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Abstract—Big data is a popular topic that attracts highly 

attentions of researchers from all over the world. How to 

mine valuable information from such huge volumes of data 

remains an open problem. Although fast development of 

hardware is capable of handling much larger volume of data 

than ever before, in the author’s opinion, a well-designed 

algorithm is crucial in solving the problems associated with 

big data. Data stream mining methodologies propose one-

pass algorithms that discover knowledge hidden behind 

massive and continuously moving data. These provide a 

good solution for such big data problems, even for 

potentially infinite volumes of data. In this paper, we 

investigate these problems and propose an algorithm of 

incremental decision tree as the solution. 

Index Terms—Data stream Mining; Big data; Decision 

Trees; Classification Algorithms. 

I.  INTRODUCTION  

Big data has become a hot research topic, and how to 

mine valuable information from such huge volumes of 

data remains an open problem. Many research institutes 

worldwide have dedicated themselves to solving this 

problem. The solutions differ from traditional methods, 

where learning process must be efficient and incremental. 

Processing big data presents a challenge to existing 

computation platforms and hardware. However, according 

to Moore’s Law, CPU hardware may no longer present a 

bottleneck in mining big data due to the rapid 

development of the integrated circuit industry. Then, what 

is the key point of big data mining?  

In author’s opinion, a well-designed mining algorithm 

is crucial in solving the problems associated with massive 

data. The methodology shall efficiently discover the 

hidden information behind massive data and then present 

the real-time findings in a user-friendly way. 

One on hand, amongst those methods of data mining, 

fortunately, the decision tree is a non-linear supervised-

learning model, which classifies data into different 

categories and makes a good prediction for unseen data. 

The decision model is into a set of if-then-else rules within 

a tree-like graph. The high-degree comprehension of tree-

like model makes it easy to understand the discovered 

knowledge from massive and big data, for both human 

and machine. Based on data stream mining, incremental 

decision tree has become a popular research topic. 

On one hand, however, imperfect data problem is a 

barrier of the mining process. Missing data, either value- 

or case-based, will increase difficulties to data mining 

process. Noisy data are usually the culprits when 

contradicting samples appear. Bias data causes an 

irregular class distribution that will influence the 

reliability of evaluating model. On the other hand, 

decision tree model will face tree size explosion and 

detrimental accuracy problems when including imperfect 

data. In the past decade, incremental decision trees 

algorithms [1,2,3,4] apply the Hoeffding bound with a tie-

breaking threshold, for dealing with the problem of tree-

size explosion. This threshold is a fixed user-defined value. 

We do not know what the best configuration is unless all 

possibilities have been tried, but undesirable in practical. 

Although the pre-processing technique is to handle these 

imperfections, it may not be possible because of the nature 

of incremental access to the constantly incoming data 

streams. In addition, concept-drift problem is a 

characteristic of time-changing data, referring to that the 

most types of an attribute remain the same while only 

particular type changes with time. This problem will 

reduce the utility of a decision model that increases the 

difficulties of data mining.  

II. IMPERFECT  DATA STREAMS 

A. Nosiy Data 

A significant advantage of decision tree classification 

is that the tree-like graph has a higher degree of 

interpretability. Ideally we want a compact decision tree 

model that possesses just sufficient rules for classification 

and prediction with certain accuracy and interpretability. 

One culprit that leads to tree size explosion is noisy data, a 

well know phenomenon is called over-fitting in decision 

trees. Noise data in data samples are considered as a type 

of irrelevant or meaningless data, which do not typically 

reflect the main trends but makes the identification of 

these trends more difficult. However, prior to the start of 

the decision tree induction, we do not know which 

samples are noise data; filtering noise is thus difficult. 

Noise data is considered a type of irrelevant or 

meaningless data that does not typically reflect the main 

trends but makes the identification of these trends more 

difficult. Non-informative variables may be potentially 
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random noise in the data stream. It is an idealized but 

useful model, in which such noise variables present no 

information-bearing pattern of regular variation. Tree size 

explosion problem, not only exists in incremental trees 

[1,2], but also in traditional trees [5,6,7]. However, data 

stream mining cannot eliminate those non-informative 

candidates in preprocessing before starting classification 

mining, because the concept-drift problem may also bring 

non-informative variables into informative candidates.  

On one hand, a previous study [8] reenacts this 

phenomenon that the inclusion of noise data reduces the 

accuracy and increasing model size. This consequence is 

undesirable in the decision tree classification. There has 

been an attempt to reduce the effect of noise by using 

supplementary classifiers for predicting missing values in 

real-time and minimizing noise in the important attributes 

[9]. Such methods still demand extra resources in 

computation. 

B. Missing Data 

 It is known that a major cause of over-fitting in a 

decision tree is the inclusion of contradicting samples in 

the learning process. Noisy data and missing values are 

usually the culprits when contradicting samples appear. 

Unfortunately, such samples are inevitable in distributed 

communication environments such as wireless sensor 

network (WSN). Two measures are commonly employed 

to define the extent of values missing from a set of data 

[10]: the percentage of predictor values missing from the 

dataset (the value-wise missing rate) and the percentage of 

observation records that contain missing values (the case-

wise missing rate). A single value missing from the data 

usually indicates transmission loss or malfunctioning of a 

single sensor. A missing data value record may result 

from a broken link between sensors. In WSN, can 

distinguish the missing data to two categories: 

 Incomplete data with lost values: Because of an 

accidence of sensor itself, like a crash or a reboot, 

the instant data of the last event before the 

accidence will be lost. Hence, such kind of missing 

values is permanent, which is lost forever.  

