A Prediction Model for Forecasting the Trend of Macau Property Price Movements and Understanding the Influential Factors

Simon Fong Faculty of Science and Technology, University of Macau, Macau SAR Email: ccfong@umac.mo

Yap Bee Wah

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia Email: yapbeewah@salam.uitm.edu.my

Abstract—Property price and transaction activities may contain many factors. Data mining for property research provides a feasible way to analyze the trend and to understand the underlying influential factors. This paper addresses the issues and techniques on experiences in data mining for Macau property market. The original data for property price and factors are obtained as a multi-attribute dataset from the Statistics and Census Service of Macao SAR Government. The challenge is to apply different data mining methods and algorithms which include SVM, Neural Network, C&R Tree, Weka, SPSS, Multilayer Perception Model in order to identify hidden knowledge.

Index Terms— data mining, SVM, Neural Network, C&R Tree, Weka, SPSS, Multilayer Perception Model

I. INTRODUCTION

In this paper, we are presenting an example data mining application in the Macau Property policy domain. A multi-attribute dataset is downloaded from the website of Statistics and Census Service of Macao SAR Government for our data mining project. Although many statistical methods [1, 2, 3, 4] exist in analyzing property markets, using data mining methods could be an alternative; hence the objective of this project is to explore the potential powers of data mining algorithms in analyzing multi-attribute property market data. Intuitively it is known that multiple if not many underlying factors that can more or less influence the movement of the price trend, in terms of average transaction price of Macau's property. The data mining methods, such as feature selection and attribute relevance ranking [5], may help us to identify those factors, study their relative importance, and allow us to optionally eliminate the irrelevant factors when it comes to inducing a prediction model. The insights extracted from the analysis could serve as some reference information for the policy makers of Macau SAR Government to adjust its property policy, so as to have a balance in terms of supply and demand, and initiate policies that may better look after those potential home buyers to afford a house.

Figure 1. Average Transaction Price by Regions (MOP per sq. meter).

By using data mining methods, a prediction model will be established that can scientifically predict the percentage of up-or-downwards movements in some of the important variables. The data mining methods can further be extended to a decision support system with easy-to-use user interface for market analysts.

In addition to predicting the moving trend, special events could be analyzed too. For instance, we can notice that there is an unusual drop of transaction price between the periods of 2008 quarter 4 and 2009 quarter 1, as shown in Figure 1. It would be intriguing to analyze, hence to find some clues on what the internal factors are for explaining the price drop, purely from data (quantitative) perspective.

II. DATA PREPERATION

A. Datasets

The original raw data are archived at different sections of the Time Series Database¹ in the Statistics and Census Service of Macau SAR Government, free for the public to view and download. In general the time series data are recorded in quarters of a year, ranging from 2007 to 2009. Along the same axis of time and time intervals, other data such as the total number of building units, data from different industries like gaming, construction, building units transacted, as well tourism. as demographical data are acquired from the database. The data from almost all the available domains are extracted, and they are concatenated together as large multi-variate dataset, leaving the market price data as the predictable column. In total there are 121 attributes; the last column which is the predictable column is precisely defined as "average transaction price of building units transacted, calculated as percentage of change when compared to the previous quarter".

B. Pre-processing

The tasks in the process of data pre-processing include: combining data from multiple disparate sources, normalizing the numerical attributes vales into z-scores and some simple transformations such as computing the moving averages etc. The raw dataset is in a standard CSV format. It can be loaded into Weka [6] directly for instant analysis. This project mainly uses Weka and SPSS Predictive Analytics SoftWare [7] (or just SPSS) to perform the data mining research. Important attributes are screened by using feature selection techniques, and the filtered data that contain only the significant attributes will be passed through SPSS and Weka to build up a predictive model by using different kind of data mining techniques. As shown in Figure 2, the workflow of the analysis involves integrating data from separate sources into a large training set and subsequently feeding them to the two data mining software programs. The original dataset contains around the data ranging from 2007 to 2009 in 15 Excel files, each row of them represents data of a quarter of a year. The downloaded data are already in

¹ http://www.dsec.gov.mo/TimeSeriesDatabase.aspx

hierarchically structured data. The original data contains 12 rows with 11 catalogs. Combining those data to one multi-variable catalog produces a total of 132 data instances for training the classification model.

Figure 2. Workflow of the analysis.

