
Stream Mining Dynamic Data by Using iOVFDT

Yang Hang, Simon Fong
Department of Computer and Information Science

University of Macau

Taipa, Macau SAR

Email: henry.yh@gmail.com, ccfong@umac.mo

Abstract— Dynamic data is referring to data that are being

produced continuously and their volume can potentially

amount to infinity. They can be found in many daily

applications such as e-commerce, security surveillance and

activities monitoring. Such data call for a new generation of

mining algorithms, called stream mining that is able to mine

dynamic data without the need of archiving them first. This

paper1 studies the efficacy of a prominent stream mining

method, called iOVFDT that stands for Incrementally

Optimized Very Fast Decision Tree, under the environments

of dynamic data. Six scenarios of dynamic data which have

different characteristics are tested in the experiment. Each

type of dynamic data represents a decision-making problem

which demands an efficient classification mechanism such as

decision tee to quickly and accurately classify a new case

into a defined group. iOVFDT is compared with other

popular stream mining algorithms, and it shows its superior

performance.

Index Terms—Classification; stream mining; dynamic data

I. INTRODUCTION

Web mining [1] attracted much research attention

nowadays because of the popularity of applications

running on the Web as well as their practical importance

in businesses that operate on the Web platform.

Specifically the Web data pose certain challenging to data

mining research community for they are relatively more

unstructured, the data feeds are continuous and dynamic –

the data may arrive asynchronously with possibly no end.

Traditional data mining algorithms are designed to work

with fixed training dataset; once a prediction model is

trained based on the fixed training dataset, it is ready to

test new data and make prediction. Should the underlying

model need to be updated due to the change of data, the

whole model would have to be reconstructed again.

In advent of the time critical applications, so-called

real-time applications that work with dynamic data [2], a

new breed of data mining models aka stream mining

emerged. The model building algorithms of stream

mining are designed in response to dynamic data which

exhibit dynamic characteristics such as unpredictable

missing values or noises, and endless data flow. For

example, web logs that are generated from a busy e-

commerce website are never-ending and they may come

from a wide variety of activities on the website. Most of

1 This paper extends the work presented in Hang Yang, Simon Fong,

Yain-Whar Si, "Multi-objective Optimization for Incremental Decision

Tree Learning", in the Proceeding of the 14th International Conference

on Data Warehousing and Knowledge Discovery, Springer LNCS,

Vienna (Austria) September 3 - 6, 2012.

the commercial software tools, however, are based on

traditional data mining algorithms, usually coupled with

their database management software packages. In the data

mining research community there are no shortage of

stream mining algorithms nevertheless. A classical one is

called Very Fast Decision Tree (VFDT) [3], which can

build a decision tree simply by keeping track of the

statistics of the attributes of the incoming data. When

sufficient statistics have accumulated at each leaf, a node-

splitting algorithm determines whether there is enough

statistical evidence in favor of a node-split, which

expands the tree by replacing the leaf with a new decision

node. VFDT learns by incrementally updating the tree

while scanning the data stream on the fly. This powerful

concept is in contrast to a traditional decision tree that

requires the reading up of a full dataset for tree induction.

VFDT uses Hoeffding Bound (HB) for available memory

usage in the node-splitting process. The obvious

advantage is the anytime data mining capability, which

frees it from the need to store up all of the data for

training the decision tree.

Recently an innovative and effective incremental

optimization model for VFDT is proposed in [4], which is

called Incrementally Optimized Very Fast Decision Tree

(I-OVFDT). The features of iOVFDT are summarized

briefly as follow: (1) it combines incremental

optimization to decision tree model for high-speed data

streams; (2) it facilitates an optimization algorithm in

which the parameters for tree-growing are automatically

computed, instead of fixed values that have to be pre-

defined by users; (3) the incremental model maintains a

balanced tree model amongst accuracy, tree size and

learning time. The features of iOVFDT as they can be

seen above could potentially solve the shortcomings of

stream mining of dynamic data.

The objective of this paper therefore is to study the

efficacy of iOVFDT, under the environments of dynamic

data. Six scenarios of dynamic data which have different

characteristics are tested in the experiment. Each type of

dynamic data represents a typical decision-making

problem like those found in web applications, real-time

security surveillance and activities monitoring. These

applications often demand for an efficient and effective

real-time classification to quickly and accurately classify

a new test into a target group. In this paper iOVFDT is

compared with other popular stream mining algorithms

with respect to the six data `scenarios.

The rest of this paper is structured as follow: The

theoretical formulation of iOVFDT is presented in

Section 2. The dynamic data and their sources are

78 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 1, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jetwi.5.1.78-86

described in Section 3. The experiment and discussion on

the results then follow in Section 4. A conclusion is given

in Section 5.

II. IOVFDT MODEL

A. Very Fast Decision Tree (VFDT)

Assume Si is a set of data stream with the form (X, y),

where X is a vector of d attributes and y is the actual

discrete class label. Attribute Xi is the i
 th

 attribute in X

and is assigned a value of Xi1, Xi2… Xij, where 1 ≤ i, j ≤ d.

Suppose HT is a tree induction using Hoffding Bound

(HB). The classification objective is to produce a decision

tree model that predicts the classes in future examples

from N past examples which represent a segment of data

stream that arrived previously. The example size is

unbounded that N�∞.