 Unstable data with late arrival: Because of temporal 

disconnection or network delay, data stream capture 

faces asynchronous issues. The missing value 

caused by asynchronous is not permanent, which is 

temporally lost and will arrive in a short while. 

C. Bias Data 

Bias data is also called imbalanced distribution data. 

The term “imbalanced” refers to irregular class 

distributions in a dataset. For example, a large percentage 

of training samples may be biased toward class A, leaving 

few samples that describe class B. Imbalanced 

classification is a common problem. This problem occurs 

when the classifier algorithm is trained with a dataset, in 

which one class has only a few samples, and there are a 

disproportionally large number of samples in the other 

classes. Imbalanced data causes classifiers to be over-

fitted (i.e., produce redundant rules that describe duplicate 

or meaningless concepts), and, as a result, perform poorly, 

particularly in the identification of the minority class. 

Most of the standard classification algorithms assume 

that training examples are evenly distributed among 

different classes. In practical applications where this was 

known to be untrue, researchers addressed the problem by 

either manipulating the training data or adjusting the 

misclassification costs. Resizing training data sets is a 

common strategy that attempts to downsize the majority 

class and over-samples the minority class. Many variants 

of this strategy have been proposed [10,11,12]. A second 

strategy is to adjust the costs of misclassification errors to 

be biased against or in favor of the majority and minority 

classes, respectively. Using the feedback from the altered 

error information, researchers then fine-tune their cost-

sensitive classifiers and post-prune the decision trees in 

the hope of establishing a balanced treatment of each class 

in the new imbalanced data collected by the network 

[12,13]. However, they are not suitable for data stream 

mining because of the nature of incremental access to the 

constantly incoming streams. 

D. Concept-drift Data 

Data stream is also an infinite big data scenario that 

the underlying data distribution of newly arrival data may 

be appeared differently from the old one in the real world, 

so called concept-drift problem. For example, click-

streams of user’s navigating e-commerce website may 

reflect the preferences of purchase through the analysis 

systems. When people’s preferences of product change, 

however, the old user’s behavior model is not applicable 

any more that the drifting of concepts appears. 

The hidden changes in the attributes of data streams 

will cause a drift of target concept. In terms of the 

occurring frequency, commonly it can be distinguished in 

two kinds: abrupt drift and gradual drift. For data streams, 

the data arrive continuously that the concept-drift is local, 

for instance, only particular types of attribute may change 

with time while the others remain the same.   

III. INCREMENTAL DECISION TREE ALGORITHMS 

A. Decision Tree Learning using Hoeffding Bound 

      A decision-tree classification problem is defined as 

follows: N is the number of examples in a dataset with a 

form (X, y), where X is a vector of I attributes and y is a 

discrete class label. I is the number of attributes in X. k is 

the index of class label. Suppose a class label with the kth 

discrete value is yk. Attribute Xi is the i th attribute in X, 

and is assigned a value of xi1, xi2… xiJ, where 1 ≤ i ≤ I and 

J is the number of different values of Xi. The 

classification goal is to produce a decision tree model 

from N examples, which predicts the classes of y in future 

examples with high accuracy. In stream mining, the 

example size is very large or unlimited that N∞. 

      VFDT [1] constructs an incremental decision tree by 

using constant memory and constant time-per-sample. It 

is a pioneering predictive technique that utilizes the 

Hoeffding bound (HB) that    √    (
 

 
)     , where 

R is the range of classes distribution and n is the number 

of instances which have fallen into a leaf.  Sufficient 
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statistics is used to record the counts of each value     of 

attribute    belonging to class   . The solution, which 

doesn’t requiring the full historical data, is a node-

splitting criterion using a HB. To evaluate a splitting-

value for attribute   , it chooses the best two values. 

Suppose     is the best value of H(.) where     
              ; suppose     is the second best value 

where                        ; suppose         

is the difference of the best two values for attribute   , 

where                          . Let n be the 

observed number of instances, HB is used to compute 

high confidence intervals for the true mean       of 

attribute     to class    that                 

where        ∑   
 
 . If after observing      examples, 

the inequality        holds, then        , 

meaning that the best attribute     observed over a 

portion of the stream is truly the best attribute over entire 

stream. Hence, a splitting-value     of attribute    can be 

found without full attribute-values, even when we don’t 

know all values of    (from     to    ).  

     When data contains imperfect values, it may confuse 

the values of heuristic function. The difference of the best 

two heuristic evaluation for attribute   , where 

  ̅                     , may be negligible. To 

solve this problem, a fixed tie-breaking  , which is a user 

pre-defined threshold for incremental learning decision 

tree, is proposed as a pre-pruning mechanism to control 

the tree growth speed [2]. This threshold constrains the 

node-splitting condition that   ̅          . An 

efficient   guarantees a minimum tree growth in case of 

tree-size explosion problem.   must be set before a new 

learning starts, however, so far there has no a unique   

suitable for all problems. In other words, there is not a 

single value that works well in all tasks. The choice of τ 

hence depends on the data and their nature.  

