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Abstract— The analysis of high—-dimensional data is usually
challenging since many standard modelling approaches tend
to break down due to the so—called ‘“curse of dimensional-
ity”’. Dimension reduction techniques, which reduce the data
set (explicitly or implicitly) to a smaller number of variables,
make the data analysis more efficient and are furthermore
useful for visualization purposes. However, most dimension
reduction techniques require fixing the intrinsic dimension
of the low-dimensional subspace in advance.

The intrinsic dimension can be estimated by fractal
dimension estimation methods, which exploit the intrin-
sic geometry of a data set. The most popular concept
from this family of methods is the correlation dimension,
which requires estimation of the correlation integral for
a ball of radius tending to 0. In this paper we propose
approaches to approximate the correlation integral in this
limit. Experimental results on real world and simulated data
are used to demonstrate the algorithms and compare to
other methodology. A simulation study which verifies the
effectiveness of the proposed methods is also provided.

Index Terms— intrinsic dimensionality, fractal-based meth-
ods, correlation dimension

I. INTRODUCTION

Any real-life applications deal with very high

dimensional data. In order to handle those data
in a proper way, we need to investigate whether they
can be represented in some lower dimensional space.
This step is very important since it alleviates the curse
of dimensionality [2] and other issues such as increased
computing time and data storage space. Dimension re-
duction is the mapping of high dimensional data into
a lower dimension in which they have a meaningful
representation. Adequately, the reduced dimensionality
should be compatible with the intrinsic dimension (ID)
of the data set. Dimension reduction methods can be cat-
egorized as linear or nonlinear methods. Linear methods,
such as principal component analysis, seek a globally flat
subspace . Nonlinear methods try to search a locally flat
subspace, such as multidimensional scaling methods and
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ISOMAP. Most dimension reduction methods, whether
linear or non-linear, require fixing the intrinsic dimension
of the low-dimensional subspace in advance. To fix terms
throughout the manuscript, we are given a data set () =
{x1,...,2,} € RP which we assume to be scaled; i.e.
each variable has been divided by its standard deviation.
Let the intrinsic dimension of 2 be given by a value
d < D, which gives effectively the minimum number
of variables necessary to describe the data without much
loss of information [4] [8]. According to Funkanaga’s
definition, the ID is equal to d when the points lie entirely
within an d-dimensional subspace of RP [4] [8]. It should
be noted that, while Fukanaga’s concept of “subspace”
clearly had to be understood as that of a “linear subspace”,
we have in this paper a more general notion in mind which
comprises linear as well as nonlinear manifolds.

ID estimation methods can be classified into two
groups: local methods divide the data into small subre-
gions, or provide a series of local ID estimates at several
target points, in order to arrive at a suitably averaged
overall ID estimator. Examples for such methods, which
do not form the focus of this manuscript, include Levina—
Bickel’s Maximum Likelihood estimator [15], Brands’
concept of ‘charting’ [3], among others [4]. On the other
hand, global methods try to estimate the dimension using
the whole data set, imposing the implicit assumption that
the intrinsic dimension is constant over the data set. This
family includes purely linear methods based on linear ap-
proximation (such as the “broken stick method” and many
other stopping rules for principal component analysis [11]
[14]), but also non—parametric approaches such as fractal-
based methods. The term “fractal” is used since under this
sort of approach, the intrinsic dimensionality d does not
need to be an integer.

Fractal techniques [16] provide a useful tool for a
variety of scientific fields [23] [18]. For instance, fractals
are used to produce realistic natural objects, as moons or
planets, by using computer graphics. The most important
properties of fractals are self-similarity and symmetry.
To put the analogy to statistics short: while fractals
can be considered as mathematical sets with non—integer
dimension, in fractal dimension estimation we deal with
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data sets of non—integer intrinsic dimension.

Fractal dimension is a measure that describes the
geometry of an irregular object (here: a data set) by
an estimated real number. It describes the filling of the
fractal object’s space, which can be used to construct ID
estimators. Various fractal-based methods have been pro-
posed, as quantization estimator [20], kernel correlation
method [10], horizontal structuring element, box-counting
and correlation dimension [23]. Camastra presented a
good survey on intrinsic dimension estimation methods
focusing on fractal-based methods [4] [5].

