
Vision-based Presentation Modeling of Web 
Applications: A Reverse Engineering Approach 

 
Natheer Khasawneh 

Department of Software Engineering, Jordan University of Science and Technology, Irbid, Jordan 
Email: natheer@just.edu.jo 

 
Oduy Samarah 

Department of Computer Engineering, Jordan University of Science and Technology, Irbid, Jordan 
Email: oasamarah09@cit.just.edu.jo 

 
Safwan Al-Omari 

Department of Software Engineering, Jordan University of Science and Technology, Irbid, Jordan 
Email: ssomari@just.edu.jo 

 
Stefan Conrad 

Institute of Computer Science, Heinrich Heine University, Dusseldorf, Germany 
Email: conrad@cs.uni-duesseldorf.de 

 
 
 

Abstract—Presentation modeling, which captures the layout 
of an HTML page, is a very important aspect of modeling 
Web Applications (WAs). However, presentation modeling 
is often neglected during forward engineering of Web 
Applications; therefore, most of these applications are 
poorly modeled or not modeled at all. This paper discusses 
the design, implementation, and evaluation of a reverse 
engineering tool that extracts and builds appropriate UML 
presentation model of existing Web Applications. The tool 
consists of three steps. First, we identify and extract visual 
blocks and presentation elements of an HTML page such as 
navigation bars, header sections, text input, etc. In this step, 
we adopt the VIPS algorithm, which divides an HTML into 
semantically coherent blocks. Second, the identified 
presentation elements in step one are mapped to the most 
appropriate UML presentation model elements. Third, the 
resulting presentation model is made available in 
Magicdraw for manipulation. Our approach is applied and 
evaluated in the Goalzz home page.  
 
Index Terms—Reverse Engineering, Web Application, Web 
UML, Vision-based Page Segmentation 
 

I.  INTRODUCTION 

Recently, many applications and services have evolved 
from being stand-alone and monolithic applications into 
web applications. According to a recent study [1], most of 
the existing web applications lack proper modeling, 
which is necessary for maintenance, reengineering, and 
proper evolution to emerging web technologies. For the 
purpose of modeling legacy web applications, there is an 
urgent need to have a reverse engineering method to 
extract models of existing web applications. Chikofsky 
describes reverse engineering as “the process of 
analyzing a subject system to identify the system’s 

components and their interrelationships and create 
representations of the system in another form or at a 
higher level of abstraction” [2].  

Current modeling languages and methodologies are not 
sufficient for capturing all aspects of web applications. 
UML for example is not sufficient to express the 
hyperlinks between different HTML pages. Modeling of 
web applications can be performed at three levels: 
1. Content modeling: focuses on modeling data in an 

HTML page. 
2. Hyper text modeling: focuses on modeling links 

between HTML pages in a web application. 
3. Presentation modeling: focuses on the layout of the 

items inside a particular HTML page. 
In this paper we focus on the presentation model, 

which is used to model the page layout in a UML 
presentation model. The approach we follow in 
generating a presentation model is based on page 
segmentation method discussed in [3]. Page segmentation 
divides the page into different blocks according to its 
visual appearance when rendered in a web browser. 

The reset of the paper is organized as follows: in 
Section 2, we provide an overview of the related work; 
Section 3 introduces the proposed approach in details; 
Implementation details are discussed in Section 4; 
Section 5 discusses case studies to illustrate and 
demonstrate our approach; finally in Section 6, we sketch 
concluding remarks and future work. 

II.  RELATED WORK 

In the literature there are many methods and tools of 
web reverse engineering which are built on the standard 
of reverse engineering techniques. These methods and 
tools can be used to describe and model the web 

134 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jetwi.4.2.134-141



 
Figure 2. Flowchart of the Segmentation Process. 

Page Segmentation

VIPS XML Description of 
Segmented Page

Mapping Process

Web UML XML Description of 
Segmented Page

Parsing Web UML XML Description 
by Magicdraw Tool

UML Presentation Model of 
Segmented Webpage 

Webpages  

 

 

Stage 1

Stage 2

Stage 3

 
Figure 1. Approach Architecture. 

applications with respect to different levels: content, 
hypertext, and presentation [4]. 

The UML modeling language is the most widely used 
during the forward engineering design process and in 
many web application reverse engineering techniques. 
For example, in [1] authors defined a process for reverse 
engineering by describing a method for understanding 
web applications to be easily maintained and evolved. In 
[5], authors showed how web applications with UML 
presentation can be easily maintained. The approach in 
[6] is based on structured and model based techniques. In 
this approach the HTML page is divided into several 
blocks according to a cognitive visual analysis. After that 
the specific patterns with these blocks are extracted to 
produce structural blocks and through these structural 
blocks a conceptual model is represented. The approach 
in [7] relies on HTML pages analysis by extracting the 
useful information from the web page and analyze the 
extracted information using the domain ontology and 
form the analysis results the UML conceptual schema is 
generated. 

