted naïve Bayes function such that

 , where X is the latest received

instance and the weight is the probability of class i

distribution among all the observed samples, such that

 ∏ ∑

 , where ni,j,r is the count of class

r. Hence, the prediction class is WNB: arg max r = { n’i,j,1,

n’i,j,2… n’i,j,r… n’i,j,k }.

Adaptive Functional Tree Leaf: In a leaf, suppose

that V
MC is the OCD with the majority class MC;

suppose V
NB is the OCD with the naïve Bayes NB and

suppose that V
WNB is the OCD with the weighted naïve

Bayes WNB. Suppose that y is the true class of a new

instance X and E is the prediction error rate using a . E

is calculated by the average E=errori /n, where n is the

number of examples and errori is the number of examples

mis-predicted using . The adaptive Functional Tree Leaf

chooses the class with the minimum error rate predicted

by the other three strategies, where Adaptive: arg min =

{E
MC

, E
NB

, E
WNB}.

D. Incremental Optimization

 The model is growing incrementally so as to update

an optimal decision tree under continuously arriving data.

Suppose that a decision tree optimization problem is

defined as a tuple (). The set X is a collection of

objects to be optimized and the feasible Hoeffding tree

Predicted
Missing
values

...

S Cache
Test

Train

ARC

VFDTAggregated
data feeds

Processed data
segments

N

N

N

Base
Station

Decision Center (Gateway Sensor Node)

Classification
/Prediction

Failure or
anomalies

report

326 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER

 solutions are subsets of X that collectively achieve a

certain optimization goal. The set of all feasible solutions

is and is a cost function of these

solutions. The optimal decision tree HT* exists if X and

 are known, and the subset S is the set of solutions

meets the objective function where HT* is the optimum

in this set. Therefore, the incremental optimization

functions can be expressed as a sum of several sub-

objective cost functions: ⋃

 ,

where is a continuously differentiable

function and M is the number of objects in the

optimization problem. The optimization goal:

 . ̂ is

used to predict the class when a new data sample (X, y)

arrives. So far timestamp t, the prediction accuracy

defined as:
∑

{
 ̂
 ̂

 .

To measure the utility of the three dimensions via the

minimizing function, the measure of prediction accuracy

is reflected by the prediction error in: .
The new methodology is building a desirable tree

model by combining with an incremental optimization

mechanism and seeking a compact tree model that

balances the objects of tree size, prediction accuracy and

learning time. The proposed method finds an

optimization function , where M = 3. When a

new data arrive, it will be sorted from the root to a leaf in

terms of the existing HT model. When a leaf is being

generated, the tree size grows. A new leaf is created when

the tree model grows incrementally in terms of newly

arrival data. Therefore, up to timestamp t the tree size is:

 {
 ̅

 .

It is a one-pass algorithm that builds a decision

model using a single scan over the training data. The

sufficient statistics that count the number of examples

passed to an internal node are the only updated elements

in the one-pass algorithm. The calculation is an

incremental process, which tree size is “plus-one” a new

splitting-attribute appears. It consumes little

computational resources. Hence, the computation speed

of this “plus one” operation for a new example passing is

supposed as a constant value in the learning process.

The number of examples that have passed within an

interval period of in node splitting control determines the

learning time that . nmin is a

fixed value for controlling interval of node splitting.

 Suppose that is the number of examples seen at a

leaf yk and the condition that checks node-splitting is

 . The learning time of each node

splitting is the interval period – the time defined as –

during which a certain number of examples have passed

up to timestamp t.

Returning to the incremental optimization problem,

the optimum tree model is the structure with the

minimum . A triangle model is provided to illustrate

the relationship amongst the three dimensions – the

prediction accuracy, the tree size and the learning time.

The three dimensions construct a triangle utility function

in Figure 5. A utility function computes the area of

triangle, reflecting a relationship amongst the three

objects in:

√

Figure 5. Three-obective Optimization.