The tree is built by recursively replacing leaves with

decision nodes. Statistics nijk of attribute Xij values are

stored in each leaf yk. A heuristic evaluation function is

used to determine split attributes for converting leaves to

nodes. Nodes contain the split attributes and leaves

contain only the class labels. When a sample enters, it

traverses the tree from the root to a leaf, evaluating the

relevant attributes at every node. At this time, the system

evaluates each possible condition based on the attribute

values – if the statistics are sufficient to support one test

over the others, then a leaf is converted to a decision node.

The splitting check uses a heuristic evaluation function

G(.). The necessary number of samples (sample#) uses

HB, shown in (1), to ensure control over errors in the

attribute-splitting distribution selection.

� � ���	��		
 �� �� (1)

For n independent observations of a real-valued

random variable r whose range is R, HB illustrates that

with a confidence level of 1-δ, the true mean of r is at

least �̅ � � where �̅ is the observed mean of the samples.

For a probability, the range R is 1 and for information

gain, the range R is log2Class#. VFDT makes use of HB

to choose a split attribute as a decision node. Let xa be the

attribute with the highest G(.), and xb the attribute with

the second-highest G(.). ∆�̅ � �̅	�� � �̅	�� is the

difference between the two greatest-quality attributes. If ∆�̅ � �� with n samples is observed in a leaf, and HB

states with probability 1-δ that xa is the attribute with the

highest value in G(.), then the leaf is converted into a

decision node that splits on xa.

B. Incremental Optimization Function for VFDT

Suppose the optimization problem Π is defined as a

tuple (�,�,Φ). The set X is a collection of objects, and

the feasible solution � are subsets of X that collectively

achieve a certain optimization goal. The set of all

possible solutions is � ⊆ 2 , and Φ: � → # is a cost

function on these solutions. A weight ω$ with every

object x of X is defined as Φ	S � ∑ ω$$∈(. The optimal

solution O(�,�,Φ) exists if X and Φ are awareness, and

the subset) ⊆ �,) ∈ � is optimizing Φ).

The solution is to be integrated into the decision tree

induction model, whose algorithm is based on Hoeffding

tree (HT) using the HB in node-splitting control.

Therefore, the incremental optimization function can be

expressed as a sum of several sub-objective functions: Φ	�+$ � ⋃ Φ-	�+$.-/
 (2)

where Φ0 ∶ � → # is a continuously differentiable

function and M is the number of objects in the

optimization problem. iOVFDT builds a desirable tree

model combining with an incremental optimization

mechanism, seeking a compact tree model that balances

the tree size, prediction accuracy and learning time.

Consequently, the fixed installed parameters are replaced

by an adaptive mechanism when new data arrive. The

optimization problem is considered as: 23432356	Φ	�+$	789:6;<	<=	�+$ ∈ �	 (3)

The proposed method shall find a general optimization

function Φ	�+$ in (2), considering prediction accuracy,

tree size and learning speed at the same time, so M = 3.

When a new data segment arrives, it will be sorted

from the root to a leaf in terms of the existing HT model.

The data stream Si contains information (X, y), where X is

a vector of d attributes and y is the actual discrete class

label in a supervised learning process. Attribute Xi is the

i
th

 attribute in X and is assigned a value of Xi1, Xi2… Xij,

where 1 ≤ i, j ≤ d. Decision tree algorithm uses >?@ ��+	� to predict the class when a new data sample (X, yk)

arrives. The prediction accuracy A;;8� is dynamically

changing with the example size n growing in an

incremental learning process, defined as: A;;8� � ∑ BCDEFGH	(IJIKL � (4)

M�6N3;<)F � O1, 3Q	>?@ � >?0, 3Q	>?@ S >? (5)

In order to measure the utility of the three dimensions

using a minimizing function in (3), the measure of

prediction accuracy is reflected by the prediction error in

(6): Φ
 � 6��=� � 1 � A;;8� (6)

The classification goal is to produce a decision tree

model HT from N examples that predicts the class >?@ in

future examples with accuracy T. In data stream mining,

the example size is very large, even unlimited that n�∞.

A tree-path, starting from the root to a leaf, represents

a regression pattern – the class >U stated in the leaf. When

an internal node splits to be a new leaf, the total number

of leaves grows. A decision model is a tree-like structure

that presents the patterns of non-linear relationship

mapping between X and the class by the tree-paths. The

number of leaves in the decision model represents the

number of patterns/rules in this model. Therefore, the

definition of tree size is the number of leaves in decision

model. When a leaf is being generated, the tree size

grows. The data flow continuously that the decision

model incrementally refreshes when a new leaf is created.

Therefore, the tree size function is:

Φ� � 7356� � V7356�W
 X 1		, 3Q	∆�̅ � ��									7356�W
									, =<Y6�Z376												 (7)

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 1, FEBRUARY 2013 79

© 2013 ACADEMY PUBLISHER

The conditions of iOVFDT node splitting, which

inherits the use of HB in (1), where ∆�̅ � �̅	�� � �̅	��
is the difference between the two best attributes.

iOVFDT is a one-pass algorithm that builds a decision

model using a single scan over the training data. The

sufficient statistics, which counts the number of examples

passed an internal node, are the only updated elements in

the one-pass algorithm. The calculation is a “plus one”

incremental process that consumes little computation

resource. Hence, the computation speed of such “plus one”

operation for a new example passing is supposed as a

constant value [A<6 in learning process. The number of

examples that have passed within an interval period of in

node splitting control determines the learning time.