B. Evoluation in the Past Decade 

According to node-splitting process of a decision tree, 

we can distinguish it into two categories: singletree 

algorithm and multi-tree algorithm. Singletree is a 

decision model that only builds one tree in the tree-

building approach while does not require any optional 

branches or alternative trees. Multi-tree builds a decision 

tree model dependent on many other trees at the same 

time. The advantage of singletree is lightweight favored 

for data streams environment and easy to implement, 

although in some cases, multi-tree may bring a higher 

accuracy.  

VFDT is the pioneer singletree of using HB to 

construct incremental decision tree for high-speed data 

streams, but it can’t handle concept drift. Functional tree 

leaf is originally proposed to integrate to incremental 

decision tree [3]. Consequently, Naïve Bayes classifier on 

the tree leaf has improved classification accuracy. The 

functional tree leaf is able to handle both continuous and 

discrete values in data streams. OcVFDT [14] provides a 

solution to deal with unlabeled samples based on VFDT 

and POSC4.5. The experiment shows four fifths of 

samples are unlabeled, while the performance still gets 

close to VFDT of fully labeled streams. OcVFDT is a one-

class classification that classifiers are trained to 

distinguish only a class of objects from all other objects. 

FlexDT [15] proposes a Sigmoid function to handle noisy 

data and missing values. Sigmoid function is used to 

decide what true node-splitting value, but sacrificing 

algorithm speed. 

For handling concept-drift problem, CVFDT [2] 

proposed a fixed size of sliding-window that integrated to 

VFDT. It constructs an alternative tree in the tree growing. 

When tree model is out-of-date within a window, the 

alternative branch will replace the old one so that it adapts 

to concept-drift data. HOT [16] proposes an algorithm 

producing some optional tree branches at the same time, 

replacing those rules with lower accuracy by optional ones. 

The classification accuracy has been improved 

significantly while learning speed is slowed because of the 

construction of optional tree branches. ASHT [4] is 

derived from VFDT adding a maximum number of split 

nodes. ASHT has a maximum number of split nodes. 

After one node splits, if the number of split nodes is 

higher than the maximum value, then it deletes some 

nodes to reduce its size.  

IV. HYPOTHESIS AND MOTIVATION 

A. Hypothesis 

The research is on the basic of the following 

assumptions:  

One-pass Process The feature of proposed method 

implement as a one-pass approach, which requires loading 

and computing the data records only one time. Therefore, 

this is potentially applicable for big data, even unbounded 

data problem. 

Data Volume The data is multi-dimensional, with 

bounded and constant values of attributes. The data is also 

labeled. A data record is called the instance. The data has 

a large scale of instances, even infinite. The algorithm 

builds an incremental decision tree, in which suppose 

there enough instances for the node splitting using the HB. 

Imperfect Data The imperfect data include: the noisy 

data, the data with missing values, the data with 

imbalanced class distribution, as well as the data with 

concept-drift. 

Performance Measures Accuracy is the number of 

correctly classified instances divided by the number of 

total instances. Tree size is the number of the rules in a 

decision tree. This also equals to the number of leaves in 

the tree model. Learning speed is the time to construct the 

decision tree. It is an immediate time in the incremental 

learning process. Memory cost is the memory size used to 

build the tree model. 

Classifier Due to the one-pass process, the incremental 

decision tree implements a test-then-train process. When a 

new instance arrives, it will traverse from the root to a leaf 

according to the tree model. This is also a testing process. 

During the traversing, the node splitting is triggered so 

that tree model is trained incrementally. Besides, the post-

pruning mechanism is infeasible since the nature of fast-

moving data scenario. No extra time is allowed to stop 

tree building and prune tree structure. 
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Application The result of the proposed methodology is 

a decision tree model, which presents rules from the root 

to the leaves. The tree-like structure shows a collection of 

complex rules intuitively in terms of IF-THEN-ELSE 

rules. Both human and machine can understand this rules 

easily.  

B. Motivation 

In this paper, we propose an incremental decision tree 

learning method that is suitable for big data analysis. 

What is the difference between traditional decision tree 

learning and incremental decision tree learning?  

In Figure 1, we provide an example of traditional 

decision tree learning. The criteria of splitting-node 

selection is based on heuristic function. For example, ID3 

algorithm uses the information entropy while C4.5 applies 

the information gain as the heuristic function. In general, 

the traditional tree learning requires loading the full data 

and analyzes the whole training data to build a decision 

tree. The splitting criteria is according to the heuristic 

result, splitting from the attribute with the larger heuristic 

value, until all candidates become internal nodes.  

 

Data
Designate attribute variables for 

analysis, with a class variable

Calculate H(.) of correlation of 

attributes and class 

Sorted the result and choose 

attribute Ai with the best H(.) the 

splitting node

Let A be the attribute with the best H(.) 

value among attributes

Let {aj|j=1,2…m} be the values of Ai 

Let {Sj|j=1,2...m} be the subset of S 

consisting respectively records with value aj 

Return a tree with root labeled A

Splitting nodes labeled a1, a2, … am to 

the trees using the H(.)

Let Q be a set of 

attributes {Aj|j=1,2...m}

Remove Ai from Q

LOOP

Until Q is empty

Decision Tree

 

Figure 1.  Workflow of Buiding A Traditional Decision Tree. 

Differently in Figure 2, incremental learning process 

using Hoeffding bound in the splitting criteria. It does not 

require loading the full data, instead, it only needs a part 

of data to train decision tree model. When new data 

arrives, the sufficient statistics are updated. If checking 

condition satisfied, it will compare splitting candidates 

with the best and the second best heuristic result. In this 

case, the tree model is updated incrementally, with newly 

arrival data. 