The area of this triangle changes when node

splitting happens and the HT updates. A min-max

constraint of the optimization goal in (4) controls the

node splitting, which ensures that the new tree model

keeps a within a considerable range. Suppose

that is a HT model with the maximum

utility so far and is a HT model with the

minimum utility. The optimum model should be within

this min-max range, near :

 According to the Chernoff bound, we know:

 √

 ⁄

where the range of is within the min-max

m o d e l
 .

Therefore, if goes beyond this constraint, the

existing HT is not suitable to embrace the new data input

and the tree model should not be updated. Node-splitting

c o n d i t i o n i s :

 ̅ ,

or
 ,

or
 .

,

VI. EVALUATION

A. Synthetic Data Streams

Hyper-plane data is another typical data streams for

concept-drift study [4,17]. We use MOA hyper-plane data

generator to simulate the data streams without noise-

included (10 attributes and 2 classes, 2 of 10 attributes are

randomly drifting). The performance measurement is

Interval Test-then-train Evaluation in MOA. The

aforementioned contents have verified that Error-adaptive

is the best strategy of functional tree leaf, hence, it is

applied in this test.

The synthetic streams are marked when attributes

drifting. A piece of streams is visualized (50 instances

included) in Figure 6. Similar result appears that iOVFDT

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013 327

©2013 ACADEMY PUBLISHER

outperforms the other two algorithms. In addition, it is

obvious that: when a drift occurs, the accuracy is

declining consequently. This test shows iOVFDT has a

good performance dealing with attributes drifting.

Figure 6. Concept-drift evaluation for hyper-plane data streams.

B. Sensor Data with Missing Values

The complex nature of incomplete and infinite

streaming data in WSNs has escalated the challenges

faced in data mining applications concerning knowledge

induction and time-critical decision-making. Traditional

data mining models employed in WSNs work, which are

mainly on the basis of relatively structured and stationary

historical data, and may have to be updated periodically in

batch mode. The retraining process consumes time as it

requires repeated archiving and scanning of the whole

database. Data stream mining is a process that can be

undertaken at the front line in a manner that embraces

incoming data streams.

To the best of the author's knowledge, no prior study

has investigated the impact of imperfect data streams or

solutions related to data stream mining in WSNs, although

the pre-processing of missing values is a well-known step

in the traditional knowledge discovery process. We

propose a holistic model for handling imperfect data

streams based on four features that riddle data transmitted

among WSNs: missing values, noise, delayed data arrival

and data fluctuations. The model has a missing value

predicting mechanism called the auxiliary reconciliation

control (ARC). A bucket concept is also proposed to

smooth traffic fluctuations and minimize the impact

caused by late arriving data. Together with the VFDT, the

ARC-cache facilitates data stream mining in the presence

of noise and missing values. To prove the efficacy of the

new model, a simulation prototype is implemented based

on ARC-cache and VFDT theories by using a JAVA

platform. Experimental results unanimously indicate that

the ARC-cache and VFDT method yield better accuracy

in mining data streams in the presence of missing values

than VFDT only. One reason for this improved

performance is ascribed to the improved predictive power

of the ARC in comparison with other statistical counting

methods for handling missing values, as the ARC

computes the information gains of almost all other

attributes with non-missing data. In future research, we

will continue to investigate the impact of noisy or

corrupted data and irregular data stream patterns on data

stream mining.

Figure 7. Performance of ARC-cache missing values replacement

Figure 8. Magnified version of the diagram

In this part, we use a set of real-world data streams

downloaded from the 1998 KDD Cup competition

provided by Paralyzed Veterans of America (KDD Cup,

1998). The data comprise information concerning human

localities and activities measured by monitoring sensors

attached to patients. We use the learning dataset (127MB

in size) with 481 attributes originally in both numeric and

nominal form. Of the total number of 95,412 instances,

more than 70% contain missing values.

 In common with the previous experiment, we

compare the ARC-Cache and VFDT method with the

standard missing values replacement method found in

WEKA using means. The results of the comparison are

shown in Figure 7 and 8. Considering the number of

attributes is very large, we apply a moderate window size

(W = 100) for the ARC to operate. A complete dataset

given by PVA is used to test the ARC-Cache (115MB).