III.  APPROACH AND METHODOLOGY 

In this paper, we present a new approach to reverse 
engineer existing web applications into UML 
presentation model. The proposed approach focuses on 
discovering the structure of the web page and presenting 
the structure in UML presentation model, as shown in 
Fig. 1. 

The presented method consists of three stages: page 
segmentation stage, mapping process stage, and UML 

model generation stage. Page segmentation stage accepts 
an HTML page as input and produces an XML 
description of segmented page. Mapping process stage 
transforms the XML description to Web UML XML 
description. Finally, UML generation Stage accepts a 
Web UML XML description of the segmented page and 
outputs the UML presentation model. 

In the rest of this section, we describe, in details, page 
segmentation stage, web UML XML, mapping process 
stage, and UML model generation stage, respectively.  

A.  Page Segmentation Stage 
In this stage we use Vision-based Page Segmentation 

Algorithm (VIPS) [3] to segment the web page into 
different blocks. VIPS incorporates both the page 
appearance (visual cues) and Document Object Model 
(DOM) to perform the segmentation. 

VIPS is done in three steps (Fig. 2): block extraction, 
separator detection, and content structure construction. 
These steps are repeated recursively several times until a 
user-defined threshold is reached. The threshold is called 
Permitted Degree of Coherence (PDoC) and it is based on 
Degree of Coherence (DoC). DoC is a numeric value 
between 1 and 10 that increases as the consistency 
between blocks increases. Following is a description of 
each step in VIPS: 
Visual Block Extraction 

The input to the visual block extraction is the visual 

cues and the DOM tree of the web page. During this step 
each node in the DOM tree is matched with the block 
where it belongs to in the visual cues. From the tree node, 

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 135

© 2012 ACADEMY PUBLISHER



Figure 3. VIPS XML Description for Block. 

<LayoutNode FrameSourceIndex="0" SourceIndex="16" 
DoC="10" ContainImg="0" IsImg="false" 
ContainTable="false" ContainP="0" TextLen="15" 
LinkTextLen="15" DOMCldNum="3" FontSize="7.5" 
FontWeight="700" BgColor="#00ffff"  
ObjectRectLeft="10" ObjectRectTop="289" 
ObjectRectWidth="202" ObjectRectHeight="236" ID="1-2" 
order="10">

Figure 4. VIPS XML Description for Anchor HTML Elements. 

<LayoutNode FrameSourceIndex="0" SourceIndex="18" 
DoC="11" ContainImg="0" ContainTable="false" 
ContainP="0" TextLen="5" LinkTextLen="5" 
DOMCldNum="1" FontSize="7.5" FontWeight="700" 
BgColor="#00ffff"  IsImg="false" ObjectRectLeft="60" 
ObjectRectTop="308" ObjectRectWidth="95" 
ObjectRectHeight="36" Content="Page1 " SRC="&lt;A 
href= &quot; FirstPage. html&quot; &gt;Page1&lt;/A&gt; " 
ID="1-2-1" order="11"/>

VIPS starts looking if the sub nodes belong to the same 
block. Nodes with a coherence value less than PDoC are 
matched together to belong to the same group. This 
process is repeated recursively for the sub roots of the 
unmatched nodes until all nodes are matched to a block in 
the visual cues. 

 
 

Visual Separator Detection 
The input to this step is the collection of the extracted 

blocks from the previous step, whereas, the output is a set 
of separators which separate different blocks. There are 
two types of separators, horizontal separator and vertical 
separator. The process starts by one separator which 
spans the whole page. Then blocks are added one by one 
and the separator gets updated according to the following 
rules: 
1. If the added block falls inside the separator, the 

separator will be splitted into two. The splitting will 
be done either vertically or horizontally. 

2. If the added block covers part of the separator the 
separator will be resized. 

3. If the added block covers the whole separator, the 
separator will be removed. 

Weight separator is assigned to each separator by 
considering factors that show how similar the 
neighboring blocks are. For a separator which separates 
two blocks, the more the two blocks differ the higher the 
weight that will be assigned for the separator and vice 
versa. The used factors are: distance between blocks, 
overlapping with HTML tags, background differences, 
font differences, and structure similarity. 
Content Structure Construction 

In this step content structure is constructed by merging 
lowest weight separators with the neighboring separators. 
The newly merged separator will be given a DoC value 
equals to the maximum DoC of the merged separators. 
This step is iterative until a separator with maximum 
weight is reached. Finally, each node in the newly 
generated block is checked whether its DoC meets the 
condition given by PDoC or not. If not, the Visual 
Extraction Process starts over. Otherwise, the process 
terminates and the page structure is generated in VIPS 
XML description format. 