Originally in VFDT, nmin is a fixed value to control the

interval time checking node splitting. Φ\ � +326� � [A<6] 	4^_ �	40F� (8)

Suppose 4^_ is the number of examples seen at a leaf

yk, and the condition that checks node-splitting is 4^_2=N	40F� � 0 . The learning time of each node

splitting is the interval period - the time defined in (8),

during which how many have examples passed. The

optimum tree model is the �+$ structure with the

minimum `	� . The area of this triangle Φ$	�+$
changes when node splitting happens and the HT updates.

A min-max constraint of the optimization goal in (3)

controls the node splitting, which ensures the new tree

model keeps a Φab	� within a considerable range.

Suppose cA�:Φ	�+$ is a HT model with the maximum

utility so far, and c34:Φ	�+$ is a HT model with the

minimum utility. The optimum model should be within

this min-max range, near the c6A4:Φ	�+$: c6A4:Φ	�+$ � def.h	abiW.F�.Φ	abi� (9)

According to the Chernoff bound [5], we know:

|Opt:Φ	�+$∗ � c6A4:Φ	�+$| o ���		
 �� �� (10)

where the range of Φ$	�+$ is within the min-max

constraint that Min:Φ	�+$ s Opt:Φ	�+$∗ sMax:Φ	�+$. Therefore, if Φ	�+$ exceeds this

constraint, the existing HT is not suitable to embrace the

new data input and that the tree model should not be

updated. The node-splitting condition is adaptively re-

optimized in OVFDT so that: ∆�̅ � �� , or Opt:Φ	�+$∗ � cA�:Φ	�+$, or Opt:Φ	�+$∗ sc34:Φ	�+$, instead of a fixed tie-breaking threshold.

C. Enhanced Prediction with Functional Leaf

The prediction of HT can be further enhanced by an

embedded Naïve Bayes classifier, Functional Tree Leaf

(FTL) [6]. For classification with FTL, iOVFDT uses >U? � �+Ƒ	� to predict the class label when a new

sample (X, y) arrives. The predictions are made according

to cache called Observed Class Distribution (OCD) in the

FTL, Ƒ. Originally in VFDT the prediction used only the

majority class Functional Tree Leaf ƑMC
. The majority

class only considers the counts of the class distribution,

but not the decisions based on combinations of attributes.

The naïve Bayes Functional Tree Leaf ƑNB
 was proposed

to compute the conditional probabilities of the attribute-

values given a class at the tree leaves by naïve Bayes. As

a result, the prediction at the leaf is refined by the

consideration of the probabilities of each attribute. To

handle the imbalanced class distribution in a data stream,

a weighted naïve Bayes Functional Tree Leaf ƑWNB
 and an

adaptive Functional Tree Leaf ƑAdaptive
 are proposed in

this paper. The sufficient statistics nijk is an incremental

count number stored in each node in the iOVFDT.

Suppose that a node Nodeij in HT is an internal node

labeled with attribute xij. Suppose that k is the number of

classes distributed in the training data, where k≥2. A

vector Vij is constructed from the sufficient statistics nijk

in Nodeij, such that Vij = {nij1, nij 2…nij k}. Vij is the

observed class distribution (OCD) vector of Nodeij. OCD

stores the count of distributed class at each tree node in

OVFDT. It helps to keep track of the occurrences of the

instances of each attribute.

Majority Class Functional Tree Leaf: In the ODC

vector, the majority class Functional Tree Leaf ƑMC

chooses the class with the maximum distribution as the

predictive class in a leaf, where ƑMC
: arg max f = {ni,j,1, ni,

j, 2… ni, j, r… ni, j, k}, and where 0<r<k.

Naïve Bayes Functional Tree Leaf: In the OCD vector

Vi,j = {ni,j,1, ni,j,2… ni,j,r… ni,j,k}, where r is the number of

observed classes and 0<r<k, the naïve Bayes Functional

Tree Leaf ƑNB
 chooses the class with the maximum

possibility, as computed by the Naïve Bayes, as the

predictive class in a leaf. nij,r is updated to n’i,j,r by the

naïve Bayes function such that 4’F,x,C 	 � P	�|z{ ∙P	z{ ⁄ P	�, where X is the new arrival instance. Hence,

the prediction class is ƑNB
: arg max i = { n’i,j,1, n’i,j,2…

n’i,j,r… n’i,j,k }.

Weighted Naïve Bayes Functional Tree Leaf: In the

OCD vector Vi,j = {ni,j,1, ni,j,2… ni,j,r … ni,j,k}, where k is the

number of observed classes and 0<r<k the weighted naïve

Bayes Functional Tree Leaf ƑWNB
 chooses the class with

the maximum possibility, as computed by the weighted

naïve Bayes, as the predictive class in a leaf. ni,j,r is

updated to n’i,j,r by the weighted naïve Bayes function

such that 4F,x,C~ � ωC ∙ P	�|z{ ∙ P	z{ ⁄ P	� , where X

is the new arrival instance, and the weight is the

probability of class i distribution amongst all the

observed samples such that �C � �C ∑ �C?C/
⁄ , where ni,j,r

is the count of class r. Hence, the prediction class is ƑWNB
:

arg max f = { n’i,j,1, n’i,j,2… n’i,j,r… n’i,j,k }.