The experiment results demonstrate that using WEKA

mean values to replace missing data yields the worst level

of VFDT classification accuracy. Although using the

ARC-Cache to deal with missing values in the dataset

328 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER

does not yield results as accurate as the complete dataset

without any missing values, ARC-Cache performance is

much better than that achieved using WEKA means to

replace missing values. The enlarged chart shows the

WEKA replacement approach has very little effect in

maintaining the level of performance because of the very

high percentage of missing data (70%) in this extreme

example.

C. UCI Data Streams

Dynamic data dominate many modern computer

applications nowadays. They are characterized to be vast

in size, fast moving in speed and consist of many

attributes, which do not make sense individually, but they

describe some behavioral patterns when analyzed together

over some time. Traditional data mining algorithms are

designed to load a full archive of data, and then build a

decision model. New data that arrive would have to be

accumulated with the historical dataset, and together they

would be scanned again for rebuilding an up-to-date

decision tree.

TABLE I.

DESCRIPTION OF DYNAMIC DATA

Name Abbr. #Ins #Attr #Cls #Nom #Num

iPod Sales IP 7882 29 3 16 12

Internet Usage IU 10104 72 5 71 0

Network Attack NA 494021 42 23 3 38

Cover Type CT 581012 55 7 42 12

Robot Sensor RS 5456 25 4 0 24

Person Activity PA 164860 6 11 2 3

Six scenarios of dynamic data are tested in the

experiment, shown in Table 1. Each type of dynamic data

represents typical decision-making problems on the topics

of web applications, real-time security surveillance and

activities monitoring. The data of web applications are

Internet Usage (IU) data and iPod Sales on eBay (IP) data,

which are generated from the recording of user’s click-

streams on the websites. The data of real-time security

surveillance are Network Attack (NA) and Cover Type

(CT) data. The data of activities monitoring are Robot

Sensor (RS) and Person Activity (PA) data. The datasets

are extracted from real-world applications that are

available for download from UCI Machine Learning

Repository.

TABLE II.

ACCURACY ANAYLSIS OF DYNAMIC DATA

Method\Data RS IP IU CT PA NA

C4.5 Pruned 99.45

99.8

2

82.3

4 91.01 75.20

99.9

4

C4.5 Unpruned 99.65

99.7

0

81.5

0 92.77 74.10

99.9

5

Incre.NB 55.35

89.9

0

75.2

9 60.52 49.28

96.5

5

VFDT 40.21
90.7 79.0

67.45 43.75
98.2

1 6 7

VFDT_NB 55.35

99.0

7

82.0

3 77.16 61.03

99.6

8

VFDT_ADP 55.35

99.2

1

82.3

1 77.77 61.01

99.7

9

iOVFDT_MC 71.92

81.7

9

78.2

4 70.52 59.15

99.2

3

iOVFDT_NB 81.60

98.7

8

78.6

5 90.66 73.45

99.6

9

iOVFDT_WNB 81.91

98.1

3

78.9

5 90.51 72.35

99.6

9

iOVFDT_ADP 83.32

98.9

2

79.8

4 90.59 73.52

99.8

5

Standard

Deviation. 20.21 6.09 2.31 11.80 11.28 1.08

Variance
408.5

4

37.1

4 5.31

139.1

7

127.1

3 1.16

Average 72.41

95.6

1

79.7

1 80.90 64.28

99.2

6

From Table 2, in general, it is observed that C4.5 had

better accuracy than the other methods in all tested

datasets because it built its decision model from the full

dataset. Therefore it can attain a globally best solution by

going through all the training data at one time. The other

methods are incremental learning process that obtained a

locally optimum solution in each pass of data stream. The

strikethroughs indicate those accuracies that are below the

average. Obviously, one can see that only C4.5 and

iOVFDT_ADP (iOVFDT with Error-adaptive functional

tree leaf) are able to achieve a ‘full win’ of satisfactory

accuracies over the average across all the datasets. Fig. 8.1

shows a graphical representation of the accuracies in the

form of a stacked bar chart – despite C4.5, the iOVFDT

family of algorithms (except MC) obtains pretty good

accuracies. Therefore, when batch learning such as C4.5 is

not feasible or available in scenarios of dynamic data

stream mining, iOVFDT_ADP would be a good candidate.