Without being exhaustive, the full listing of the 121 attributes is presented in Appendix A.

C. Feature Selection

Some of the attributes may not be so relevant to the predictive power of the prediction model. Also having too many attributes and relatively too few the training instances may result in 'under-fitting' that means the prediction model is not generalized enough and prediction accuracy drops. Hence it is necessary to select only the significant attributes and eliminate those that are not so significant. Various feature selection methods and tools exist in both SPSS and Weka software programs [8]. In this project, two methods for evaluating the importance of the variables are used in SPSS. They are SVM, and Neural Net. The tool called 'Auto Numeric' produce the following result: Using the Auto Numeric node, the researcher (user) may compare a number of models that predict the property values based on the building type, neighborhoods or proximity, area size, and other known factors. According to the C&R Tree [9], the Number of Fields used only 23 original data instances that are described by 121 fields. In the following stream in SPSS, we only select top 23 important attributes based on the consideration of the balance of each method. A screenshot of the SPSS feature selection process is shown in Figure 3. The two resultant C&R trees by SVM and Neural Net are shown in Figures 4 and 5 respectively. In SVM and Neural Net, the time period and regions were selected by the program results to be eliminated.

Figure 3. Stream of 'Select 23 top important attributes' by SPSS.

Figure 4. C&R tree for feature selection by SVM.

Figure 5. C&R tree for feature selection by Neural Net.

When the average transaction price of building units transacted (percentage change on previous quarter) is less than 1, it means transaction price of building is dropping.

In weka, there are two algorithms for selecting attributes:

a). Select attributes using *CfsSubsetEval* and *GreedyStepwise* search.

b). Select attributes using *CfsSubsetEval* and *ScatterSearchV1* search.

Figure 6 shows a screenshot of Weka where the attributes are ready to be processed by the feature selection functions.

Figure 6. Screenshot of Weka Explorer.

The run information from the two feature selection functions in Weka platform is shown in Appendix B and Appendix C respectively. As the log information shows in Appendix B, 25 significant attributes using *CfsSubsetEval* and *GreedyStepwise* search are obtained.

With the *CfsSubsetEval* and *ScatterSearch* search functions installed in Weka, 11 selected attributes are being created, as shown in the information log in Appendix C. With Weka feature selection analysis, two sets of data are being created with two different amounts of attributes. In total, after the feature selection processes, insignificant features are removed; two sets of data each are made available for SPSS for Weka respectively, for predictive modeling.

III. PREDICTION MODELS CONSTRUCTION

A. SPSS

Two machine learning algorithms are selected to build a predictive model in SPSS, they are Neural Network and SVM. The choice is justified by the powerful and nonlinear predictive models which are tested to be some of the most suitable for generalizing a predictive model with highly non-linear relationships among the attributes (features) and few available training instances. The relevant processes for training the models with given training data and for testing the models are shown respectively in Figure 7 and Figure 8.

To test the model, we just randomly choose half the amount of the training records for cross-validation. The original class value is 1.17058413. Compare with the predictive value in Neural Network model and SVM model, Neural Network = 1.086 and SVM = 1.119. It shows that SVM is much better in accuracy than Neural Network. And test the record of 100. The original class value is 0.64148287. Neural Network = 1.060 and SVM = 0.989. It shows also that SVM better than Neural Network in the other dataset. Recall the C&R tree with SVM model: attribute05, the number of units new build

which is the most significant attribute. From the analysis by SPSS it is observed that the attributes 05, 09, 10, 18, 29, 62 are the most essential factors directly to property transaction price movement. The meanings of the significant attributes, in an order of importance, are summarized as follow - 09: gross floor area of new building; 10: Population; 18: new services of financial, leasing and provided to company; 29: Government final consumption expenditure; 62: Construction Population.

Figure 7. Model training in SPSS.

Figure 8. Model testing in SPSS.

The performance comparison of the two predictive models as in SPSS is summarized in Table I, in terms of prediction errors in percentage.

 TABLE I.