Adaptive Functional Tree Leaf: In a leaf, suppose that

V ƑMC
 is the observed class distribution vector with the

majority class Functional Tree Leaf ƑMC
; suppose V ƑNB

 is

the observed class distribution vector with the naïve

Bayes Functional Tree Leaf ƑNB
; and suppose that V ƑWNB

is the observed class distribution vector with the weighted

naïve Bayes Functional Tree Leaf ƑWNB. Suppose that y is

the true class of a new instance X. Suppose that EƑ is the

prediction error rate using a Functional Tree Leaf Ƒ. EƑ is

calculated by the average E=errori /n, where n is the

number of examples and errori is the number of examples

mis-predicted using Ƒ. The adaptive Functional Tree Leaf

chooses the class with the minimum error rate predicted

by the other three strategies, where ƑAdaptive
: arg min Ƒ =

{EƑMC
, EƑNB

, EƑWNB
}.

80 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 1, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

D. iOVFDT Algorithm

iOVFDT tree-building algorithm is presented in the

pseudo codes here. On the base of the metrics, the input

parameters are given in Figure 1. The overall of iOVFDT

is described in Figure 2. If it is a new tree model, the tree

should be initialized with a single root (Figure 3). When

new data stream arrives, it traverses from the root to a

predicted FTL according to the existing tree model. If the

node-splitting check met, the node-splitting estimation is

implemented in Figure 5.

Figure 1. Global variables of iOVFDT.

Figure 2. Overall approach of iOVFDT algorithm.

Figure 3. Tree initialization of iOVFDT algorithm.

Figure 4. New data traversing of iOVFDT algorithm.

Figure 5. Node-splitting of OVFDT algorithm.

III. EXPERIMENTAL PLATFORM AND DATASETS

As a simulation platform for experiments, an iOVFDT

Java package integrated with MOA toolkit [7] is

programmed. The running environment is a Windows 7

PC with Intel Quad 2.8GHz CPU and 8G RAM. In all of

the experiments, the parameters of the algorithms were

δ=10
-6

 and nmin=200, which are default values

recommended by MOA. δ is the allowable error in split

decision and values closer to zero will require a longer

time to decide (used in HB calculation); nmin is the default

number of instances a leaf should observe between split

attempts.

Six scenarios of dynamic data which possess different

characteristics are put under test in the experiment, with

iOVFDT and other variants of VFDT. The data mining

and data stream mining algorithms that are chosen for

tests are as follow: C4.5 [8], both pruned and un-pruned

versions – that represent traditional data mining algorithm;

and the rest that represent data stream mining algorithms

– Incremental Naïve Bayes, the original version of VFDT,

VFDT with FTL of Naviie Bayes, VFDT with FTL of

Adaptive, and the family of iOVFDT algorithms –

iOVFDT with FTL of Majority Class, iOVFDT with FTL

of Naïve Bayes, iOVFDT with FTL of Weighted Naïve

Bayes, and iOVFDT with FTL of Adaptive.

The representative dynamic data include the datasets of

Robot Sensor (RS), iPod Sales on eBay (IP), Internet

Usage (IU), Cover Type (CT), Person Activity (PA) and

Network Attack (NA).

The datasets are extracted from real-world applications

which are available for download from UCI Machine

Learning Repository (archive.ics.uci.edu/ml/datasets.html)

and KDD Cup Data Center (www.sigkdd.org/kddcup).

UCI Dataset Archive is a popular place for researchers

downloading publicly available data for testing machine

learning algorithms. KDD Cup is the annual Data Mining

and Knowledge Discovery competition organized by

ACM Special Interest Group on Knowledge Discovery

and Data Mining. The datasets are described below.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 1, FEBRUARY 2013 81

© 2013 ACADEMY PUBLISHER

Robot Sensor (RS)

Robot Sensor (RS) dataset [9] was released in 2010. It

was a non-linear classification task that collected from a

robot following a wall in clockwise direction. 24

ultrasound sensors collected data for robot navigating. It

contained 24 continuous attributes and 4 distinct classes,

which navigated the robot’s movement. We used the

numeric attributes to build a decision model, which

classified to one of the four classes “Move-Forward”,

“Slight-Right-Turn”, “Sharp-Right-Turn” and “Slight-

Left-Turn”. Together with Person Activity Analysis

dataset, RS dataset represent body movement activities

which are dynamic in nature. The values of the attributes

of such data change collaboratively that represent certain

posture or movement; it may not be making any sense

when the attribute values are viewed individual; but when

they are combined together they implicitly mean a

movement. The data instances change rapidly at times;

and the sensor data are being generated continuously as a

data stream even when the robot is idle. Depending on the

sampling rate of the sensors, the data stream could flow

continuously in at a high speed. The challenge is up to the

decision tree to classify what behavior the robot is

exhibiting given the data feed.

iPod Sales on eBay (IP)
Auction platforms such as e-Bay serve as an important

fusion example of internet community and e-commerce.

Bidders trade among one another with a consideration of

both the reputation of the other party as well as the

quality of the product on bid. Often they want to attain an

adequate price as a compromise between sellers and

buyers. "How to obtain an optimal (reasonable) price?" is

the question. In the light of this, some auction experts

recommend shorter or longer bidding durations, lower or

higher start prices, terminations of auctions on weekends

or week days, and many other variants that will likely

guarantee the success. In data mining a scientific answer

to this question is attempted [10].