Data
Sort it to leaf using HT: 

Count Xij → yk : nijk

Splitting-Check

ni(l)>=nmin 

Calculate H(.) by nijk

ΔH(.) >HB

or ΔH(.)<HB<=r

Calculate ΔH(.) nijk :

ΔH(.)=H(Xa)-H(Xb)

Split Xa as branch

Xm = X – Xa, let leaf lm

Do not split:

Not update 

Decision Tree

Do split:

Update Decision Tree

Let Xi = Xm – X0 :

 Reset nijk

Most frequent class at lm:

Gm(X0)

NO

NO

YES

YES

 

Figure 2.  Workflow of Buiding An Incremental Decision Tree. 

    From the comparison above, obviously, the traditional 

method is not suitable for big data scenario, because 

loading full data is inapplicable in practical. That is why 

we propose an incremental method to deal with big data. 

The incremental process is applicable for continuously 

arrival data, even infinite data scenario.  

V. METHODOLOGY DESIGN 

A. Overall Workflow 

       The proposed methodology, which inherits the use 

of HB, implements on a test-then-train approach 

(Figure 3) for classifying continuously arriving data 

streams, even for infinite data streams. The whole test-

then-train process is synchronized such that when the 

data stream arrives, one segment at a time, the decision 

tree is being tested first for prediction output and 

training (which is also known as model updating) of 

the decision tree then occurs incrementally. 

 

 
Figure 3.  Test-then-train Workflow. 

B. Auxiliary Reconciliation Control 

The Auxiliary Reconciliation Control (ARC) is a set 

of data pre-processing functions used to solve the problem 

of missing data streams. The ARC can be programmed as 

a standalone program that may run in parallel and in 

synchronization with the test-and-train operation. 

Synchronization is facilitated by using a sliding window 

that allows one segment of data to arrive at a time at 

regular intervals. When no data arrive, the ARC simply 

Data 
Stream

TESTING TRAINING

Node-splitting Estimation

Tree Leaf Prediction

Decision 
Tree
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stands still without any action. The operational rate of the 

sliding window should be no greater than the speed at 

which the decision tree building is operated and faster 

than the speed at which the sensors transmit data. 

 
 

Figure 4.  The workflow of ARC in a gateway sensor node. 

To tackle the problem of missing values in a data 

stream, a number of prediction algorithms are commonly 

used to guess approximate values based on past data. 

Although many algorithms can be used in the ARC, that 

deployed should ideally achieve the highest level of 

accuracy while consuming the least computational 

resources and time. Some popular choices we use here for 

simulation experiments include, but are not limited to, 

mean, naïve Bayesian, and C4.5 decision tree algorithms 

for nominal data, and mean mode, linear regression, 

discretized naïve Bayesian and M5P algorithms for 

numeric data. Missing value estimation algorithms 

require a substantial amount of past data to function. For 

example, before using a C4.5 decision tree algorithm as a 

predictor for missing values, a classifier must be built 

using statistics from a sample of sufficient size. 

C. Functional Tree Leaf 

      Functional tree leaf [3], can further enhance the 

prediction accuracy via the embedded Naïve Bayes 

classifier.. In this paper, we embed the functional tree leaf 

to improve the performance of prediction by HT model. 

When these two extensions – an optimized node-splitting 

condition (   ̅     or          
              

or          
             ) and a refined 

prediction using the functional tree leaf – are used 

together, the new decision tree model is able to achieve 

unprecedentedly good performance, although the data 

streams are perturbed by noise and imbalanced class 

distribution.  

       For the actual classification, iOVFDT uses a decision 

tree model     to predict the class label   ̂  with 

functional tree leaf   when a new sample (X, y) arrives, 

defined as           ̂ . The predictions are made 

according to the observed class distribution (OCD) in the 

leaves called functional tree leaf  . Originally in VFDT, 

the prediction uses only the majority class  MC. The 

majority class only considers the counts of the class 

distribution, but not the decisions based on attribute 

combinations. The naïve Bayes  NB computes the 

conditional probabilities of the attribute-values given a 

class at the tree leaves by naïve Bayes network. As a 

result, the prediction at the leaf is refined by the 

consideration of each attribute’s probabilities. To handle 

the imbalanced class distribution in a data stream, a 

weighted naïve Bayes  WNB and an error-adaptive  Adaptive 

are proposed in this paper. These four types of functional 

tree leaves are discussed in following paragraphs. 

Let Sufficient statistics nijk be an incremental count 

number stored in each node in the iOVFDT. Suppose that 

a node Nodeij in HT is an internal node labeled with 

attribute xij and k is the number of classes distributed in 

the training data, where k≥2. A vector Vij can be 

constructed from the sufficient statistics nijk in Nodeij, 

such that Vij = {nij1, nij 2…nij k}. Vij is the OCD vector of 

Nodeij. OCD is used to store the distributed class count at 

each tree node in iOVFDT to keep track of the 

occurrences of the instances of each attribute.  

Majority Class Functional Tree Leaf: In the OCD 

vector, the majority class  MC chooses the class with the 

maximum distribution as the predictive class in a leaf, 

where  MC: arg max r = {ni,j,1, ni, j, 2… ni, j, r… ni, j, k}, and 

where 0<r<k.  