The most common route to fractal dimension estimation
is via correlation dimension. The method requires the
construction of a so—called correlation integral, from
which the ID is extracted using appropriate techniques.
This step is not straightforward, since it requires counting
the number of data pairs within a ball of radius tending
to 0. This paper presents new techniques which address
this problem. In Section II, the concept of correlation
dimension is briefly reviewed. The improved methods —
Intercept method, Slope method and Polynomial method
— are discussed in Section III. In Section IV, we provide
case studies on real data sets and a simulation study,
which are used to state the effectiveness of the methods.
Finally, conclusions are drawn in Section V. Most results
in this article are based on an earlier paper presented at the
ICSSBE2012 conference [12], but a substantial new case
study using data from the astrophysical space mission
Gaia [1] has been included in Section IV-C.

II. CORRELATION DIMENSION

The idea of the correlation dimension method is to
estimate the intrinsic dimension via a pairwise distances
algorithm which counts the number of point pairs that
are closer to each other than a given radius. Let Q =
{z1,22,...,2n} € RP denote a set of data points, and
any positive number. The correlation integral, according
to the Grassberger—Procaccia (GP) method [5], is defined
as

Cr) = tim —=— 3" 5" I(Jay —mill <)

Nn— 00 n(n — 1) =5
(1)

where I(.) is an indicator function, and ||z; — x;|| denotes
the Euclidean distance between data points, x; and z;.
In practice, when r — 0, then C(r) is monotonically
decreasing to zero. Note also that the number of data pairs

which can be formed from n points is given by Z =
%n(n —1), which is just the inverse normalizing constant,
so that clearly 0 < C(r) < 1. Now, the correlation

dimension is defined by:

. In(C(r)
deor = g = 03—

2
Therefore, for small r, the dimensionality can be obtained

as the slope of the (linear part of) the “log-log” curve of
In(C(r)) versus In(r) [4].
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Generally, the fractal dimension of a data set is affected
by several factors; the relationship among variables, the
data dimensionality, the intrinsic dimension of the data
set, the portion of distance pairs that are used for calcu-
lation, and the sample size n [17]. Notably, the definition
(1) of the correlation integral would require an infinitely
sized data set. Compared to the box—counting dimension,
the correlation dimension is in practice less demanding
on the sample size, and has a larger dynamical range of
O(n?). Furthermore, it can be evaluated for smaller values
of r [22] [9].

The main problem with the practical implementation of
the correlation dimension is that the correlation integral
needs to be estimated for a ball of radius tending to O.
Clearly, the radius 7 can not be equal to zero because
this implies that there are no data points in the circle,
yielding “N AN” at C(0). Hence, one needs to decide on
a suitable range of values of r which is used to arrive at
an estimate of the ID [22].

With our techniques, we try to capture the distance
pairs of C(r) in a more effective way and consistent with
the GP method. The algorithms achieve the estimation
of the ID of a given data set at radius r = 0. The
developed algorithms are Intercept method, Slope method
and Polynomial method. While the Slope method is
effectively an implementation of the log-log technique
described above, which makes use of the approximately
linear part of the correlation integral curve, the other
two methods are entirely new and tackle the problem by
direct exploitation of features of the function InC(r)/Inr
and C(r), respectively. All three approaches are based on
the idea of linear regression. The improved methods are
described in the next sections.

III. PRACTICAL COMPUTATION OF CORRELATION
DIMENSION

A. Intercept method

The intercept method estimates the fractal dimension
not through direct evaluation of C(r) at » ~ 0, but
through linear extrapolation of the graph (r, ¢(r)), where
¢(r) = InC(r)/Inr. In practice, the curve c(r) is plotted
versus the radius r. Then a grid of values of r, say
rj,j = 1,...,s is chosen which is positioned close to
0 and contains a sufficient number of data points. In
practice choices like 0.3 < r < 0.5, with a grid size of
s = 30, work well. Hence, it is only necessary to compute
the correlation integral for a portion of data pairs which
reduces the computational time.