The dataset represent an e-commerce scenario where

an electronics retailer has noticed that its internet auctions

somehow gain quite different sales revenues. Thus,

typical patters hopefully can be obtained via a decision

tree for the explanation of this effect. In order to

maximize the profit it is hoped that an optimal auction

listing with the correctly set attribute values (start and end

times, duration, additional attributes like optional product

display enhancements, etc.). For this, a decision tree

model is built from some historical set of data for which

each new auction predicts whether the actual sales

revenue is higher than the average sales revenue of the

product category.

The training dataset contains the data of the previous

auctions of the past months utilizing the e-Bay auction

market data program in 2006. The data, provided in full

conformance with protection of data privacy, contains all

required information for the solution of this task. It has a

sample of 8,000 online auctions from the category.

"Audio&Hi-Fi:MP3-Player:Apple iPod" has to be used

for the description (classifier model) of the protection of

the sales revenue.

Additionally, the average sales revenue of the product

category (item_leaf_category_name) has already been

calculated as attribute category_avg_gms, and the

attribute gms_greater_avg indicates, whether the realized

sales revenue was higher than the average of the product

category.

In our experiment, a collection of stream mining

decision tree models are built for predicting whether the

sales revenue of an unseen transaction will be higher than

the average sales revenue of the product category. The

transactions are dynamic in nature as there is no fixed

amount or interval of the transaction may come.

Internet Usage (IU)
Internet Usage (IU) dataset was released in 1999. Data

were collected from a survey [11] provided by the

Graphics and Visualization Unit at Georgia Tech in 1997.

It contained 72 discrete attributes of user’s personal

information and interests of using Internet. For a data

mining utility, we use these data to build a decision

model of user’s occupations so that relevant advertising

information will be delivered to approximate users. This

is a typical scenario of Web recommendation where the

information collected would be used to build a prediction

model for automatically selecting a suitable product to

recommend, or appropriate Web advertisement to display,

to a Web visitor. The data exchanged are dynamic and

interactive in nature. The interest or shopping trend may

change over time, for instance due to seasonal changes

and economy change.

Cover Type (CP)

Cover Type (CP) dataset was released in 1999.

Inventory data of forestland were provided for natural

eco-system management. A total of 42 categorical

attributes and 12 continuous attributes were used for two

predictive models, which predicted seven different cover

lands in this study. Originally, two established predictive

models (neural network and linear discriminant) were

provided with this dataset [12]. It was said that the neural

network model had higher absolute accuracy (70.58%)

than the linear discriminant analysis model (58.38%). In

this experiment, decision trees of stream mining are

tested. CP is a typical kind of GIS land surveillance

information where data are continuously sent from

sensors for processing.

Person Activity Analysis (PA)

Person Activity Analysis (PA) dataset was released in

2010. It recorded the instances collected from four

sensors on human body. Five people were examined in

this study, each of who wore sensors on ankle left, ankle

right, belt and chest. The instance includes two

categorical attributes (identified the sensors and

sequences), two time attributes (timestamp and date) and

three numeric attributes collected from sensors. A

decision model was established to classify human

activities, e.g. walking, falling, etc. [13].

Network Attack Detection (NA)
Network Attack Detection (NA) was originally

released for KDD 1999. It was used to establish a

predictive model [14] to distinguish network intrusions

and attacks from normal connections. A network

82 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 1, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

connection was a packet of TCP transaction, in which

data flows from and to an IP address to a targeted IP

address under some network transferring protocols. 42

attributes were recorded in a connection instance. We

used 10% of the full data (494021 instances) to build a

predictive decision tree model to classify 23 distinct types

of “bad” and “good” connections. A classification model

can be adopted or embedded in network security software

which recognizes the pattern of network attack – that of

course change and evolve dynamically in operation.

The data structures of each experimental dataset are

listed in Table I.

TABLE I. ATTRIBUTES OF THE DYNAMIC DATA USED IN EXPERIMENT

Name Abbreviation Sample size

No. of

attributes

No. of

classes

No. of nominal

attributes

No. of numeric

attributes

Robot Sensor RS 5456 25 4 0 24

iPod Sales on eBay IP 7882 29 3 16 12

Internet Usage IU 10104 72 5 71 0

Cover Type CT 581012 55 7 42 12

Person Activity PA 164860 6 11 2 3

Network Attack NA 494021 42 23 3 38

TABLE II. COMPARISON OF ACCURACY BY ALGORITHMS AND DATASETS

Method\Data RS IP IU CT PA NA

C4.5 Pruned 99.45 99.82 82.34 91.01 75.20 99.94

C4.5 Unpruned 99.65 99.70 81.50 92.77 74.10 99.95

Incre.NB 55.35 89.90 75.29 60.52 49.28 96.55

VFDT 40.21 90.71 79.06 67.45 43.75 98.27

VFDT_NB 55.35 99.07 82.03 77.16 61.03 99.68

VFDT_ADP 55.35 99.21 82.31 77.77 61.01 99.79

iOVFDT_MC 71.92 81.79 78.24 70.52 59.15 99.23

iOVFDT_NB 81.60 98.78 78.65 90.66 73.45 99.69

iOVFDT_WNB 81.91 98.13 78.95 90.51 72.35 99.69

iOVFDT_ADP 83.32 98.92 79.84 90.59 73.52 99.85

Standard Deviation. 20.21 6.09 2.31 11.80 11.28 1.08

Variance 408.54 37.14 5.31 139.17 127.13 1.16

Average 72.41 95.61 79.71 80.90 64.28 99.26

Figure 6. Accuracy improvement percentage.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 1, FEBRUARY 2013 83

© 2013 ACADEMY PUBLISHER

Figure 7. Accuracy radar chart of the selected methods.