Naïve Bayes Functional Tree Leaf: In the OCD 

vector Vi,j = {ni,j,1, ni,j,2… ni,j,r… ni,j,k}, where r is the 

number of observed classes and 0<r<k, the naïve Bayes 

 NB chooses the class with the maximum possibility, as 

computed by the naïve Bayes, as the predictive class in a 

leaf. nij,r is updated to n’i,j,r by the naïve Bayes function 

such that                            , where X is 

the new arrival instance. Hence, the prediction class is 

 NB: arg max r = { n’i,j,1, n’i,j,2… n’i,j,r… n’i,j,k }.  

Weighted Naïve Bayes Functional Tree Leaf: In the 

OCD vector Vi,j = {ni,j,1, ni,j,2… ni,j,r … ni,j,k}, where k is the 

number of observed classes and 0<r<k, the weighted 

naïve Bayes  WNB chooses the class with the maximum 

possibility, as computed by the weighted naïve Bayes, as 

the predictive class in a leaf. ni,j,r is updated to n’i,j,r by the 

weighted naïve Bayes function such that       
     

                   , where X is the latest received 

instance and the weight is the probability of class i 

distribution among all the observed samples, such that 

   ∏    ∑   
 
     

    , where ni,j,r is the count of class 

r. Hence, the prediction class is  WNB: arg max r = { n’i,j,1, 

n’i,j,2… n’i,j,r… n’i,j,k }. 

Adaptive Functional Tree Leaf: In a leaf, suppose 

that V  
MC is the OCD with the majority class  MC; 

suppose V  
NB is the OCD with the naïve Bayes  NB and 

suppose that V  
WNB is the OCD with the weighted naïve 

Bayes  WNB. Suppose that y is the true class of a new 

instance X and E  is the prediction error rate using a  . E  

is calculated by the average E=errori /n, where n is the 

number of examples and errori is the number of examples 

mis-predicted using  . The adaptive Functional Tree Leaf 

chooses the class with the minimum error rate predicted 

by the other three strategies, where  Adaptive: arg min   = 

{E 
MC

, E 
NB

, E 
WNB}. 

D. Incremental Optimization  

      The model is growing incrementally so as to update 

an optimal decision tree under continuously arriving data. 

Suppose that a decision tree optimization problem   is 

defined as a tuple (      ). The set X is a collection of 

objects to be optimized and the feasible Hoeffding tree 

Predicted
Missing
values

...

S Cache
Test

Train

ARC

VFDTAggregated 
data feeds

Processed data 
segments

N

N

N

Base 
Station

Decision Center (Gateway Sensor Node)
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/Prediction

Failure or 
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   solutions are subsets of X that collectively achieve a 

certain optimization goal. The set of all feasible solutions 

is       and        is a cost function of these 

solutions. The optimal decision tree HT* exists if X and 

  are known, and the subset S is the set of solutions 

meets the objective function where HT* is the optimum 

in this set. Therefore, the incremental optimization 

functions can be expressed as a sum of several sub-

objective cost functions:        ⋃        
 
   , 

where         is a continuously differentiable 

function and M is the number of objects in the 

optimization problem. The optimization goal: 

                                .        ̂  is 

used to predict the class when a new data sample (X, y) 

arrives. So far timestamp t, the prediction accuracy 

defined as:       
∑            
 
   

    
             

{
       ̂    
       ̂    

  . 

To measure the utility of the three dimensions via the 

minimizing function, the measure of prediction accuracy 

is reflected by the prediction error in:            . 
The new methodology is building a desirable tree 

model by combining with an incremental optimization 

mechanism and seeking a compact tree model that 

balances the objects of tree size, prediction accuracy and 

learning time. The proposed method finds an 

optimization function       , where M = 3. When a 

new data arrive, it will be sorted from the root to a leaf in 

terms of the existing HT model. When a leaf is being 

generated, the tree size grows. A new leaf is created when 

the tree model grows incrementally in terms of newly 

arrival data. Therefore, up to timestamp t the tree size is: 

    {
                 ̅    
                            

 . 

It is a one-pass algorithm that builds a decision 

model using a single scan over the training data. The 

sufficient statistics that count the number of examples 

passed to an internal node are the only updated elements 

in the one-pass algorithm. The calculation is an 

incremental process, which tree size is “plus-one” a new 

splitting-attribute appears. It consumes little 

computational resources. Hence, the computation speed 

of this “plus one” operation for a new example passing is 

supposed as a constant value   in the learning process. 

The number of examples that have passed within an 

interval period of in node splitting control determines the 

learning time that                 . nmin is a 

fixed value for controlling interval of node splitting.                

      Suppose that     is the number of examples seen at a 

leaf yk and the condition that checks node-splitting is 

             . The learning time of each node 

splitting is the interval period – the time defined as     – 

during which a certain number of examples have passed 

up to timestamp t.  

Returning to the incremental optimization problem, 

the optimum tree model is the     structure with the 

minimum     . A triangle model is provided to illustrate 

the relationship amongst the three dimensions – the 

prediction accuracy, the tree size and the learning time. 

The three dimensions construct a triangle utility function 

in Figure 5. A utility function computes the area of 

triangle, reflecting a relationship amongst the three 

objects in: 

       
√ 

 
                     

 
Figure 5.  Three-obective Optimization. 