 PERFORMANCE COMPARISON BETWEEN SVM AND NN IN SPSS

Performance	SVM	NN
Minimum Error	-0.411	-0.419
Maximum Error	0.4	0.454
Mean Error	-0.005	0.028
Mean Absolute Error	0.117	0.123
Standard Deviation	0.157	0.158
Linear Correlation	0.492	0.474
Occurrences	132	132

B. Weka

In Weka, two of the most effective classification algorithms are adopted; the choice is based on some preliminary testing of most of the algorithms available in Weka over the given dataset. The selected algorithms are Multilayer Perception and Linear Regression, they are known to be able to generate a solution from a highly non-linear data environment such as the one being used here. The weights between the hidden layers and the coefficients of the linear regression model scale up to a large hyperspace. A comparison of performance as well as the complexity of the coefficients values between Multilayer Perception (MP) and Linear Regression (LR) is presented in Table II.

TABLE II. Performance Comparison Between MP and LR in Weka

Performance	MP	LR
Correlation coefficient	0.9978	0.4952
Class complexity at order 0	853.0085	853.0085
	bits	bits
Average class complexity at order 0	6.4622	6.4622
	bits/instance	bits/instance
Class complexity per scheme	1417.8986	1900.3814
	bits	bits
Average class complexity per	10.7417	14.3968
scheme	bits/instance	bits/instance
Complexity improvement	-564.8901	-1047.373
	bits	bits
Average complexity improvement	-4.2795	-7.9346
	bits/instance	bits/instance
Mean absolute error	0.0141	0.1151
Root mean square error	0.0175	0.1557
Relative absolute error	10.3586 %	84.6007 %
Root relative squared error	9.7364 %	86.8766 %
Total instances	132	132

Comparing over MP and LR, it can easily be seen that MP can observe superior performance in terms of lower error rate and simpler model complexity than LR. While SPSS is able to achieve the best model so far with only 6 selected features, analysts may opt to investigate a larger pool of features and their impact on the model accuracy. Therefore, in Weka, the MP as the selected candidate would be subject to a filtered dataset that consist of 25 selected features, as obtained from the process in Section II C.

In this case the model is built again in Weka, and the experiment proceeds to compare the net results from the two feature selection algorithms. The performance results are then produced solely by using MP this time, over the datasets extracted by using two feature selection algorithms, and the results are listed in Table III.

TABLE III. Performance Comparison Between Two Feature Selection Algorithms by MP in Weka

Performance	MP with	MP with
	CfsSubsetEval	CfsSubsetEval
	and	and
	GreedyStepwise	ScatterSearch
Correlation coefficient	0.9978	0.9737
Class complexity at order 0	853.0085 bits	853.0085 bits
Average class complexity at	6.4622	6.4622
order 0	bits/instance	bits/instance
Class complexity per scheme	1417.8986 bits	1653.6309 bits
Average class complexity per	10.7417	12.5275
scheme	bits/instance	bits/instance
Complexity improvement	-564.8901 bits	-800.6224 bits
Average complexity	-4.2795	-6.0653
improvement	bits/instance	bits/instance
Mean absolute error	0.0141	0.0318
Root mean square error	0.0175	0.0419
Relative absolute error	10.3586 %	23.3988 %
Root relative squared error	9.7364 %	23.3719 %
Total instances	132	132

Observing from Table III, it can be confirmed that the Multilayer Perception Model of reduced data by using *CfsSubsetEval* and *GreedyStepwise* feature selection functions give a better result than its counter-part. This is evident by its larger correlation coefficient value, 0.9978. In fact, the coefficient value is even greater than those obtained from SPSS model, 0.492 and 0.474. From the empirical evidences shown so far, it is sensible to adopt the Multilayer Perception model in Weka together with the feature selection function combo, *CfsSubsetEval* and *GreedyStepwise*, for doing the analysis. As a result, the essential attributes being selected from the selected algorithms are: 3, 4, 6, 8, 13, 15, 18, 21, 22, 23, 28, 31, 65, 66, 70, 76, 81, 86, 90, 96, 98, 115, 117, 118, and 119.

A summary of the essential attributes are listed below in Table IV.

