
JAPL: the JADE Agent Programming Language

Mohamed BAHAJ, Abdellatif SOKLABI

FSTS/ Department of Mathematics and Computer Science, University Hassan I

Settat, Morocco

mohamedbahaj@gmail.com

abd.soklabi@gmail.com

Abstract— This article describes JADE Agent Programming

Language (JAPL) that allows fast and efficient

implementation of intelligent behaviors into mobile agents,

based on three logical, FIPA speech acts, and a part of

complex procedural script for actions. It integrates the

ontologies and defines communication services. Rather than

rely on a library of plans, JAPL allows agents to plan from

first principles. It also describes how to program the multiple

JADE behaviors using JAPL instructions and how to

compile JAPL to JAVA classes.

Keywords— Mobile agents, JADE, Agent programming

language, agents communication, MAS

I. INTRODUCTION:

JADE (Java Agent Development Environment) is the

system for mobile agents, most used in the world. It is

adapted to the rules of FIPA [10] and is programmed as a

basic object-oriented programming language Java, but the

development of a complex application is not yet clear and

it requires a lot of concentration, effort and time [4].

In the literature, many programming languages for

mobile agents ware created as: Cougaar [6], MetateM [7],

AgentSpeak (L) [8], [15], MadKit [12], 3APL [9], [13],

Golog [14], [17] and SWAM [3]. These languages are

used in the prototyping phase, in order to provide a high

level application design-based to mobile agents, who try

to follow the architecture Belief- Desire-Intension [16, 15].

In this paper, we present the programming language of

JADE agents: "JADE Agent Programming Language". It

was designed to implement many complex applications by

assigning high mental level concepts to mobile agents, so

they reach a new abstraction level that allows their

programming as reactive behaviours instead of

programming as meaning. In addition to these features,

the agents will have the ability to schedule other tasks in

order to accomplish the tasks that have been assigned.

First of all, section 2 presents broad overview of the

different items JADE Agent Programming Language.

Secondly, section 3 talks about the state of the art. Thirdly,

section 4 describes its different features in some detail. In

particular, we highlight knowledge representation. The

following section contains the programming treatment

agent’s behaviours. The sixth section finalizes this part

with a focus on the service concept, and the last section

we wrap up with some conclusions.

II. JADE AGENT PROGRAMMING LANGUAGE

OVERVIEW:

JAPL is the extension of ADL (Action Description

Language) [18] on the mobile agents of JADE. ADL

allows the use of quantifiers and conditional expressions

in the description of operators to describe classical

planning. In ADL, the focus of the quantifiers is over

finite domains and disjunction that are not allowed in the

expression of effects, because it would bring non-

deterministic actions. ADL is a good representation of

formal references in classical planning. JAPL is a

computer language that standardizes description of

planning problems. Also it is a PDDL (Planning Domain

Description Language [15]), which allows it to specify the

possible operators, the relationships and environmental

constraints, the initial state and the goal states.

JAPL provides open world semantics. It includes four

essential elements; plans element, rules, ontologies and

services. One of the main features for agents is that they

can communicate via services. Taking into consideration

the view of the agent about the execution, a service call is

handled in the same way as the execution of internal

actions. This is possible because the services have the

same structure as actions. They obtain; pre-conditions and

post-conditions, and the body (which contains the actual

code to be executed) is reduced to service calls, which

allows us to integrate advanced features such as safety, in

JADE. In addition, the programming of complex

communication scenarios becomes easier, because all

messages are processed in a clearly defined framework. In

the following sections we will detail some of JAPL’s

different regions, namely knowledge representation, the

behavior of agents, and communications.

272 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER
doi:10.4304/jetwi.5.3.272-277

III. STATE OF THE ART:

In the literature there are many programming languages

of agents, represent a family of programming languages

which allows developers to create high-level abstractions

and structures which are necessary for the implementation

of mobile agents. It is possible to classify them in two

categories, those based on logic as AgentSpeak (L) [15],

[8], 3APL [9], [13], Golog [17], MetateM [7] and SWAM

[3], and those based on object-oriented programming

language Java such as Cougaar, [6] and MadKit [12].

These languages are mostly in the prototype stage, and

provide high-level concepts that implement some notion

of BDI [16], [1].

AgentSpeak (L) programming language is the most

developed programming language, and is an article

comparing this language to other languages [15]. ALAS

and IndiGolog are the newest programming languages of

mobile agents. ALAS is a fast, effective, simple and

powerful programming language of reactive agents. It has

been designed to support the execution of agents in

heterogeneous environments, and allow easy use of

features of agents, such as mobility [2]. IndiGolog is a

programming language for autonomous agents that detect

their environment and plan their tasks. IndiGolog supports

the execution of high-level programs, gives programmers

the ability to create high-level and non-deterministic

programs, tests agent tasks and provide a declarative

specification of the domain in calculated situations [5].