 Table 3 shows the model size (the number of nodes /

the number of leaves) which is calculated as the number

of leaves over the number of nodes for different datasets.

For all dataset, C4.5 built the decision model requiring

largest tree size. Naïve Bayes does its prediction by using

distribution probabilities, so that the decision model does

not exhibit a tree-like structure. Although smaller tie-

breaking threshold might bring respectively smaller tree

size for VFDT, the accuracy is obviously worse than

iOVFDT. It is interesting to see that the size of a globally

best model (C4.5) is not much bigger than a locally

optimum model (iOVFDT) because the latter algorithm

allows tree to grow incrementally over time.

TABLE III.

MODEL SIZE ANAYLSIS OF DYNAMIC DATA

RS IP IU CT PA NA

C4.5 Pruned

18/3

5

20/3

9

847

/911

10149

/20297

13265

/24120

724

/838

C4.5

Unpruned

22/4

3

24/4

6

1028

/126

7

14903

/29805

6467

/10357

679

/801

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013 329

©2013 ACADEMY PUBLISHER

IncreNB N/A N/A N/A N/A N/A N/A

VFDT 1/1 5/9

46/4

7

127/25

3

167/18

7

87/9

4

VFDT_NB 1/1 5/9

46/4

7

127/25

3

167/18

7

87/9

4

VFDT_ADP 1/1 5/9

46/4

7

127/25

3

167/18

7

87/9

4

iOVFDT_MC

22/4

3 6/11

325

/329

1280

/2559

2211

/2500

185

/249

iOVFDT_NB

22/4

3 8/15

325

/329

1864

/3727

2440

/2821

188

/255

iOVFDT_WN

B

22/4

3 8/15

325

/329

1864

/3727

2233

/2551

188

/255

iOVFDT_AD

P

22/4

3 8/15

325

/329

1864

/3727

2440

/2821

188

/255

 The speed of learning decision model was reflected by

the time in seconds as shown in Table 4. In general, C4.5

has the slowest learning speed for all datasets. Comparing

the average learning times of VFDT to iOVFDT, our

experiment result shows both algorithms have a very

similar learning speed. iOVFDT has a learning speed

almost as fast as the original VFDT. This implies that the

improved version, iOVFDT can achieve smaller tree size,

good accuracy without incurring cost of slowing down the

learning speed. Fast learning speed is important and

applicable to time-critical applications.

TABLE IV.

LEARNING SPEED ANAYLSIS OF DYNAMIC DATA

Methods\Data RS IP IU CT PA NA

C4.5 Pruned 0.30 0.22 0.40 931.34 180.88 120.68

C4.5 Unpruned 0.80 0.40 0.39 1717.35 121.62 187.44

IncreNB 0.26 0.10 0.24 11.98 0.95 17.77

VFDT 0.18 0.07 0.19 6.65 0.63 4.50

VFDT_NB 0.13 0.09 0.24 9.88 0.96 6.64

VFDT_ADP 0.14 0.09 0.30 10.18 1.28 7.95

iOVFDT_MC 0.12 0.08 0.20 6.86 0.64 4.36

iOVFDT_NB 0.17 0.09 0.30 8.80 0.97 6.62

iOVFDT_WNB 0.16 0.10 0.29 8.61 0.98 6.41

iOVFDT_ADP 0.13 0.11 0.31 13.09 1.26 6.78

Avg. C4.5 0.55 0.31 0.40 1324.35 151.25 154.06

Avg. Increm.NB 0.26 0.10 0.24 11.98 0.95 17.77

Avg. VFDT 0.15 0.08 0.24 9.57 0.96 6.36

Avg. iOVFDT 0.14 0.10 0.27 8.34 0.96 6.04

D. Real-time Recommendation Data

Recommendation system is an important application

of data mining that tries to refer the right products to the

right customers in the right time. We use some real-life

online recommendation data from the GroupLens

Research:

MovieLens www.grouplens.org/node/73

Book-cross www.informatik.uni-

freiburg.de/~cziegler/BX/

They are the typical dataset for the recommending

system. This data is consisted of three files: movie/book

information, user information, and rating. The three files

are joined together by the user ID and movie/book ID.