The accuracy was the percentage of correctly classified

number of total instances. Tree size is a sum of the

number of leaves and the number of nodes. The number

of leaves also indicates how many patterns in the form of

decision paths or conditional rules that a decision tree

model contains. The learning speed is measured by the

average time of building a decision tree model per N

samples.

IV. EXPERIMENT RESULTS

We test our data stream mining algorithms with respect

to three major performance indicators, namely,

Classification Accuracy, Model Size and Learning Speed.

A. Classificatin Accuracy

From Table II, in general, it is observed that C4.5 had

better accuracy than the other methods in all tested

datasets because it built its decision model from the full

dataset. Therefore it can attain a globally best solution by

going through all the training data at one time. The other

methods are incremental learning process that obtained a

locally optimum solution in each pass of data stream. The

strikethroughs indicate those accuracies that are below

the average. Obviously, one can see that only C4.5 and

iOVFDT_ADP are able to achieve a ‘full win’ of

satisfactory accuracies over the average across all the

datasets. Figure 6 shows a graphical representation of the

accuracies in the form of a stacked bar chart – despite

C4.5, the iOVFDT family of algorithms (except MC)

obtains pretty good accuracies. Therefore, when batch

learning such as C4.5 is not feasible or available in

scenarios of dynamic data stream mining, iOVFDT_ADP

would be a good candidate.

VFDT is chosen as a benchmark for the accuracy

improvement analysis. We used the percentage of

accuracy improvement to compare different methods

accordingly. It is known however that incremental Naïve

Bayes had the worst performance while C4.5 and

iOVFDT (with functional tree leaf) had significantly

better improvement than the others. Meanwhile, Figure 6

also shows that Adaptive (ADP) functional leaf obtained

better accuracy than the other functional leaves, for either

VFDT or iOVFDT. Then the four methods are selected as

a comparison in Figure 7. Obviously pruned C4.5 has a

best accuracy and iOVFDT_ADP is the second best,

which had apparently higher accuracy than VFDT.

TABLE III. COMPARISON OF TREE SIZE BY ALGORITHMS AND DATASETS

Methods\Data RS IP IU CT PA NA

C4.5 Pruned 18/35 20/39 847/911 10149/20297 13265/24120 724/838

C4.5 Unpruned 22/43 24/46 1028/1267 14903/29805 6467/10357 679/801

IncreNB N/A N/A N/A N/A N/A N/A

VFDT 1/1 5/9 46/47 127/253 167/187 87/94

VFDT_NB 1/1 5/9 46/47 127/253 167/187 87/94

VFDT_ADP 1/1 5/9 46/47 127/253 167/187 87/94

iOVFDT_MC 22/43 6/11 325/329 1280/2559 2211/2500 185/249

iOVFDT_NB 22/43 8/15 325/329 1864/3727 2440/2821 188/255

iOVFDT_WNB 22/43 8/15 325/329 1864/3727 2233/2551 188/255

iOVFDT_ADP 22/43 8/15 325/329 1864/3727 2440/2821 188/255

84 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 1, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

TABLE IV. COMPARISON OF LEARNING SPEED BY ALGORITHMS AND DATASETS

Methods\Data RS IP IU CT PA NA

C4.5 Pruned 0.30 0.22 0.40 931.34 180.88 120.68

C4.5 Unpruned 0.80 0.40 0.39 1717.35 121.62 187.44

IncreNB 0.26 0.10 0.24 11.98 0.95 17.77

VFDT 0.18 0.07 0.19 6.65 0.63 4.50

VFDT_NB 0.13 0.09 0.24 9.88 0.96 6.64

VFDT_ADP 0.14 0.09 0.30 12.18 1.28 7.95

iOVFDT_MC 0.12 0.08 0.20 6.86 0.64 4.36

iOVFDT_NB 0.17 0.09 0.30 10.80 0.97 6.62

iOVFDT_WNB 0.16 0.10 0.29 10.61 0.98 6.41

iOVFDT_ADP 0.13 0.11 0.31 13.09 1.26 6.78

Avg. C4.5 0.55 0.31 0.40 1324.35 151.25 154.06

Avg. Increm.NB 0.26 0.10 0.24 11.98 0.95 17.77

Avg. VFDT 0.15 0.08 0.24 9.57 0.96 6.36

Avg. iOVFDT 0.14 0.10 0.27 10.34 0.96 6.04

B. Model Size

Table III shows the model size which is calculated as

the number of leaves over the number of nodes for

different datasets. For all dataset, C4.5 built the decision

model requiring largest tree size. Naïve Bayes does its

prediction by using distribution probabilities, so that the

decision model does not exhibit a tree-like structure.

Although smaller tie-breaking threshold might bring

respectively smaller tree size for VFDT, the accuracy is

obviously worse than iOVFDT. It is interesting to see that

the size of a globally best model (C4.5) is not much

bigger than a locally optimum model (iOVFDT) because

the latter algorithm allows the tree to grow incrementally

over time.

D. Learning Speed

The speed of learning decision model was reflected by

the time in seconds as shown in Table IV. In general,

C4.5 has the slowest learning speed for all datasets.