However, all these languages are widespread and are not

suitable for the distinction of all mobile agents systems.

We used the strong point in these programming languages

for mobile agents and created a simple and efficient

language, while respecting the particularity of JADE.

IV. THE KNOWLEDGE REPRESENTATION:

JAPL has been designed to respond to the need of

JADE, for a flexible and dynamic language, that allows

for the migration of agents and services at any time and

which makes the local information’s validity very short.

So every programming system that supports dynamic

behavior needs to address the issue of synchronization and

information sharing. So research in the domain of

transaction management tries to find solutions to the issue

of synchronization [11].

Our approach, however, is to integrate the idea of

uncertainty about the bits of information in the

presentation of knowledge to allow programmers to

manage incorrect or expired information. We integrated

the concept of uncertainty using calculated situations

which have three assessed logics. The third truth value is

added to the predicate and cannot be evaluated with the

information available to a particular agent. Thus, a

predicate can be explicitly evaluated as unknown. It is an

integral part of language, and the programmer is forced to

deal with uncertainty in the development of a new agent.

Therefore, JAPL can handle incomplete or incorrect

information explicitly.

JAPL allows knowledge bases that are most used in the

other languages to be defined. Each object that refers to

the language needs to be defined in ontology. JAPL

implements strong typing, because the variables flow in

classes rather than sets of speech. It should be noted here

that the alphabet JAPL consists of variables, functions,

symbols, actions, quantifiers, connectors, and punctuation

symbols. We also use “?” (for testing), “!” (for

realization), “and” (for sequencing) and “1” (for

implication). Classes are represented in a tree structure.

Each node represents a class with a set of attributes.

Classes are defined as follows Fig. 1:

Fig.1: Example of JAPL class representation.

JAPL allows multiple inheritances. The classes inherit

all attributes of all ancestors. Therefore, the problem of

names conflicts are not posed, since the attribute names

have been expanded to include the class structure. In

addition to classes, JADE Agent Programming Language

can define methods and comparisons. The interpretation

of the methods is given by the operational semantics. In

practice, methods are coded in JAVA.

Complex actions describe functional capabilities of

agents. They in turn can call Java methods, or use JAPL.

There are different types of complex actions or

invocations of services. They all have the same structure;

they consist of three main elements, in addition to the

name of the action Fig. 2:

Fig. 2: Example of JAPL actions representation.

An action is called using the following code Fig. 3:

Fig. 3: JAPL action call example

V. AGENT BEHAVIOUR:

A. SimpleBehaviour and Action selection:

As JADE Agent Programming Language is intended to

be interpreted in a BDI-like architecture, it incorporates

the notion of achievement agent tasks SimpleBehaviour.

The SimpleBehaviours of the agent are implemented as

(Class object classname)

(action ActionName pre PreCondition eff
Effect Body)

(call role-interface action-id [variable])

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013 273

©2013 ACADEMY PUBLISHER

simple commands that the agent tries to respond to once

they are activated. Each agent that carries one

SimpleBehaviour starts to run by trying to appropriate

recovery actions that replay at this SimpleBehaviour.

These actions can be either simple scripts or services that

are provided by other agents. For this selection, there is no

difference between actions that can be performed locally

and services. The final selection is made by comparing the

orders listed in SimpleBehaviour with the effects of all the

known actions of the agent. Comparisons and formulas

are made in order to check their compatibility. If they are

compatible, the values of variables of SimpleBehaviour

agents are linked to the corresponding variables in the

action. After the end of the action, the results are written

to the original variables of the agent task’s orders are

evaluated to ensure that the objective of SimpleBehaviour

is actually reached. If not, the agent reformulates the

composition of its actions, and tries to reach the goal of

SimpleBehaviour with other actions.

B. Reactive Behaviour:

JADE Agent Programming Language sets rules that

control the execution of reactive behaviors of the agent.

More specifically, a rule may give the agent a task,

whenever a certain event occurs. Rules are applied simply,

consisting of a condition and two actions, one of which is

executed when the condition is true and the other when it

is false Fig. 4.

Fig. 4: Example of a JAPL rule.

Precisely, whenever an object is added, deleted or

modified in the facts, conditions that correspond to the

type of the object in the fact are tested and executed. If the

result of the test is unknown, no action is taken. For

efficiency reasons, the restriction rules that apply to the

types of objects have been designed to make it as simple

as possible. Actions can themselves be tasks of a new

agent or a call to an agent class.

C. CompositeBehaviour composition and activities:

In general, the concept of having beliefs, desires and

intentions are translated into knowledge belief bases, tasks

of agent and a composition library. This allows us to

create some principle principles. All these languages

require a library of fully developed composition. Overall

execution cycle thus consolidates the internal and external

states via conjunction function with one or more

compositions, which are partially or fully implemented.