After combining the data, MoiveLens includes

1,000,209 instances, 1 numeric attributes, 24 nominal

attribute. The target class is the type of movie. There are

18 distinct types. Book-crossing includes 1,316,100

instances, 2 numeric and 5 nominal attributes. The target

class is the country where the users are. There are 61

investigated countries. For a recommendation system, the

classification model is used to predict what type of the

movie does the user like, or which region does the user

live in, from the previous rating data. The benchmark

algorithms are VFDT, ADWIN and iOVFDT, with Error-

adaptive functional tree leaf.

For MovieLens data, after normalized the result, we

can see the comparison of these three algorithms in Figure

9. In general, iOVFDT and ADWIN have better accuracy

than VFDT, but ADWIN results bigger model size than

iOVFDT, as well as the learning time. For Book-crossing

data, the accuracy and tree size analysis are shown in

Figure 10 and 11 respectively. It reflects that ADWIN still

obtains a bigger tree size. iOVFDT outperforms the others

in terms of the accuracy and the tree size.

Figure 9. Normalized comparison result of MovieLens data

Figure 10. Accuracy of Book-crossing data

330 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER

Figure 11. Tree size of Book-crossing data

VII. COCLUSIONS

How to uncover the knowledge hidden within massive

and big data efficiently, remains an open question. In the

opinion of author, a well-designed algorithm is crucial in

solving the problems associated with big data.

A data stream model is usually defined as a model in

which data move continuously at high-speed. Most big

data can be considered as data streams, in which many

new data are generated in a short time, and moving

continuously. Data streams contain very large volumes of

data, which cannot be stored in either internal or external

memory. A one-pass algorithm, therefore, forms the basis

of data stream mining, which briefly stores a sufficient

statistical matrix when new data passes, but does not

require the full dataset being scanned repeatedly. However,

imperfect data streams, like missing values, noise,

imbalanced distribution and concept-drift, are common in

the real world applications. To the best knowledge of the

author, no suitable methods have solved all above

problems well so far.

The main contributions of this research propose:

 An incremental decision tree algorithm handling

imperfect data streams.

 A mechanism so called Auxiliary Reconciliation

Control (ARC) is used to handle the missing data.

 An adaptive-tie breaking threshold is robust to the

noisy data.

 A new functional tree leaf of weighted Naïve Bayes

is brought forward to deal with imbalanced

distributions in data streams.

 A test-then-train learning approach monitors the

performance of decision model in real-time so that

the model is sensitive to concept-drift occurrence.

 Experiment shows the proposed methodology can

solve the aforementioned problems as a result.

REFERENCES

[1] Domingos P., and Hulten G.. 2000. ‘Mining high-speed

data streams’, in Proc. of 6th ACM SIGKDD international

conference on Knowledge discovery and data mining

(KDD’00), ACM, New York, NY, USA, pp. 71-80.

[2] Hulten G., Spencer L., and Domingos P., 2001. ‘Mining

time-changing data streams’, in Proc. of 7th ACM

SIGKDD international conference on Knowledge

discovery and data mining (KDD’01), ACM, New York,

NY, USA, pp. 97-106.

[3] Gama.J. Rocha R. and Medas P., 2003.‘Accurate decision

trees for mining high-speed data streams’, in Proc. of 9th

ACM SIGKDD international conference on Knowledge

discovery and data mining (KDD’03), ACM, New York,

NY, USA, pp. 523-528.