This approach is motivated through similar ideas pro-
posed by Rummel [21], who suggested backwards ex-
trapolation to obtain regression estimates under covariate
measurement error (“SIMEX”). Following this idea, we
predict the intrinsic dimension by extrapolating a lin-
ear regression line (fitted to the values (7;,c(r;)),7 =
1,...,s8) to r — 0. The intrinsic dimension is then
obtained as the intercept of the fitted linear equation.
Specifically, consider a linear regression with least squares
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estimator a (intercept) and c (slope), then the correlation
dimension can be approximated as

c(r) =a+cr,
which at r = 0 gives

deor = ¢(0) = a.

B. Slope method

In this section, we exploit the previously stated proper-
ties of the log-log curve of the correlation integral. Hence,
suppose the high-dimensional data set €2 has an intrinsic
dimension d. If the sample size is large enough then the
number of distance pairs will increase due to the increase
of r, and since C(r) is a function of r, then as r increases
C(r) will increase proportionally with r?. Thus, the C(r)
curve can be described by;

C(r) x rd,

or we can write

C(r)y=c- rd,

where d is the intrinsic dimension and ¢ is constant.
Applying the logarithm to the above equality, we get

In(C(r)) = In(c) + dIn(r).

By substituting into equation (2), the correlation dimen-
sion can be formulated as

A — 1 In(C(r)) In(c) 4 din(r)
r =00 Tn(r) =0 In(r)
... In(c) | din(r)
deor = 715% In(r)  In(r) "

At r — 0, the term in(c)
n(

. approaches 0. Therefore, d ., =

d, which means that the correlation dimension is a good
estimate of the intrinsic dimension of the corresponding
data set.

Now, to obtain the estimate of intrinsic dimension, we
plot the curve of In(C(r)) versus In(r) and the slope
value is computed using a simple linear regression method
which fits a line on the curve of In(C(r)), this is done
by assuming that the equation of regression line is;

In(C(r)) = bln(r) + a;

where, a is the intercept, and the slope of the equation (b)
is the estimate of the intrinsic dimension. For the choice
of interval in which the linear regression is fitted, we
recommend again 0.3 < r < 0.5.

C. Polynomial method

This section provides a potential model for the cor-
relation integral based on the relationship between the
correlation integral C'(r) and the radius r. We develop an
approach in which C(r) is explicitly modelled through
a higher—order polynomial, considering the following
condition;

e atr=0,= C(0) =0.

©2013 ACADEMY PUBLISHER

We state the following general result (see appendix for
proof): For a polynomial with degree p, let C(r) = a,rP+
-+ -+agr? 4+ air+ag, and subject to constraint C'(0) = 0;
one has,

1) If aq exists then d = 1,

2) For a; =0, then d = 2,

3) For ag = a; =0, then d = 3,

4) Fora,—1 =---=az=a; =0, then d = p.

The correlation dimension can be obtained using mul-
tiple linear regression (e.g., function 1m in R), and as a
default we assume that C(r) = aqr* 4+ azr® +asr? +air
(the polynomial degree would need to be increased in
order to detect IDs with d > 5). Then, one examines
the significances of parameters by t-test, and the first
significant parameter corresponds to the ID. In practice,
we recommend to leave the significance level of this
test unspecified, but to determine the ID by the most
significant parameter.

It is important to emphasize that, in difference to
the intercept and slope methods, the polynomial method
provides an integer ID estimator (so, the estimated ID is
not really ‘fractal’ in a strict sense).

IV. EXPERIMENTAL RESULT

In this section, we verify our methods on real data
sets; the horse mussels data (D = 4), airquality data
(D = 4), and the gaia data (D = 19), all of which are
available in R packages [19]. In order to implement our
methods, the data is scaled to zero mean and unit standard
deviation as the first step. Practically, for the correlation
dimension method (Intercept method and Slope method),
the sequence of 7 is 0.3 to 0.5. This choice of the lower
bound guarantees that a sufficient number of data pairs is
included in the computation of C(r) [12]. Comparison is
made with principal component analysis (PCA).

A. Horse mussels data

We discuss horse mussel data (sampled from the
Marlborough Sounds, NZ) with 82 observations on four
variables; shell width (W), height (H), length (L), and
mass (S). Figure 1b illustrates the result of a principal
component analysis on the (scaled) data set. One finds that
the first and second PC explain 94% and 3%, respectively,
of the total variance. Clearly, when performing linear
dimension reduction via PCA, users decide the dimension
by how much variance they want to preserve. Hence,
depending on this choice (common default choices would
be 90% or 95%), one will conclude that the (linear) ID for
this data set is 1 or 2, which matches the visual impression
from Figure 1la.