VIPS XML description format is the immediate output 
of the VIPS algorithm. It is very simple and 
understandable description, which is defined for blocks 
and their content in the segmented page. The VIPS XML 
description captures and describes some attributes for 
each block and HTML elements in a web page, as shown 
in Table I. This table contains the main attributes which 
are used during the mapping process stage. 

Fig. 3 represents the VIPS XML description for blocks 
with ID (1-2) which contains three elements irrespective 
of the type of these elements (block or primitive HTML 
Element). Fig. 3 also shows more information for block 
such as coordinates and not containing any tables or 
images. In contrast, Fig. 4 represents VIPS XML 
description for primitive HTML Element (anchor) with 
ID (1-2-1), and also Fig. 4 shows more information about 

the element such as coordinates and Uniform Resource 
Locator (URL) for anchor in SRC attribute. Through ID 
attribute, we can know that the block with ID (1-2) 
contains the HTML element with ID (1-2-1). 

 

TABLE I.   
VIPS XML ATTRIBUTES AND THEIR DESCRIPTION 

 
VIPS XML 
Attributes 

 
Descriptions 

ContainImg Determine  whether the  block contains 
image 

IsImg 
 

Determine  whether the HTML Element  
is image 

ContainTable Determine  whether the  block contains 
table 

ContainP Determine whether the   HTML Element  
contains text 

TextLen Determine  the length of text in blokes 
or HTML Elements 

DOMCldNum 
Determine  whether the element is block 

or primitive HTML tag ( it is block if  
DOMCldNum >1) 

ObjectRectLeft 
ObjectRectTop 

ObjectRectWidth 
ObjectRectHeight 

Determine  the  coordinates for blocks or 
HTML Elements 

 

Content 
Determine the content of blocks and 

anchor which appears for user .(used for 
data mining techniques ) 

SRC Determine the source  of image, anchor 
or any HTML Element 

ID 
Unique ID for block or HTML Element, 

which is used for specific purpose 
during the implementation. 

order Unique ID (integer number) 

 

136 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER



 
Figure 5. UML XML Description (Part1). 

<packagedElement xmi:type='uml:Class' xmi:id='1_1_2'  
name='Administrator Login' visibility='public'> 
<ownedAttribute xmi:type='uml:Property' xmi:id='5' 
name='textinput' visibility='private' aggregation='composite' 
type='1_1_2_1'/>  
<ownedAttribute xmi:type='uml:Property' xmi:id='6' 
name='textinput' visibility='private' aggregation='composite' 
type='1_1_2_2'/>  
<ownedAttribute xmi:type='uml:Property' xmi:id='7' 
name='button' visibility='private' aggregation='composite' 
type='1_1_2_3'/>  
</packagedElement> 
------------------------------------------------------------------------------- 
<packagedElement xmi:type='uml:Class' xmi:id='1_1_2_1' 
name=''Username' ' visibility='public'/> 
<packagedElement xmi:type='uml:Class' xmi:id='1_1_2_2' 
name=''Password' visibility='public'/> 
<packagedElement xmi:type='uml:Class' xmi:id='1_1_2_3' 
name='Submit' visibility='public'/> 

B. Web UML XML 
Web UML XML description is based on UML-Based 

Web Engineering (UWE) Metamodel [8]. UWE is a 
methodology used for Web application modeling 
purpose, especially, structure modeling and behavior 
modeling. Furthermore, this methodology provides 
guidelines for systematic modeling of Web applications. 
UWE comprises four main parts to model web 
application: Notations, Methods, Metamodel, and 
Process. 

Next we present a brief description about the UWE 
notation before discussing the process of transforming 
VIPS XML description format to Web UML XML 
format. 

 
UWE Notation 

For UML presentational model, UWE defines 
stereotypes for   user interface elements, these elements 
are divided into two parts: primitive user interface 
(UIElement) elements and user interface container 
(UIContainer) elements which contain a collection of 
primitive user interface elements.  

 A case-tool Magicdraw  supports the design and 
model of web applications with different aspects by using 
UWE notations and Metamodels as plug-in. This case-
tool is used to parse the Web UML XML description to 
generate UML presentation model in generation model 
stage. 

Table II summarizes the UWE Stereotypes, which are 
used to model web application into UML presentation 
model. These Stereotypes are: 

 
1. Page: A Page element is the area of the user interface 

which contains all of UIElement elements and 
UIContainer elements. The page constructs the root 
of presentation model. 

2. Anchor: An anchor element permits the user to move 
from page to another page, or from location to 
another location on the same page. 

3. Group Presentation: A group presentation element is 
used to define a set of UIElement elements, such as a 
collection of anchors. 