In order to achieve a complete composition, the partial

compositions must be ordered consistently. As scheduling

can be computationally expensive, the algorithm ensures

that the main sequence of actions that depend on each

other is satisfied. Actions that are executed in parallel are

not checked for consistency. Elements of the composition

may take a number of forms, which include actions or

services as we will detail in the next section.

The agent task execution is discussed as follows. The

locally known elements of the actions composition are

compared to the agent task. If it finds one with the pre-

conditions satisfied, it runs. If not, the composer tries to

find others who can satisfy the prerequisites. If the task

agent or certain pre-conditions cannot be met with local

composers, a request is sent to the Directory Facilitator

(DF). If the action is found in the composer, the Directory

Facilitator will execute the action. If not a new action is

created and executed Fig. 5.

Fig. 5 agent task execution algorithm

Actions may be atomic elements, or they may be scripts.

JAPL provides keywords for sequential execution, parallel

or conditional, and even the creation of new agent tasks,

which then lead to the composition of the new shares.

D. SequentialBehaviour and ParallelBehaviour:

JADE Agent Programming Language can define

behaviour using sequential blocks that run sequentially, i.e.

that all instructions are executed one sequentially. If any

YES

search action

action execution

create and execute a new action

action found action found in the DFsend request to the DF

NO

YES

NO

 (rule <name>
(var variables-declaration)
conjunction
(true 1)
(false 0)
)

274 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER

of the statements fail for any reason, the entire block fails.

Note that the entire composition does not necessarily fail

(Fig. 6).

Fig. 6 an example of a SequentialBehaviour JAPL

JADE Agent Programming Language offers the

possibility of defining Behaviour using parallel blocks

running simultaneously, allowing each to be treated

separately. If one of the statements must wait for any

reason, the other can still be executed without delay.

However, the entire execution fails if one of the

statements fails, regardless of whether others have been

completed or not (Fig. 7).

Fig. 7: Example of a ParallelBehaviour JAPL

VI. THE SERVICE CONCEPT:

To allow JADE to be more interoperable with other

SMAs, the agents created by JAPL should only

communicate using service calls, instead of having an

implicit representation of features that can be used by

other agents.

All interactions between agents are guided by a generic

service. Thus, a service describes an act that the agent

performs on behalf of another agent. Services are

specified and defined using those conditions and effects.

The interaction service always occurs between two agents.

An agent must be either the user or the supplier during

this operation. The provider is the agent that has some

expertise to offer. The other agent in the interaction may

act as the service user.

To initiate a service call, the agent must have failed to

fulfill a task using only the actions that are available; this

includes services that agents provide. If such a situation

occurs, the agent sends a request to the DF, which

responds with a list of services that could fulfill the task.

Then the agent choose a service, and inform the Directory

Facilitator, which sends back a return list, but this time a

list of agents which provide the requested service.

VII. APPLICATION:

To compile the instructions to create the help in JAPL

we had to create a Plugin compilation based on eclipse

Plugins. In our case we used the 4.2.1 version of Eclipse.

And to build ontology, we call it compilation Plugin.

Which we integrate with JAR files JADE (Fig. 8 and Fig.

9).

 Figure 8: creating a Plugin using Eclipse

(sequential
(bind ?sender (obj Agent (name
"sender")))
(bind ?receiver (obj Agent (name
"reiceiver")))
(eval (and
(att name ? sender?str)
(not (att name ? receiver?str))
)
)

)

(parallel
(bind ?sender (obj Agent (name
"sender")))
(bind ?receiver (obj Agent (name
"reiceiver")))
(eval (and
(attribut name ? sender?string)
(not (attribut name ? receiver?string))
)
)
)

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013 275

©2013 ACADEMY PUBLISHER

Fig. 9: integration JAPL compilation plugin in the JADE project library.

The compiler takes JAPL input and creates Java classes.

These classes must be compiled subsequently using

JAVAC. The generated classes implement some JADE

interfaces architecture to insure this compilation.

Created classes are:

• OntologyName.java. This class contains the basic

structure for classes and their attributes.

• OntologyNameIinterface.java. Java interface contains

constants that define types of ontology for each class and

attributes.

• OntologyNameMethod.java This class contains the

JAVA code for such methods that were written by the

programmer without modification.

More details on the use of language JAPL will be

available in a users' guide, which soon will be posted on

the web soon.

VIII. CONCLUSION:

In this article, we presented JAPL. On the basis of

tertiary logic, it provides constructs for describing

ontologies, protocols and services, and complex actions

for the system of mobile agents JADE. Programmers can

use JAPL composition of actions composer. Thus, internal

actions and invocations of services are handled

transparently to the planning component.