The area of this triangle        changes when node 

splitting happens and the HT updates. A min-max 

constraint of the optimization goal in (4) controls the 

node splitting, which ensures that the new tree model 

keeps a        within a considerable range. Suppose 

that            is a HT model with the maximum 

utility so far and            is a HT model with the 

minimum utility. The optimum model should be within 

this min-max range, near            : 
 

            
                     

 
                   

    According to the Chernoff bound, we know:  

          
                √

      ⁄  

  
         

where the range of         is within the min-max 

m o d e l                      
             . 

Therefore, if        goes beyond this constraint, the 

existing HT is not suitable to embrace the new data input 

and the tree model should not be updated. Node-splitting 

c o n d i t i o n  i s : 

  ̅    , 

or          
             , 

or          
             . 

, 

VI. EVALUATION 

A. Synthetic Data Streams 

Hyper-plane data is another typical data streams for 

concept-drift study [4,17]. We use MOA hyper-plane data 

generator to simulate the data streams without noise-

included (10 attributes and 2 classes, 2 of 10 attributes are 

randomly drifting). The performance measurement is 

Interval Test-then-train Evaluation in MOA. The 

aforementioned contents have verified that Error-adaptive 

is the best strategy of functional tree leaf, hence, it is 

applied in this test.  

The synthetic streams are marked when attributes 

drifting. A piece of streams is visualized (50 instances 

included) in Figure 6. Similar result appears that iOVFDT 
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outperforms the other two algorithms. In addition, it is 

obvious that: when a drift occurs, the accuracy is 

declining consequently. This test shows iOVFDT has a 

good performance dealing with attributes drifting.   

 

 
Figure 6.  Concept-drift evaluation for hyper-plane data streams. 

B. Sensor Data with Missing Values 

The complex nature of incomplete and infinite 

streaming data in WSNs has escalated the challenges 

faced in data mining applications concerning knowledge 

induction and time-critical decision-making. Traditional 

data mining models employed in WSNs work, which are 

mainly on the basis of relatively structured and stationary 

historical data, and may have to be updated periodically in 

batch mode. The retraining process consumes time as it 

requires repeated archiving and scanning of the whole 

database. Data stream mining is a process that can be 

undertaken at the front line in a manner that embraces 

incoming data streams.  

To the best of the author's knowledge, no prior study 

has investigated the impact of imperfect data streams or 

solutions related to data stream mining in WSNs, although 

the pre-processing of missing values is a well-known step 

in the traditional knowledge discovery process. We 

propose a holistic model for handling imperfect data 

streams based on four features that riddle data transmitted 

among WSNs: missing values, noise, delayed data arrival 

and data fluctuations. The model has a missing value 

predicting mechanism called the auxiliary reconciliation 

control (ARC). A bucket concept is also proposed to 

smooth traffic fluctuations and minimize the impact 

caused by late arriving data. Together with the VFDT, the 

ARC-cache facilitates data stream mining in the presence 

of noise and missing values. To prove the efficacy of the 

new model, a simulation prototype is implemented based 

on ARC-cache and VFDT theories by using a JAVA 

platform. Experimental results unanimously indicate that 

the ARC-cache and VFDT method yield better accuracy 

in mining data streams in the presence of missing values 

than VFDT only. One reason for this improved 

performance is ascribed to the improved predictive power 

of the ARC in comparison with other statistical counting 

methods for handling missing values, as the ARC 

computes the information gains of almost all other 

attributes with non-missing data. In future research, we 

will continue to investigate the impact of noisy or 

corrupted data and irregular data stream patterns on data 

stream mining. 

 

 
Figure 7.  Performance of ARC-cache missing values replacement 

 
Figure 8.  Magnified version of the diagram 

In this part, we use a set of real-world data streams 

downloaded from the 1998 KDD Cup competition 

provided by Paralyzed Veterans of America (KDD Cup, 

1998). The data comprise information concerning human 

localities and activities measured by monitoring sensors 

attached to patients. We use the learning dataset (127MB 

in size) with 481 attributes originally in both numeric and 

nominal form. Of the total number of 95,412 instances, 

more than 70% contain missing values.  

      In common with the previous experiment, we 

compare the ARC-Cache and VFDT method with the 

standard missing values replacement method found in 

WEKA using means. The results of the comparison are 

shown in Figure 7 and 8. Considering the number of 

attributes is very large, we apply a moderate window size 

(W = 100) for the ARC to operate. A complete dataset 

given by PVA is used to test the ARC-Cache (115MB). 

The experiment results demonstrate that using WEKA 

mean values to replace missing data yields the worst level 

of VFDT classification accuracy. Although using the 

ARC-Cache to deal with missing values in the dataset 
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does not yield results as accurate as the complete dataset 

without any missing values, ARC-Cache performance is 

much better than that achieved using WEKA means to 

replace missing values. The enlarged chart shows the 

WEKA replacement approach has very little effect in 

maintaining the level of performance because of the very 

high percentage of missing data (70%) in this extreme 

example. 

C. UCI Data Streams 

Dynamic data dominate many modern computer 

applications nowadays. They are characterized to be vast 

in size, fast moving in speed and consist of many 

attributes, which do not make sense individually, but they 

describe some behavioral patterns when analyzed together 

over some time. Traditional data mining algorithms are 

designed to load a full archive of data, and then build a 

decision model. New data that arrive would have to be 

accumulated with the historical dataset, and together they 

would be scanned again for rebuilding an up-to-date 

decision tree.  