TABLE IV. The 25 attributes advocated by the best performing algorithms in Weka

3.Gaming tax	4.Number of	6.Building	8.Number	13.Persons
revenue	completed	area	of new units	authorized
	buildings			to reside in
	-			Macao
				(Inflow)
15. 25-34	18.New services	21.Financia	22.Number	23.Captial
years old	of financial,	l activities,	of dissolved	of dissolved
(compared	leasing and	renting and	companies	companies
with 2004)	provided to	services to		
	company	companies		
28.Final	31.Net purchases	65.Transpor	66.Finance	70.Health
consumption	of goods and	t-Storage &	population	and social
	services of	Communica		welfare
	government final	tions		population
	consumption	population		
	expenditure			
76.Technicia	81.Plant and	86.Unempl	90.Retail	96.No. of
ns and	machine operator,	oyment	sales of	hotel guest
associate	drivers and	rate(%)	motor	in hotel
professionals	assemblers	female	vehicles	sector
population	population			
98.Income of	115.Commercial	117.Industri	118.Value	119.Region
inward direct	building units	al units sale	of	
investment	transacted	(number)	residential	
	(number)		building	
			units	
			transactad	

IV. CONCLUSION

This paper contributes to a method that uses SPSS Modeler and Weka data mining software to explore the underlying relations of Macau property market. The dataset is multi-variate consists of 121 attributes and 132 instances dataset, obtained from Statistics and Census Service of Macao SAR Government, under the section of Macau Property. With the C&R tree for selection by SVM, Neutral Net of SPSS and the feature selection functions such as CfsSubsetEval and GreedyStepwise search, CfsSubsetEval and ScatterSearch functions of Weka, the less significant attributes that are affecting property price were eliminated. Predictive models according to the filtered data with SPSS, Weka are built. The algorithms deployed are Multilayer Perception Neural Network model. From the results of correlation coefficients and accuracies of the models, Multilayer Perception seems to be the most effective; subsequently 25 most relevant attributes are harvested that are computed to be the most influential factors to the property market price for that given period of time.

ACKNOWLEDGMENT

The authors wish to thank the following MSc students of the University of Macau who have contributed both technically and intellectually to this project: Mr. Ng Ka Kit, Mr. Chan Io Weng and Ms. Liu Liyang.

REFERENCES

- [1] C. Leishman, *Real Estate Market Research and Analysis*. Palgrave Macmillan, April 2003.
- [2] J. M. Clapp, *Handbook for real estate market analysis*. Prentice-Hall, 1987.
- [3] J. M. Clapp and S. D. Messner, *Real Estate Market Analysis: Methods and Applications*, ABC-CLIO, 1998.
- [4] N. G. Carn, *Real estate market analysis: techniques and applications*, Prentice-Hall, 1988.
- [5] S. Fong, Y. Zhuang, M. Yu and I. Ma, "Quantitative analysis of trust factors on social network using data mining approach," *IEEE 2012 International Conference on Future Generation Communication Technology (FGCT)*, pp. 70-75, December 2012.
- [6] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, *The Weka Data Mining Software: An Update*. SIGKDD Explorations, Volume 11, Issue 1, 2009.
- [7] SPSS Inc. Released 2009. PASW Statistics for Windows, Version 18.0. Chicago: SPSS Inc.
- [8] S. Fong and A. Cerone, "Attribute Overlap Minimization and Outlier Elimination as Dimensionality Reduction Techniques for Text Classification Algorithms," *Journal of Emerging Technologies in Web Intelligence (JETWI)*, Academy Publisher, ISSN 1798-0461, Volume 4, Issue 3, Oulu, Finland, pp. 259-263, August 2012.
- [9] L. Rokach and O. Maimon, *Data mining with decision* trees: theory and applications. World Scientific Pub Co Inc., 2008.

APPENDIX A FULL LISTING OF ATTRIBUTES

Name	Meaning of Attribute	Туре
attribute01	Time	Nominal
attribute02	gross gaming revenue total	Numerical
attribute03	gaming tax revenue	Numerical
attribute04	the number of completed buildings	Numerical
attribute05	the number of units on new build	Numerical
attribute06	building area *	Numerical
attribute07	the number of new buildings	Numerical
attribute08	the number of new units	Numerical
attribute09	gross floor area of new building	Numerical
attribute10	Population	Numerical
attribute11	number of married	Numerical
attribute12	newborn baby	Numerical
attribute13	Persons authorized to reside in Macao (Inflow)	Numerical
attribute14	Non-resident workers (End balance)	Numerical
attribute15	25-34 years old (compared with 2004)	Numerical
attribute16	newly construction company	Numerical
attribute17	the newly Real Estate Activities Business Company	Numerical
attribute18	new services of financial, leasing and provided to company	Numerical
attribute19	real estate activities business capital	Numerical
attribute20	Building services capital	Numerical
attribute21	Financial activities, renting and services to companies	Numerical
attribute22	number of dissolved companies	Numerical
attribute23	capital of dissolved companies	Numerical
attribute24	Per capita GDP	Numerical
attribute25	Gross Domestic Product (GDP)	Numerical
attribute26	the total number of private consumption expenditure	Numerical