We are confident that JADE agent programming

language is likely to be more fruitful than all old

languages, in bridging the gap between theory and

practice in the development of the JADE mobile agents.

Further we are confident that it will push the research in

both the pragmatic and theoretical aspects of BDI agents.

REFERENCES

[1] Dennis, M. Fisher, P. Webster, R. Bordini “Model checking

agent programming languages” in Automated Software

Engineering, March 2012, Volume 19, Issue 1, Pages 5-63

[2] D. Mitrovic, M. Ivanovic and M. Vidakovic “Introducing

ALAS: A Novel Agent‐Oriented Programming Language “

in NUMERICAL ANALYSIS AND APPLIED

MATHEMATICS ICNAAM 2011: International

Conference on Numerical Analysis and Applied

Mathematics , AIP Conf. Proc. 1389, Pages 861-864, 19–25

September 2011

[3] M. Crasso, C. Mateos, A. Zunino, M. Campo “SWAM: A

logic-based mobile agent programming language for the

Semantic Web” in Expert Systems with Applications

Volume 38, Issue 3, March 2011, Pages 1723–1737.

[4] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa “JADE

PROGRAMMER’S GUIDE” last update: 08-April-2010.

JADE 4.0

[5] Giuseppe De Giacomo, Yves Lespérance, Hector J.

Levesque, Sebastian Sardina “IndiGolog: a High-Level

Programming Language for Embedded Reasoning Agents”

Multi-Agent Programming: 2009, Pages 31-72

[6] Helsinger, M. Thome and T. Wright “Cougaar: A scalabe,

distributed multi-agent architecture” in IEEE SMC04,

2004.

[7] M. Fisher, C. Ghidini and B. Hirsch “Programming groups

of rational agents” in Fourth International Workshop.

Volume 2359 of LNAI. 2004, Pages 16–33.

[8] R. Bordini, J. Hubner et A. Jason: “a Java Based

AgentSpeak Interpreter Used with SACI for Multi-Agent

Distribution over the Net” in 5th edn, 2004.

[9] M. Dastani “3APL Platform” Utrecht University, 2004.

[10] FIPA: Fipa acl message structure specification, 2002.

[11] R. Kotagiri, J. Bailey, P. Busetta “Transaction oriented

computational models for multi-agent systems” in 13th

IEEE International Conference on Tools with Artificial

Intelligence, IEEE Press, 2001, Pages 11–17.

[12] O. Gutknecht, J.Ferber “The madkit agent platform

architecture” in Technical Report, Laboratoire

d’Informatique, de Robotique et de Micro électronique de

Montpellier, 2000.

[13] Hindriks, K.V., Boer, F.S.D., der Hoek, W.V.and J.J.:

Meyer “Agent programming” in 3apl. Autonomous Agents

and Multi-Agent Systems 2 (1999), Pages 357–401.

[14] G. Giacomo, Y. Lesperance, H. Levesque “ Congolog, a

concurrent programming language based on the situation

calculus” Technical report, University of Toronto,1999.

[15] A. Rao: AgentSpeak(L): “BDI agents speak out in a logical

computable language” in 7th European Workshop on

Modelling Autonomous Agents in a Multi-Agent World,

MAAMAW’96,. Volume 38 of Lecture Notes in Computer

Science, 1996, Pages 42–55

[16] S. Rao “BDI Agents: From Theory to Practice” Technical

Note 56. Australian Artificial Intelligence Institute, April,

1995.

[17] M. Huntbach, N. Jennings and G. Ringwood. “How agents

do it in stream logic programming” in Proceedingsof the

International Conferenceon Multi-Agent Systems, San

Francisco, USA, June, 1995.

276 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER

[18] E. Pednault “ADL and the state transition model of action”

in logic and computation, 1994, Pages 467-512.

Bahaj Mohamed was born in 1964, in ouezzane, Morocco. He

got his PhD in Applied Mathematics, from University of Pau,

France, in 1993. He is now working as a Professor at the

Department of Mathematics & Computer Sciences, University of

Hassan 1er, Faculty of Sciences & Technology of Settat,

Morocco. His research interests include pattern recognition,

Load Balancing & Controls of mobiles agents, Semantic web &

Ontology in MAS.

Soklabi Abdellatif was born in 1985, in

El JADIDA, Morocco. He had a license

degree in computer engineering in 2009

and a master's degree in computer

systems and networks in 2011. Now he is

a PhD researcher in mobiles agents and

web services in Department of

Mathematics & Computer Sciences,

University of Hassan 1er, Faculty of

Sciences & Technology of Settat,

Morocco. His research interests include, Load Balancing &

Controls of mobiles agents, Interoperability between different

MAS.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 3, AUGUST 2013 277

©2013 ACADEMY PUBLISHER