TABLE I.   

DESCRIPTION OF DYNAMIC DATA 

Name Abbr. #Ins #Attr #Cls #Nom #Num 

iPod Sales IP 7882 29 3 16 12 

Internet Usage IU 10104 72 5 71 0 

Network Attack NA 494021 42 23 3 38 

Cover Type CT 581012 55 7 42 12 

Robot Sensor RS 5456 25 4 0 24 

Person Activity PA 164860 6 11 2 3 

 

Six scenarios of dynamic data are tested in the 

experiment, shown in Table 1. Each type of dynamic data 

represents typical decision-making problems on the topics 

of web applications, real-time security surveillance and 

activities monitoring. The data of web applications are 

Internet Usage (IU) data and iPod Sales on eBay (IP) data, 

which are generated from the recording of user’s click-

streams on the websites. The data of real-time security 

surveillance are Network Attack (NA) and Cover Type 

(CT) data. The data of activities monitoring are Robot 

Sensor (RS) and Person Activity (PA) data. The datasets 

are extracted from real-world applications that are 

available for download from UCI Machine Learning 

Repository. 

TABLE II.   

ACCURACY ANAYLSIS OF DYNAMIC DATA 

Method\Data RS IP IU CT PA NA 

C4.5 Pruned 99.45  

99.8

2  

82.3

4  91.01  75.20  

99.9

4  

C4.5 Unpruned 99.65  

99.7

0  

81.5

0  92.77  74.10  

99.9

5  

Incre.NB 55.35  

89.9

0  

75.2

9  60.52  49.28  

96.5

5  

VFDT 40.21  
90.7 79.0

67.45  43.75  
98.2

1  6  7  

VFDT_NB 55.35  

99.0

7  

82.0

3  77.16  61.03  

99.6

8  

VFDT_ADP 55.35  

99.2

1  

82.3

1  77.77  61.01  

99.7

9  

iOVFDT_MC 71.92  

81.7

9  

78.2

4  70.52  59.15  

99.2

3  

iOVFDT_NB 81.60  

98.7

8  

78.6

5  90.66  73.45  

99.6

9  

iOVFDT_WNB 81.91  

98.1

3  

78.9

5  90.51  72.35  

99.6

9  

iOVFDT_ADP 83.32  

98.9

2  

79.8

4  90.59  73.52  

99.8

5  

Standard 

Deviation. 20.21  6.09  2.31  11.80  11.28  1.08  

Variance 
408.5

4  

37.1

4  5.31  

139.1

7  

127.1

3  1.16  

Average 72.41  

95.6

1  

79.7

1  80.90  64.28  

99.2

6  

 

From Table 2, in general, it is observed that C4.5 had 

better accuracy than the other methods in all tested 

datasets because it built its decision model from the full 

dataset. Therefore it can attain a globally best solution by 

going through all the training data at one time. The other 

methods are incremental learning process that obtained a 

locally optimum solution in each pass of data stream. The 

strikethroughs indicate those accuracies that are below the 

average. Obviously, one can see that only C4.5 and 

iOVFDT_ADP (iOVFDT with Error-adaptive functional 

tree leaf) are able to achieve a ‘full win’ of satisfactory 

accuracies over the average across all the datasets. Fig. 8.1 

shows a graphical representation of the accuracies in the 

form of a stacked bar chart – despite C4.5, the iOVFDT 

family of algorithms (except MC) obtains pretty good 

accuracies. Therefore, when batch learning such as C4.5 is 

not feasible or available in scenarios of dynamic data 

stream mining, iOVFDT_ADP would be a good candidate. 

      Table 3 shows the model size (the number of nodes / 

the number of leaves) which is calculated as the number 

of leaves over the number of nodes for different datasets. 

For all dataset, C4.5 built the decision model requiring 

largest tree size. Naïve Bayes does its prediction by using 

distribution probabilities, so that the decision model does 

not exhibit a tree-like structure. Although smaller tie-

breaking threshold might bring respectively smaller tree 

size for VFDT, the accuracy is obviously worse than 

iOVFDT. It is interesting to see that the size of a globally 

best model (C4.5) is not much bigger than a locally 

optimum model (iOVFDT) because the latter algorithm 

allows tree to grow incrementally over time. 

TABLE III.   

MODEL SIZE ANAYLSIS OF DYNAMIC DATA 

 

RS IP IU CT PA NA 

C4.5 Pruned 

18/3

5 

20/3

9 

847 

/911 

10149 

/20297 

13265 

/24120 

724 

/838 

C4.5 

Unpruned 

22/4

3 

24/4

6 

1028 

/126

7 

14903 

/29805 

6467 

/10357 

679 

/801 
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IncreNB N/A N/A N/A N/A N/A N/A 

VFDT 1/1 5/9 

46/4

7 

127/25

3 

167/18

7 

87/9

4 

VFDT_NB 1/1 5/9 

46/4

7 

127/25

3 

167/18

7 

87/9

4 

VFDT_ADP 1/1 5/9 

46/4

7 

127/25

3 

167/18

7 

87/9

4 

iOVFDT_MC 

22/4

3 6/11 

325 

/329 

1280 

/2559 

2211 

/2500 

185 

/249 

iOVFDT_NB 

22/4

3 8/15 

325 

/329 

1864 

/3727 

2440 

/2821 

188 

/255 

iOVFDT_WN

B 

22/4

3 8/15 

325 

/329 

1864 

/3727 

2233 

/2551 

188 

/255 

iOVFDT_AD

P 

22/4

3 8/15 

325 

/329 

1864 

/3727 

2440 

/2821 

188 

/255 

 

     The speed of learning decision model was reflected by 

the time in seconds as shown in Table 4. In general, C4.5 

has the slowest learning speed for all datasets. Comparing 

the average learning times of VFDT to iOVFDT, our 

experiment result shows both algorithms have a very 

similar learning speed. iOVFDT has a learning speed 

almost as fast as the original VFDT. This implies that the 

improved version, iOVFDT can achieve smaller tree size, 

good accuracy without incurring cost of slowing down the 

learning speed. Fast learning speed is important and 

applicable to time-critical applications. 