Comparing the average learning times of VFDT to

iOVFDT, our experiment result shows both algorithms

have a very similar learning speed. iOVFDT has a

learning speed almost as fast as the original VFDT. This

implies that the improved version, iOVFDT can achieve

smaller tree size, good accuracy without incurring cost of

slowing down the learning speed. Fast learning speed is

important and applicable to time-critical applications.

V. CONCLUSION

Dynamic data dominate many modern computer

applications nowadays. They are characterized to be vast

in size, fast moving in speed and consist of many

attributes which do not make sense individually but they

describe some behavourial patterns when analysed

together over some time. Traditional data mining

algorithms are designed to load a full archive of data, and

then build a decision model. New data that arrive would

have to be accumulated with the historical dataset, and

together they would be scanned over again for rebuilding

an up-to-date decision tree. A new generation of stream

mining is therefore invented to tackle this problem. Very

Large Decision Tree (VFDT) is a classical stream mining

algorithm which can incrementally starts a decision tree

from scratch and updates it whenever new sample comes,

without the need of reprocessing the whole dataset. An

extended version of VFDT called incrementally

optimized VFDT or iOVFDT inherits the advantages of

VFDT plus an extra optimization that balances the

performance criteria – accuracy, tree size and learning

time.

In this paper, for the first time, six selected dynamic

data each of which represents a typical application

scenario were tested under iOVFDT and other variants.

The results are encouraging as they show that iOVFDT is

able to produce good classification accuracies almost on

par with C4.5 without the drawbacks of batch learning.

Superior performance results like compact tree size and

reasonable learning time can be achieved too. These

advantages make iOVFDT a suitable candidate algorithm

for real-world applications especially those that deal with

dynamic data and real-time constraints. In the future it is

planned to test again with the same dynamic datasets but

by using other kinds of stream mining algorithms than

decision tree types. The experiments will be extended

also to dynamic data that come in variable rates in order

to observe how data latency, irregular dynamic data loads

and information overwhelm may affect Web applications

that are built by different stream mining algorithms.

REFERENCES

[1] Maged N. Kamel Boulos, "BlogBrain Ops: Proposal for a

Semi-automatic Social Web Mining and Cyberinfluence

Decision-support Tool for Info Ops Teams", Journal of

Emerging Technologies in Web Intelligence, Vol 3, No 4

(2011), 317-322, Nov 2011, pp.317-322.

[2] Fujun Zhu et al., "Dynamic Data Integration Using Web

Services", Proceedings of the IEEE International

Conference on Web Services (ICWS’04), pp. 262-272.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 1, FEBRUARY 2013 85

© 2013 ACADEMY PUBLISHER

[3] Pedro D., and Geoff H., "Mining high-speed data streams",

in Proceeding of the sixth ACMSIGKDD international

conference on Knowledge discovery and data mining,

ACM, 2000, pp.71-80.

[4] Hang Yang, Simon Fong, Yain-Whar Si, "Multi-objective

Optimization for Incremental Decision Tree Learning", in

the Proceeding of the 14th International Conference on

Data Warehousing and Knowledge Discovery, Springer

LNCS, Vienna (Austria) September 3 - 6, 2012

[5] Chernoff H., "A measure of asymptotic efficiency for tests

of a hypothesis based on the sums of observations", Annals

of Mathematical Statistics, Vol. 23, 1952, pp.493-507.

[6] Gama J., Ricardo R., "Accurate decision trees for mining

high-speed data streams", in Proceeding of the ninth ACM

SIGKDD international conference on Knowledge

discovery and data mining, ACM, 2003, pp.523-528.

[7] A. Bifet, G. Holmes, R. Kirkby, and Bernhard Pfahringer,

"MOA: Massive Online Analysis", Journal of Machine

Learning Research, Vol. 11, 2010, pp.1601-1604.

[8] S.B. Kotsiantis, "Supervised Machine Learning: A Review

of Classification Techniques", Informatica Vol. 31, 2007,

pp.249-268.

[9] Ananda L. et al, "Short-Term Memory Mechanisms in

Neural Network Learning of Robot Navigation Tasks: A

Case Study", Proceedings of the 6th Latin American

Robotics Symposium (LARS'2009), Valparaíso-Chile,

2009, pp.1-6.

[10] Wei Chen, Simon Fong, "Social Network Collaborative

Filtering Framework and Online Trust Factors: a Case

Study on Facebook", The 5th International Conference on

Digital Information Management (ICDIM 2010), July 2010,

Thunder Bay, Canada, pp.266-273.

[11] Colleen M. Kehoe and James E. Pitkow, "Surveying the

Territory: GVU's Five WWW User Surveys", The World

Wide Web Journal, Vol. 1, no. 3, 1996, p.77-84.

[12] Zoran Obradovic and Slobodan Vucetic, "Challenges in

Scientific Data Mining: Heterogeneous, Biased, and Large

Samples", Technical Report, Center for Information

Science and Technology Temple University, Chapter 1,

pp.1-24

[13] B. Kaluza, V. Mirchevska, E. Dovgan, M. Lustrek, M.

Gams, "An Agent-based Approach to Care in Independent

Living", Ambient Intelligence, Lecture Notes in Computer

Science, Springer, 2010, Volume 6439, pp.177-186.