attribute27	Household final consumption	Numerical
	expenditure	
attribute28	Final consumption expenditure of NPISHs	Numerical
attribute29	Government final	Numerical
	consumption	
	expenditure	
attribute30	Compensation of	Numerical
	employees of	
	government	
	final consumption	
	expenditure	
attribute31	Net purchases of goods	Numerical
	and services of	
	final consumption	
	expenditure	
attribute32	the total number of	Numerical
attribute52	gross fixed capital	Tumericai
	formation	
attribute33	Construction	Numerical
attribute34	Machinery and	Numerical
	equipment	
attribute35	Changes in inventories	Numerical
attribute36	the total number of	Numerical
	export	
attribute37	Exports of goods	Numerical
attribute38	Exports of services	Numerical
attribute39	total number of import	Numerical
attribute40	Imports of goods	Numerical
attribute41	Imports of services	Numerical
attribute42	total number of median	Numerical
	of monthly	
	employment earnings	
attribute43	the median monthly	Numerical
	employment	
	earnings in	
attribute 14	the median monthly	Numerical
au ioute44	employment	numerical
	earnings in Electricity	
	gas and water supply	
attribute45	the median monthly	Numerical
	employment	
	earnings in	
	construction	
attribute46	the median monthly	Numerical
	employment	
	earnings in Wholesale	
ottailant 47	and retail trade	N
attribute4/	amployment	numerical
	earnings in Hotels and	
	restaurants	
attribute48	the median monthly	Numerical
	employment	ionou
	· ·	

	earnings in transport and communications	
	and storage industry	
attribute49	the median monthly employment	Numerical
	earnings in financial industry	
attribute50	the median monthly	Numerical
	employment	
	earnings in Real Estate	
atta: 1	and Business Activities	Numeri est
attributes1	employment	Numerical
	earnings in Public	
	administration and	
	social security	
attribute52	the median monthly	Numerical
	employment	
	earnings in Education	
attribute53	the median monthly	Numerical
	employment	
	social	
attribute54	the median monthly	Numerical
	employment	
	earnings in	
	Recreational, cultural,	
	services	
attribute55	the median monthly	Numerical
	employment	
	earnings in Domestic	
	workers domestic	
attribute56	local household	Numerical
attribute57	savings deposits	Numerical
attribute58	residents deposits	Numerical
attribute38	non-resident deposits	Numerical
attribute59	Private loans /	Numerical
	residential purpose	
attribute60	manufacturing	Numerical
attroateou	population of	i tumorioui
attribute61	water and electricity	Numerical
	and gas and	
	water supply of	
	population	NT ' 1
attribute62	Population	Numerical
attribute63	Wholesale and retail	Numerical
	trade population	
attribute64	Hotels and restaurants	Numerical
attribute65	Transport-Storage &	Numerical
attributeoo	Communications	i (unioriour
	Population	
attribute66	finance Population	Numerical
attribute67	Real Estate and	Numerical
	Business Activities	

	Population	
attribute68	public administration	Numerical
	and	
	Population	
attribute69	Education Population	Numerical
attribute70	Health and Social	Numerical
	Welfare Population	
attribute71	Recreational, cultural,	Numerical
	other services	
	Population	
attribute72	Of which: Gaming	Numerical
attribute73	domestic worker	Numerical
	population	
attribute74	Legislators, senior	Numerical
	officials, directors	
	companies Population	
attribute75	Professionals	Numerical
attribute76	technicians and	Numerical
otteributo 77	associate professionals	Numariaal
attribute / /	clerks	Numerical
attribute / 8	service, sales and similar staff	Numerical
attribute79	Skilled agricultural and	Numerical
	fishery workers	
attribute80	Craftsmen and similar workers	Numerical
attribute81	Plant and machine	Numerical
	operator, drivers and	
attribute82	assemblers	Numerical
attributo82	unskilled workers	Numerical
auributeos	Participation Rate (%)	Numericai
	male	
attribute84	Labor Force	Numerical
	Female	
attribute85	unemployment rate	Numerical
attailant OC	(%)-Men	N
attribute86	(%) Female	Inumerical
attribute87	underemployment rate	Numerical
	(%)	
attribute88	Retail sales of goods in department	Numerical
	store retail sales	
	(Million MOP)	
attribute89	Retail sales of goods in department	Numerical
	store retail sales	
attribute90	Retail sales of motor	Numerical
attribute01	vehicles Retail salas of goods in	Numerical
autoute91	supermarkets	inumentcar
	supermarkets	