TABLE IV.   

LEARNING SPEED ANAYLSIS OF DYNAMIC DATA 

Methods\Data RS IP IU CT PA NA 

C4.5 Pruned 0.30  0.22  0.40  931.34  180.88  120.68  

C4.5 Unpruned 0.80  0.40  0.39  1717.35  121.62  187.44  

IncreNB 0.26  0.10  0.24  11.98  0.95  17.77  

VFDT 0.18  0.07  0.19  6.65  0.63  4.50  

VFDT_NB 0.13  0.09  0.24  9.88  0.96  6.64  

VFDT_ADP 0.14  0.09  0.30  10.18  1.28  7.95  

iOVFDT_MC 0.12  0.08  0.20  6.86  0.64  4.36  

iOVFDT_NB 0.17  0.09  0.30  8.80  0.97  6.62  

iOVFDT_WNB 0.16  0.10  0.29  8.61  0.98  6.41  

iOVFDT_ADP 0.13  0.11  0.31  13.09  1.26  6.78  

Avg. C4.5 0.55  0.31  0.40  1324.35  151.25  154.06  

Avg. Increm.NB 0.26  0.10  0.24  11.98  0.95  17.77  

Avg. VFDT 0.15  0.08  0.24  9.57  0.96  6.36  

Avg. iOVFDT 0.14  0.10  0.27  8.34  0.96  6.04  

 

D. Real-time Recommendation Data 

Recommendation system is an important application 

of data mining that tries to refer the right products to the 

right customers in the right time. We use some real-life 

online recommendation data from the GroupLens 

Research: 

MovieLens www.grouplens.org/node/73 

Book-cross www.informatik.uni-

freiburg.de/~cziegler/BX/ 

They are the typical dataset for the recommending 

system. This data is consisted of three files: movie/book 

information, user information, and rating. The three files 

are joined together by the user ID and movie/book ID.  

After combining the data, MoiveLens includes 

1,000,209 instances, 1 numeric attributes, 24 nominal 

attribute. The target class is the type of movie. There are 

18 distinct types. Book-crossing includes 1,316,100 

instances, 2 numeric and 5 nominal attributes. The target 

class is the country where the users are. There are 61 

investigated countries. For a recommendation system, the 

classification model is used to predict what type of the 

movie does the user like, or which region does the user 

live in, from the previous rating data. The benchmark 

algorithms are VFDT, ADWIN and iOVFDT, with Error-

adaptive functional tree leaf.  

For MovieLens data, after normalized the result, we 

can see the comparison of these three algorithms in Figure 

9. In general, iOVFDT and ADWIN have better accuracy 

than VFDT, but ADWIN results bigger model size than 

iOVFDT, as well as the learning time. For Book-crossing 

data, the accuracy and tree size analysis are shown in 

Figure 10 and 11 respectively. It reflects that ADWIN still 

obtains a bigger tree size. iOVFDT outperforms the others 

in terms of the accuracy and the tree size.  

 
Figure 9.  Normalized comparison result of MovieLens data 

 
Figure 10.  Accuracy of Book-crossing data 
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Figure 11.  Tree size of Book-crossing data 

VII. COCLUSIONS 

How to uncover the knowledge hidden within massive 

and big data efficiently, remains an open question. In the 

opinion of author, a well-designed algorithm is crucial in 

solving the problems associated with big data. 

A data stream model is usually defined as a model in 

which data move continuously at high-speed. Most big 

data can be considered as data streams, in which many 

new data are generated in a short time, and moving 

continuously. Data streams contain very large volumes of 

data, which cannot be stored in either internal or external 

memory. A one-pass algorithm, therefore, forms the basis 

of data stream mining, which briefly stores a sufficient 

statistical matrix when new data passes, but does not 

require the full dataset being scanned repeatedly. However, 

imperfect data streams, like missing values, noise, 

imbalanced distribution and concept-drift, are common in 

the real world applications. To the best knowledge of the 

author, no suitable methods have solved all above 

problems well so far. 

The main contributions of this research propose:  

 An incremental decision tree algorithm handling 

imperfect data streams.  

 A mechanism so called Auxiliary Reconciliation 

Control (ARC) is used to handle the missing data.  

 An adaptive-tie breaking threshold is robust to the 

noisy data.  

 A new functional tree leaf of weighted Naïve Bayes 

is brought forward to deal with imbalanced 

distributions in data streams. 

 A test-then-train learning approach monitors the 

performance of decision model in real-time so that 

the model is sensitive to concept-drift occurrence. 

     Experiment shows the proposed methodology can 

solve the aforementioned problems as a result. 
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