Intercept method. We use this technique to estimate the
intrinsic dimension via the correlation dimension method.
We start the implementation by studying the correlation
dimension curve with radius r. Here, figure lc illustrates
that the curve is given by a grid on the right side, and the
curve looks to be reasonably linear from 0.3 to 0.5. Figure
lc displays the fitted linear regression ¢(r) = a + c¢r on
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Figure 1: Horse mussels data; (a) Scatter plot, (b) Scree
plot, (c) Correlation dimension curve with range of r from
0.3 to 0.5, (d) Log-log plot of correlation integral versus
radius.

Coefficients:

Estimate Std. Err t value Pr(>]|t])
re -0.06009 0.01720 -3.495 0.00172 *=*
I(re”2) 0.61647 0.17471 3.529 0.00158 =xx
I(re”3) -0.75786 0.55602 -1.363 0.18457
I(re”4) 0.73413 0.55925 1.313 0.20075

Signif.codes:0 xxx 0.001 =+ 0.01 %= 0.05 . O.
TABLE I.: Mussels data: summary table of the output of
Polynomial method.

the correlation dimension curve. Therefore, the intrinsic
dimension estimation is equal a = 2.17461 which is the
intercept value in the linear equation of y = 2.17461 +
3.06748(r).

Slope method. The figure 1d displays the plotted curve
of In(C(r)) versus In(r) with a fitted linear regression.
Then the estimated intrinsic dimension is equal b
2.264904, this value is close to the dimension value
estimated by intercept method.

Polynomial method. We test the significance of pa-
rameters using a polynomial fit to C'(r) with degree 4.
The results of the polynomial regression are provided in
table I. The most significant parameter is as, and hence,
ID = 2, though the significance of a; is of similar
magnitude, so there may also be evidence for ID = 1.

B. Air Quality data

The air quality data, displayed in figure 2a with 111
observations, consists of; mean ozone (Ozone), solar

©2013 ACADEMY PUBLISHER

1

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013

radiation (Solar.R), average wind speed (Wind), and max-
imum daily temperature (Temp) recorded in New York,
May to September 1973. In figure 2b, the scree plot shows
that three components explain 93% of the total variance
of the scaled data, so depending on where one places the
cut point one would decide for IDs of 3 or 4. This result is
intuitive when considering the data, which do not possess
a very pronounced inner structure.

Ozone
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o Xed . st
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Figure 2: Airquality data; (a) Pairwise plots, (b) Scree plot
of four measurements of airquality data, (c) c(r) curve
versus r, which is roughly linear for a reasonable range
of r. (b) Log-log plot of correlation integral versus r

Next, the ID is obtained via the correlation dimension:
Intercept method. We plot ¢(r) versus versus r. Figure 2c
shows that the curve of correlation dimension is mostly
linear in the chosen range of r. Figure 2c displays the
fitted regression line ¢(r) = a + cr on the correlation
dimension curve. Therefore, ID = 3.438883 which is the
intercept value in the linear equation of y = 3.438883 +
7.127591 (7).

Slope Method. The linear regression is fitted through
the curve of In(C(r)) in the log-log plot as shown in
figure 2d. The linear equation is y —2.279512 +
3.764282In(r), so the intrinsic dimension is equal b =
3.764282. The result is reasonably close to the intercept
method.

Polynomial method. We test the significance of param-
eters using a polynomial with degree 4. From provided
* symbols in the summary (table II) we see immediately
that the most significant parameter is as, and, hence, the
estimated ID is equal to 3.

We find that the techniques arrive at sensible results
which broadly agree with each other, and are consistent
with the visual impression and the scree plot.
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Coefficients:

Estimate Std. Err t value Pr(>]|t])
re 0.01320 0.00389 3.395 0.00221 =*x*
I(re”2) -0.13403 0.03765 -3.559 0.00146 =x
I(re”3) 0.44958 0.11535 3.898 0.00061 xxx*
I(re”4) -0.35947 0.11263 -3.192 0.00368 =«
Signif.codes:0 xxx 0.001 xx 0.01 = 0.05 . O.