attribute92	retail sales of watches, clocks and jewellery	Numerical
attribute93	Retail sales in adults' clothing	Numerical
attribute94	Retail sales in automotive fuels	Numerical
attribute95	Hotel occupancy rate by classification of establishments in hotel sector	Numerical
attribute96	No. of hotel guest in hotel sector	Numerical
attribute97	Flows of inward direct investment	Numerical
attribute98	Income of inward direct investmen	Numerical
attribute99	Stock of outward direct investment	Numerical
attribute100	Flows of outward direct investment	Numerical
attribute101	Income of outward direct investmen	Numerical
attribute102	Total number of building units of residential use in Macau Peninsula	Numerical
attribute103	Total number of building units of residential use in Taipa	Numerical
attribute104	Total number of building units of residential use in Coloane	Numerical
attribute105	Total number of building units of Business use in Macau Peninsula	Numerical
attribute106	Total number of building units of Business use in Taipa	Numerical
attribute107	Total number of building units of Business use in Coloane	Numerical
attribute108	Total number of vacant units of Residential use in Macau Peninsula	Numerical
attribute109	Total number of vacant units of Residential use in Taipa	Numerical
attribute110	Total number of vacant units of Residential use in Coloane	Numerical
attribute111	Total number of vacant units of Business use in Macao	Numerical

	Peninsula	
attribute112	Total number of vacant	Numerical
	units of	
	Business use in Taipa	
attribute113	Total number of vacant	Numerical
	units of	
	Business use in	
	Coloane	
attribute114	residential building	Numerical
	units transacted	
	(number)	
attribute115	commercial building	Numerical
	units transacter	
	(number)	
attribute116	office building units	Numerical
	transacted (number)	
attribute117	industrial units sale	Numerical
	(number)	
attribute118	value of residential	Numerical
	building units	
att:::hasta110	transacted	Nousin al
auributer 19	Region	Nominai
attribute120	building units	Nominal
	transacted policy	
	a - Including the	
	number of residential	
	building units sold in	
	2008 at or below the	
	value of MOP5 million	
	from the payment of	
	stamp duty in	
	accordance with	
	Article 14 of Law	
	no.7/2007.	
	b - Including the	
	number of residential	
	building units sold in	
	2009 at or below the	
	value of MOP3 million	
	and thus exempted	
	from the payment of	
	stamp duty, in	
	accordance with	
	Article 14 of Law	
	no.15/2008.	
attribute121	average transaction	Numerical
	price of	
	building units	
	(percentage change on	
	previous quarter)	
	previous quarter)	

APPENDIX B RUN INFORMATION BY CFSSUBSETEVAL AND GREEDYSTEPWISE IN WEKA

=== Run information === Evaluator: weka.attributeSelection.CfsSubsetEval weka.attributeSelection.GreedyStepwise -T -Search: 1.7976931348623157E308 -N -1 Relation: final_nonZscore_noMeaning Instances: 132 Attributes: 121 [list of attributes omitted] Evaluation mode: evaluate on all training data === Attribute Selection on all input data == Search Method: Greedy Stepwise (forwards). Start set: no attributes Merit of best subset found: 0.344 Attribute Subset Evaluator (supervised, Class (numeric): 121 averageTransactionPriceOfBuildingUnitsTransacter(percentage ChangeOnPreviousQuarter)): CFS Subset Evaluator Including locally predictive attributes Selected attributes: 3,4,6,8,13,15,18,21,22,23,28,31,65,66,70,76,81,86,90,96,98,115 ,117,118,119:25 gamingTaxRevenue theNumberOfCompletedBuildings buildingArea theNumberOfNewUnits PersonsAuthorizedToResideInMacao(Inflow) 25-34YearsOld(comparedWith2004) newServicesOfFinancial_leasingAndProvidedToCompany FinancialActivities_RentingAndServicesToCompanies numberOfDissolvedCompanies capitalOfDissolvedCompanies FinalConsumptionExpenditureOfNPISHs NetPurchasesOfGoodsAndServicesOfGovernmentFinalConsum ptionExpenditure Transport-StorageAndCommunicationsPopulation financePopulation HealthAndSocialWelfarePopulation techniciansAndAssociateProfessionals PlantAndMachineOperator_DriversAndAssemblers UnemploymentRateFemale RetailSalesOfMotorVehicles No OfHotelGuestInHotelSector IncomeOfInwardDirectInvestmen commercialBuildingUnitsTransacter(number) industrialUnitsSale(number) valueOfResidentialBuildingUnitsTransacter