[14] Wei Fan, Wenke Lee, Prodromidis, A., Chan, P.K., "Cost-

based modeling for fraud and intrusion detection: results

from the JAM project", DARPA Information Survivability

Conference and Exposition, 2000, Vol. 2, pp.130-144.

86 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 1, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

Call for Papers and Special Issues

Aims and Scope
Journal of Emerging Technologies in Web Intelligence (JETWI, ISSN 1798-0461) is a peer reviewed and indexed international journal, aims at

gathering the latest advances of various topics in web intelligence and reporting how organizations can gain competitive advantages by applying the
different emergent techniques in the real-world scenarios. Papers and studies which couple the intelligence techniques and theories with specific web
technology problems are mainly targeted. Survey and tutorial articles that emphasize the research and application of web intelligence in a particular
domain are also welcomed. These areas include, but are not limited to, the following:

• Web 3.0
• Enterprise Mashup
• Ambient Intelligence (AmI)
• Situational Applications
• Emerging Web-based Systems
• Ambient Awareness
• Ambient and Ubiquitous Learning
• Ambient Assisted Living
• Telepresence
• Lifelong Integrated Learning
• Smart Environments
• Web 2.0 and Social intelligence
• Context Aware Ubiquitous Computing
• Intelligent Brokers and Mediators
• Web Mining and Farming
• Wisdom Web
• Web Security
• Web Information Filtering and Access Control Models
• Web Services and Semantic Web
• Human-Web Interaction
• Web Technologies and Protocols
• Web Agents and Agent-based Systems
• Agent Self-organization, Learning, and Adaptation

• Agent-based Knowledge Discovery
• Agent-mediated Markets
• Knowledge Grid and Grid intelligence
• Knowledge Management, Networks, and Communities
• Agent Infrastructure and Architecture
• Agent-mediated Markets
• Cooperative Problem Solving
• Distributed Intelligence and Emergent Behavior
• Information Ecology
• Mediators and Middlewares
• Granular Computing for the Web
• Ontology Engineering
• Personalization Techniques
• Semantic Web
• Web based Support Systems
• Web based Information Retrieval Support Systems
• Web Services, Services Discovery & Composition
• Ubiquitous Imaging and Multimedia
• Wearable, Wireless and Mobile e-interfacing
• E-Applications
• Cloud Computing
• Web-Oriented Architectrues

Special Issue Guidelines

Special issues feature specifically aimed and targeted topics of interest contributed by authors responding to a particular Call for Papers or by
invitation, edited by guest editor(s). We encourage you to submit proposals for creating special issues in areas that are of interest to the Journal.
Preference will be given to proposals that cover some unique aspect of the technology and ones that include subjects that are timely and useful to the
readers of the Journal. A Special Issue is typically made of 10 to 15 papers, with each paper 8 to 12 pages of length.

The following information should be included as part of the proposal:
• Proposed title for the Special Issue
• Description of the topic area to be focused upon and justification
• Review process for the selection and rejection of papers.
• Name, contact, position, affiliation, and biography of the Guest Editor(s)
• List of potential reviewers
• Potential authors to the issue
• Tentative time-table for the call for papers and reviews

If a proposal is accepted, the guest editor will be responsible for:
• Preparing the “Call for Papers” to be included on the Journal’s Web site.
• Distribution of the Call for Papers broadly to various mailing lists and sites.
• Getting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors should be

informed the Instructions for Authors.
• Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact

information.
• Writing a one- or two-page introductory editorial to be published in the Special Issue.

Special Issue for a Conference/Workshop
A special issue for a Conference/Workshop is usually released in association with the committee members of the Conference/Workshop like general

chairs and/or program chairs who are appointed as the Guest Editors of the Special Issue. Special Issue for a Conference/Workshop is typically made of
10 to 15 papers, with each paper 8 to 12 pages of length.

Guest Editors are involved in the following steps in guest-editing a Special Issue based on a Conference/Workshop:
• Selecting a Title for the Special Issue, e.g. “Special Issue: Selected Best Papers of XYZ Conference”.
• Sending us a formal “Letter of Intent” for the Special Issue.
• Creating a “Call for Papers” for the Special Issue, posting it on the conference web site, and publicizing it to the conference attendees.

Information about the Journal and Academy Publisher can be included in the Call for Papers.
• Establishing criteria for paper selection/rejections. The papers can be nominated based on multiple criteria, e.g. rank in review process plus the

evaluation from the Session Chairs and the feedback from the Conference attendees.
• Selecting and inviting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors

should be informed the Author Instructions. Usually, the Proceedings manuscripts should be expanded and enhanced.
• Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact

information.
• Writing a one- or two-page introductory editorial to be published in the Special Issue.

More information is available on the web site at http://www.academypublisher.com/jetwi/.

(Contents Continued from Back Cover)

RISING SCHOLAR PAPERS

A New Data Hiding Technique Based on Irreducible Polynomials,
Wafaa Mustafa Abduallah, Abdul Monem S. Rahma, and Al-Sakib Khan Pathan

45

SURVEY PAPERS

Arabic Semantic Web Applications – A Survey
Aya M. Al-Zoghby, Ahmed Sharaf Eldin Ahmed, and Taher T. Hamza

52

REGULAR PAPERS

Focused Crawling Based Upon TF-IDF Semantics and Hub Score Learning
Mukesh Kumar and Renu Vig

Stream Mining Dynamic Data by Using iOVFDT
Yang Hang and Simon Fong

70

78