[4] Bifet A. and Gavalda R. 2007. “Learning from time-

changing data with adaptive windowing”. In Proc. of

SIAM International Conference on Data Mining, pp. 443–

448.

[5] Quinlan R, 1986. Induction of Decision Trees, Machine

Learning, 1(1), pp.81-106.

[6] Quinlan R, 1993. C4.5: Programs for Machine Learning,

Morgan Kaufmann, San Francisco.

[7] Breiman L., Friedman J.H., Olshen R.A. and Stone C.J.,

1984. 'Classification and Regression Trees', in Wadsworth

& Brooks/Cole Advanced Books & Software, Monterey,

CA.

[8] Yang H., and Fong S., 2011. ‘Moderated VFDT in Stream

Mining Using Adaptive Tie Threshold and Incremental

Pruning’, in Proc. of 13th international conference on Data

Warehousing and Knowledge Discovery (DaWak2011),

LNCS, Springer Berlin / Heidelberg, pp. 471-483.

[9] Farhangfar, A., Kurgan, L., & Dy, J. (2008). Impact of

imputation of missing values on classification error for

discrete data. Pattern Recognition, 41(12), 3692-3705.

[10] Ding, Y., & Simonoff, J. S. (2010). An investigation of

missing data methods for classification trees applied to

binary response data. The Journal of Machine Learning

Research, 11, 131-170.

[11] Little, R. J., & Rubin, D. B. (1987). Statistical analysis

with missing data(Vol. 539). New York: Wiley.

[12] Lakshminarayan, K., Harp, S. A., & Samad, T. (1999).

Imputation of missing data in industrial databases. Applied

Intelligence, 11(3), 259-275.

[13] Street, W. N., & Kim, Y. (2001, August). A streaming

ensemble algorithm (SEA) for large-scale classification.

In Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining(pp.

377-382). ACM.

[14] Li, C., Zhang, Y., & Li, X. (2009, June). OcVFDT: one-

class very fast decision tree for one-class classification of

data streams. In Proceedings of the Third International

Workshop on Knowledge Discovery from Sensor Data(pp.

79-86). ACM.

[15] Hashemi, S., & Yang, Y. (2009). Flexible decision tree for

data stream classification in the presence of concept

change, noise and missing values.Data Mining and

Knowledge Discovery, 19(1), 95-131.

[16] Pfahringer, B., Holmes, G., & Kirkby, R. (2007). New

options for hoeffding trees. In AI 2007: Advances in

Artificial Intelligence (pp. 90-99). Springer Berlin

Heidelberg.

[17] Hoeglinger, S., Pears, R., & Koh, Y. S. (2009). CBDT: A

Concept Based Approach to Data Stream Mining.

In Advances in Knowledge Discovery and Data Mining (pp.

1006-1012). Springer Berlin Heidelberg.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013 331

©2013 ACADEMY PUBLISHER

Call for Papers and Special Issues

Aims and Scope
Journal of Emerging Technologies in Web Intelligence (JETWI, ISSN 1798-0461) is a peer reviewed and indexed international journal, aims at

gathering the latest advances of various topics in web intelligence and reporting how organizations can gain competitive advantages by applying the
different emergent techniques in the real-world scenarios. Papers and studies which couple the intelligence techniques and theories with specific web
technology problems are mainly targeted. Survey and tutorial articles that emphasize the research and application of web intelligence in a particular
domain are also welcomed. These areas include, but are not limited to, the following:

• Web 3.0
• Enterprise Mashup
• Ambient Intelligence (AmI)
• Situational Applications
• Emerging Web-based Systems
• Ambient Awareness
• Ambient and Ubiquitous Learning
• Ambient Assisted Living
• Telepresence
• Lifelong Integrated Learning
• Smart Environments
• Web 2.0 and Social intelligence
• Context Aware Ubiquitous Computing
• Intelligent Brokers and Mediators
• Web Mining and Farming
• Wisdom Web
• Web Security
• Web Information Filtering and Access Control Models
• Web Services and Semantic Web
• Human-Web Interaction
• Web Technologies and Protocols
• Web Agents and Agent-based Systems
• Agent Self-organization, Learning, and Adaptation