APPENDIX C RUN INFORMATION BY CFSSUBSETEVAL AND SCATTERSEARCH IN WEKA

=== Run information === Evaluator: weka.attributeSelection.CfsSubsetEval Search: weka.attributeSelection.ScatterSearchV1 -T 0.0 -Z -1 -R 0 -S 1 -D Relation: final_nonZscore_noMeaning Instances: 132 Attributes: 121 [list of attributes omitted] Evaluation mode: evaluate on all training data

=== Attribute Selection on all input data === Search Method: Scatter Search Init Population: 60 Kind of Combination: Greedy Combination Random number seed: 1 Debug: true Treshold: 0 Total number of subsets evaluated: 289888 Merit of best subset found: 0.397 Population: 60 merit subset 0.30073 [30, 66, 84, 98, 104] 0.29014 [81, 86] 0.28892 [76] 0.28537 [15] 0.28309 [21, 113] 0.31566 [1, 90, 99] 0.27164 [107] 0.2675 [55, 90] 0.2574 [109] 0.25722 [115] 0.25309 [113] 0.24766 [117] 0.28309 [10, 21] 0.24687 [108] 0.24396 [1, 22]0.23938 [65] 0.23059 [86] 0.22001 [101] 0.2675 [90, 102] 0.19381 [96] 0.19355 [13] 0.19225 [6, 55, 104] [60, 102] 0.19678 0.19174 [120] 0.19089 [104] 0.18403 [70] [55] 0.17739 0.17678 [28] 0.17599 [18] [1, 4, 19, 36, 45, 60, 84, 101, 107, 118] 0.20186 0.16998 [56, 85] 0.2546 [65, 79] 0.15662 [85] 0.15654 [84, 105] 0.27321 [14, 60, 99] 0.19326 [15, 19, 28, 30, 45, 56, 81, 90, 94, 118] 0.14488 [66] 0.14404 [8] 0.14173 [84] 0.21065 [2, 8, 10, 20, 22, 24, 28, 31, 35, 43, 56, 57, 66, 70, 76, 84, 90, 98, 107, 108, 115, 117] 0.13777 [23, 70, 81, 109] 0.17265 [14, 24, 28, 35, 55, 56, 102, 117] 0.22526 [35, 45, 55, 101] $[6,\,21,\,33,\,35,\,36,\,45,\,55,\,60,\,84,\,85,\,98,\,108]$ 0.25356 0.19893 [60, 114] 0.26603 [5, 65] 0.12721 [6, 10, 18, 19, 30, 55, 61, 76, 81, 105, 108] 0.17718 [2, 3, 5, 8, 18, 25, 55, 66, 74, 81, 82, 94, 102, 113, 118] 0.22402 [4, 10, 15, 28, 29, 81, 99] 0.14305 [20, 21, 22, 38, 57, 85, 86] 0.28309 [1, 5, 15, 21, 61, 120] 0.13979 [1, 3, 4, 18, 19, 30, 38, 45, 57, 65, 94, 114, 115, 117] 0.15749 [1, 18, 28, 36, 55, 57, 60, 65, 81, 86, 105, 107, 108, 109] 0.17294 [1, 13, 25, 30, 31, 33, 56, 60, 85, 90, 96, 104, 120] 0.27321 [4, 64, 99, 104] 0.17633 [5, 13, 14, 43, 86, 96, 108, 115] 0.26654 [1, 13, 22, 65, 94, 99, 102, 115] 0.11735 [43, 61] [8, 31, 45, 56, 64, 102, 113] 0.17156 0.1447 [2, 10, 28, 33, 55, 82, 90] ReferenceSet: -----Most Significants Solutions------