TABLE II.: Airqualty data: the result of fitting a polyno-
mial of degree 4.

C. Gaia data

Gaia is a space observatory mission of the European
Space Agency (ESA). The mission aims to collect data
from about 1 billion stars in our Galaxy and extragalactic
objects. Gaia will provide comprehensive astrophysical
information for each star, including mass, temperature,
chemical composition, among others. One of its major
goals is to determine the distances, the positions, and
annual proper motions of stars [1]. Gaia consists of
two telescopes providing two observing directions with
a fixed, wide angle between them. This will sample the
spectral energy distribution at 96 points across the optical
and near-infrared wavelength range (3301000nm). The
measurements themselves are photon counts (energy flux).
Therefore, each star can be represented as a point in a 96-
dimensional data space.

We are going to analyze a simplified version of such
data, which is generated by computer models. Our data
consist of photon counts measured in 16 (rather than 96)
wavelength bands with 8286 observations. Additionally
we include the three astrophyical parameters temperature,
metallicity, and gravity (which form the input space of the
computer model) in our data set, giving a total of D = 19
dimensions for the raw data. We begin our analysis by
providing a scree plot in figure 3a. The quickly falling
curve starting in the left top provides the share of total
variance explained by the respective principal component.
The usual way of interpreting this plot is to identify
sudden breakpoints, which separate the informative from
the noise-carrying components. One finds here that there
are two possible interpretations for this data set: There is
a first breakpoint at about 3 components, and a second
(weaker) breakpoint between 5 and 6 components. Com-
monly, when performing linear dimension reduction via
PCA, users decide the dimension by how much variance
they want to preserve. In the first case, 89% of the total
variance are explained, while in the second case about
98% is explained. Note that the result d = 3 is backed
up by the broken stick method (this technique compares
variation explained by the j—th PC with the expected
length of the j-th largest segment if the total variance
was randomly distributed into D parts), represented by
the flatter (red) curve.

We now compare these results to the estimated
dimensionality via the correlation dimension.

Intercept method. We study the correlation dimension
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Figure 3: Gaia data; (a) Scree plot of 19 variables, (b) The
implementation of Intercept method “c(r) curve versus r”,
(c) Log-log plot of correlation integral versus r

curve ¢(r) as a function of radius 7. As shown in
figure 3b, the curve of correlation dimension looks to
be reasonably linear in the chosen range of r. Figure 3b
also displays the fitted regression line ¢(r) = a + ¢7 on
the correlation dimension curve. Then, ID = 5.401008
which is the intercept value in the linear equation of
y = 5.401008 + 7.298104 (r).

Slope method. The plot in figure 3c displays the curve
of In(C(r)) versus In(r) with a fitted linear regression.
Therefore, the estimated intrinsic dimension is equal b =
5.657659; this value is close to the dimension value
estimated by intercept method.

Polynomial method. The ID is derived by considering
the significances of parameters. For a polynomial of
degree S, one observes from Table III that the most sig-
nificant parameter is by far as, so the intrinsic dimension
of 5 is clearly identified. We should note that a further
increase of the degree of the polynomial for this data set
provides a somewhat less clear picture, since the higher—
degree polynomials correlate in a complex manner with
each other, which dilutes the distinctiveness with which
the intrinsic dimension is identified.

We find that our approaches indicate that the estimated
intrinsic dimension for the Gaia data could be between
5 and 6, which is a sensible result, and agrees with one
of the two possible interpretations from PCA. Without
providing the results explicitly, we note at this occasion
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Coefficients:

Estimate Std. Err t wvalue Pr(>|t])
re 0.000814 0.000501 1.625 0.1166
I(re”2) -0.011956 0.006337 -1.887 0.0709 .
I(re”3) 0.062008 0.029009 2.138 0.0425 =«
I(re”4) -0.149304 0.057140 -2.613 0.0150 =
I(re”5) 0.190286 0.041011 4.640 9.47e-05 xxx*

Signif.codes:0 xxx 0.001 xx 0.01 %= 0.05 . O.