• Agent-based Knowledge Discovery
• Agent-mediated Markets
• Knowledge Grid and Grid intelligence
• Knowledge Management, Networks, and Communities
• Agent Infrastructure and Architecture
• Agent-mediated Markets
• Cooperative Problem Solving
• Distributed Intelligence and Emergent Behavior
• Information Ecology
• Mediators and Middlewares
• Granular Computing for the Web
• Ontology Engineering
• Personalization Techniques
• Semantic Web
• Web based Support Systems
• Web based Information Retrieval Support Systems
• Web Services, Services Discovery & Composition
• Ubiquitous Imaging and Multimedia
• Wearable, Wireless and Mobile e-interfacing
• E-Applications
• Cloud Computing
• Web-Oriented Architectrues

Special Issue Guidelines

Special issues feature specifically aimed and targeted topics of interest contributed by authors responding to a particular Call for Papers or by
invitation, edited by guest editor(s). We encourage you to submit proposals for creating special issues in areas that are of interest to the Journal.
Preference will be given to proposals that cover some unique aspect of the technology and ones that include subjects that are timely and useful to the
readers of the Journal. A Special Issue is typically made of 10 to 15 papers, with each paper 8 to 12 pages of length.

The following information should be included as part of the proposal:
• Proposed title for the Special Issue
• Description of the topic area to be focused upon and justification
• Review process for the selection and rejection of papers.
• Name, contact, position, affiliation, and biography of the Guest Editor(s)
• List of potential reviewers
• Potential authors to the issue
• Tentative time-table for the call for papers and reviews

If a proposal is accepted, the guest editor will be responsible for:
• Preparing the “Call for Papers” to be included on the Journal’s Web site.
• Distribution of the Call for Papers broadly to various mailing lists and sites.
• Getting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors should be

informed the Instructions for Authors.
• Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact

information.
• Writing a one- or two-page introductory editorial to be published in the Special Issue.

Special Issue for a Conference/Workshop
A special issue for a Conference/Workshop is usually released in association with the committee members of the Conference/Workshop like general

chairs and/or program chairs who are appointed as the Guest Editors of the Special Issue. Special Issue for a Conference/Workshop is typically made of
10 to 15 papers, with each paper 8 to 12 pages of length.

Guest Editors are involved in the following steps in guest-editing a Special Issue based on a Conference/Workshop:
• Selecting a Title for the Special Issue, e.g. “Special Issue: Selected Best Papers of XYZ Conference”.
• Sending us a formal “Letter of Intent” for the Special Issue.
• Creating a “Call for Papers” for the Special Issue, posting it on the conference web site, and publicizing it to the conference attendees.

Information about the Journal and Academy Publisher can be included in the Call for Papers.
• Establishing criteria for paper selection/rejections. The papers can be nominated based on multiple criteria, e.g. rank in review process plus the

evaluation from the Session Chairs and the feedback from the Conference attendees.
• Selecting and inviting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors

should be informed the Author Instructions. Usually, the Proceedings manuscripts should be expanded and enhanced.
• Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact

information.
• Writing a one- or two-page introductory editorial to be published in the Special Issue.

More information is available on the web site at http://www.academypublisher.com/jetwi/.

(Contents Continued from Back Cover)

Applying Clustering Approach in Blog Recommendation
Zeinab Borhani-Fard, Behrouz Minaei, and Hamid Alinejad-Rokny

Automatic Extraction of Place Entities and Sentences Containing the Date and Number of Victims of
Tropical Disease Incidence from the Web
Taufik Fuadi Abidin, Ridha Ferdhiana, and Hajjul Kamil

Widespread Mobile Devices in Applications for Real-time Drafting Detection in Triathlons
Iztok Fister, Dušan Fister, Simon Fong, and Iztok Fister Jr.

296

302

310

RISING SCHOLAR PAPERS

Solving Problems of Imperfect Data Streams by Incremental Decision Trees
Hang Yang

322