Region

Transport-StorageAndCommunicationsPopulation

PlantAndMachineOperator_DriversAndAssemblers

commercialBuildingUnitsTransacter(number)

TotalNumberOfBuildingUnitsOfBusinessUseInMacauPeninsula

TotalNumberOfVacantUnitsOfResidentialUseInMacauPeninsula

UnemploymentRateFemale

industrialUnitsSale(number)

Region

0.31566 [1, 90, 99] 0.30073 [30, 66, 84, 98, 104] 0.29014 [81, 86] 0.28892 [76] 0.28537 [15] 0.28309 [10, 21] [1, 5, 15, 21, 61, 120] 0.28309 0.28309 [21, 113] 0.27321 [4, 64, 99, 104] 0.27321 [14, 60, 99] 0.27164 [107] 0.2675 [90, 102] 0.2675 [55, 90] 0.26654 [1, 13, 22, 65, 94, 99, 102, 115] 0.26603 [5, 65] --Most Diverses Solutions-----0.21065 [2, 8, 10, 20, 22, 24, 28, 31, 35, 43, 56, 57, 66, 70, 76, 84, 90, 98, 107, 108, 115, 117] 0.15662 [85] 0.22001 [101] 0.17599 [18] 0.19381 [96] 0.13777 [23, 70, 81, 109] 0.19893 [60, 114] 0.15654 [84, 105] 0.17678 [28] 0.14488 [66] 0.14173 [84] 0.17739 [55] 0.19678 [60, 102] 0.19355 [13] [15, 19, 28, 30, 45, 56, 81, 90, 94, 118] 0.19326 Last Reference Set Updated: merit subset 0.39689 [18, 22, 55, 65, 81, 86, 105, 108, 115, 117] 0.39688 [18, 22, 55, 65, 81, 105, 108, 115, 117] 0.39682 [22, 55, 65, 81, 86, 105, 108, 115, 117] 0.39682 [22, 55, 65, 81, 105, 108, 115, 117] 0.39604 [18, 22, 65, 81, 86, 105, 108, 115, 117] 0.39603 [18, 22, 65, 81, 105, 108, 115, 117] [22, 65, 81, 86, 105, 108, 115, 117] 0.39586 0.39585 [22, 65, 81, 105, 108, 115, 117] 0.21065 [2, 8, 10, 20, 22, 24, 28, 31, 35, 43, 56, 57, 66, 70, 76, 84, 90, 98, 107, 108, 115, 117] 0.28309 [1, 5, 15, 21, 61, 120] 0.3653 [4, 21, 64, 96, 99] 0.19678 [60, 102] 0.15662 [85] 0.22001 [101] 0.19893 [60, 114] 0.19381 [96] 0.28892 [76] [14, 60, 99] 0.27321 0.3916 [22, 55, 65, 81, 86, 105, 115] 0.39144 [22, 55, 65, 81, 86, 109, 115] 0.38848 [22, 65, 81, 86, 109, 115] 0.38848 [22, 65, 81, 109, 115] [1, 4, 21, 61, 64, 99] 0.3653 [4, 21, 64, 99] 0.3653 0.32131 [22, 76, 84, 108, 115, 117] 0.31892 [4, 8, 21, 22, 28, 31, 64, 66, 70, 76, 81, 84, 90, 98, 115, 117] [1, 8, 21, 22, 28, 31, 66, 70, 76, 81, 84, 90, 98, 115, 117] 0.31892 [8, 22, 28, 31, 66, 70, 76, 81, 84, 90, 98, 114, 115, 117] 0.3126 [8, 22, 28, 31, 66, 70, 76, 81, 84, 90, 96, 98, 115, 117]0.3126 0.30057 [15, 21, 60, 76, 81, 85, 98, 114] Attribute Subset Evaluator (supervised, Class (numeric): 121 average Transaction Price Of Building Units Transacter (percentage Change ChaOnPreviousQuarter)): CFS Subset Evaluator Including locally predictive attributes Selected attributes: 18,22,55,65,81,86,105,108,115,117,119:11 newServicesOfFinancial_leasingAndProvidedToCompany numberOfDissolvedCompanies

the Median Monthly Employment Earnings In Domestic Workers Domestic