TABLE III.: Gaia data; the result of fitting a polynomial
of degree 5.

that (our variant of) Brand’s method [3] [13], representing
a local 1D estimation technique, produces an ID value of
about 2.4 for this data set; hence, favoring the alternative
PCA-based interpretation. In general, local methods will
provide smaller IDs than global methods, since they are
able to resolve the local data structure more flexibly [13].

It should also be noted that both results have a plausible
physical interpretation. Since the input space is three-
dimensional, and since the remaining 16 variables are
generated from this input space, there is a strong argument
for an intrinsic dimension of 3. On the other hand, the 16-
dimensional data cloud of photon counts, which has been
simulated in some complex manner from the APs, will
arguably increase the ID of the whole data set at least to
some extent, where it is known that this increase should
be less than three since the first three principal component
scores of the 16—-dimensional photon counts are strongly
correlated [7]. This is reflected in the ID of 5 obtained
through the correlation dimension technique.

D. Simulation studies

The purpose of this section is to present the precision
of our approaches. We generate data sets of known ID and
try to identify its ID through Intercept and Slope methods.
We consider two cases; firstly (a), data set of size n = 200
with dimension D = 4 is generated from a multivariate
Gaussian distribution with parameters p = (9,5,6,4),
where the diagonal of the covariance matrix is equal
to (50, 50,50, 50). Since these data do not possess any
inner structure, we would assume the ID to be equal (or
close to) 4 in this case. We generate 100 data sets in
this manner, and for each sample we calculate the ID
estimate. For illustration, a boxplot is provided which
shows the median and distribution of ID estimates (figure
4a). These results indicate that both methods provide
reasonable ID estimates. In fact, the slope method gives a
result very close to D = 4 with a median slope estimate
of d = 3.854845, while the median of the IDs obtained
via the intercept method is 3.497044.

Secondly (b), the data is generated by adding four—
variate Gaussian noise, with zero means and identity
matrix serving as covariance, to data distributed uniformly
on a straight line (think of a long cigar-like object in 4D
space). We would assume these data to have ID roughly
equal to 1. Again, we provide a box plot of the ID
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Figure 4: Simulation study; box plots of ID estimates via
Intercept and Slope method of 100 data sets generated
from multivariate Gaussian distribution. a: first simula-
tion, b: second simulation.

estimates for 100 simulated data sets. Figure 4b illustrates
that both the Intercept and the Slope methods yield good
ID estimates, with the Intercept method achieving results
(median: 1.162404) which are closer to 1 than the Slope
method (median: 1.291982).

V. CONCLUSION

The estimation of intrinsic dimension is very useful
to deal with real-life data with high dimension. In this
paper we develop new approaches for calculation of
the intrinsic dimensionality via correlation dimension.
We have investigated three techniques, two of which
are novel, to implement fractal ID estimation via the
correlation integral. Both Intercept and Slope methods
provide non-integer ID estimates while the Polynomial
method provides an integer value.

All three methods could be classified as nonparametric
methods, as opposed to linear methods such as PCA. Con-
ceptually, the “linear” intrinsic dimension should provide
an upper bound for IDs achieved via nonlinear methods,
and in fact, we have observed the values suggested by
PCA-based ID to be often larger than those obtained by
nonparametric ID estimation methods. To be even more
precise, within the nonparametric methods, we found that
global methods tend to produce larger IDs than local
methods.

The proposed techniques require relatively few data
points and are not demanding on the sample size. For
the Intercept and Slope method, the chosen range of r is
motivated by the part of the respective curve that looks
approximately linear. These regions of linearity may differ
between different data sets, but we have provided default
choices, which, according to our experience, work well
for a wide range of data sets. The concepts introduced
in this paper are not restricted to a particular type of
application. We have given three examples — from the
environmental and physical sciences — where the methods
turned out to be useful, but they could be applied onto
data sets of any kind, including, for instance, data (bases)
which are created and collected in the internet.
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Examples with real data verify the concept of estimat-
ing correlation dimension at exactly » = 0. All proposed
methods are easy to implement and to apply, and the
experimental analysis indicates that the methods are able
to deal with various types of data, including linear and
non-linear structures. A simulation study has confirmed
that the Intercept and Slope method provide ID estimates
which, in average, are close to the underlying “true” ID.
The Polynomial method is of theoretical appeal, though
we have not attempted a simulation study since the
result needs to be extracted manually from the regression
output.
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