4. Text: A text element is used to display a sequence of 
characters. 

5. Textinput: A text input element permits the user to 
enter text. 

6. Form: A form element contains a collection of 
UIElement elements that are used to provide data for 
a submitted process. 

7. Button: A button element allows the user to initiate 
some actions on the web page. Actions include 
submitting the content for Textinput element, playing 
video, displaying image, triggering anchor and so on. 

8. Selection: A selection element displays a list of items 
for the user to select one or more items. 

9. Image: An image element is used to display the 
image. 

10. Media Object:  MediaObject elements are used to 
play multimedia objects such audio and video. 

11. File upload: A File upload element allows user to 
upload files. 

12. Custom component: UWE also defines custom 
component stereotypes for custom HTML elements 
which are not defined by UWE. 

The Web UML XML description is a complicated 
description which is used to describe the UWE 
stereotypes in XML format. For that, this type of XML 
description can be interpreted and rendered to UWE 
stereotypes by any case-tool that is capable of parsing this 
XML description to build a UML presentation model. 

The Web UML XML description is divided into three 
main parts, each part specifies some properties for 
elements. Fig. 5, Fig. 6, and Fig. 7 contain the UML 
XML description for a simple block of web page, this 
block is represented by the DIV HTML tag which 
consists of two Textinput elements and one submit button 
as shown in Fig. 8. 

The Web UML XML description in Fig. 5 specifies the 
ID number and name for each element, and also 
determines whether the element is visible or not in UML 
presentation model.  The benefit of visibility property 
appears through modeling the hidden HTML elements 
that are not displayed by the browser. 

TABLE II.   
UWE SEROTYPES SYMBOL. 

Stereotypes Symobl 

Page  
Anchor  

Text  
Text input  
Selection  

File upload  
Image  

mediaObject  
Form  

Button  
Collection  

Custom component  

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 137

© 2012 ACADEMY PUBLISHER



<mdElement elementClass='Class' xmi:id='1004'> 
 <elementID xmi:idref='1_1_2'/> 
 <properties> 
  <mdElement elementClass='BooleanProperty'> 
<propertyID>SUPPRESS_STRUCTURE</propertyID> 
<propertyDescriptionID>SUPPRESS_STRUCTURE_DESCRIP
TION</propertyDescriptionID> 
</mdElement> 
</properties> 
<geometry>90,225, 20, 130</geometry> 
<propertyID>SUPPRESS_STRUCTURE</propertyID> 
<compartment xmi:value='5^6^7' 
compartmentID='ATTRIBUTES'/> 
<parts> 
<mdElement elementClass='Part' xmi:id='1005'> 
<elementID xmi:idref='5'/> 
<geometry>100,255, 20, 20</geometry> 
<propertyID>SUPPRESS_STRUCTURE</propertyID> 
</mdElement> 
<mdElement elementClass='Part' xmi:id='1006'> 
<elementID xmi:idref='6'/> 
<geometry>100,280, 20, 20</geometry> 
<propertyID>SUPPRESS_STRUCTURE</propertyID> 
</mdElement> 
<mdElement elementClass='Part' xmi:id='1007'> 
<elementID xmi:idref='7'/> 
<geometry>100,305, 20, 20</geometry> 
<propertyID>SUPPRESS_STRUCTURE</propertyID> 
</mdElement> 
</parts> 
</mdElement> 

Figure 6. UML XML Description (Part2). 

<UWE_PROFILE:PRESENTATIONGROUP XMI:ID='1018' 
BASE_CLASS='1_1_2'/> 
<UWE_PROFILE: TEXTINPUT  XMI:ID='1019' 
BASE_CLASS='1_1_2_1'/> 
<UWE_PROFILE: TEXTINPUT XMI:ID='1020' 
BASE_CLASS='1_1_2_2'/> 
<UWE_PROFILE:BUTTON        XMI:ID='1021' 
BASE_CLASS='1_1_2_3'/> 
------------------------------------------------------------------------------ 
<UWE_Profile: textInput      xmi:id='1030' base_Property='5'/> 
<UWE_Profile: textInput      xmi:id='1031' base_Property='6'/> 
<UWE_Profile:button            xmi:id='1032' base_Property='7'/> 

Figure 7. UML XML Description (Part3). 

Figure 8. Group of HTML Elements. 

Fig. 5 is also divided into two parts as shown by the 
dashed lines. In the first part, the block is defined as a 
class type and the elements in this block are defined as a 
property type. In the second part, the elements in block 
are only defined as a class type. 

This means that the group element, or in other words 
UIContainer elements, is defined as a class type only, and 
the primitive user interface (UIElement) element is 
defined as a class and property type. Fig. 6 represents the 
second  part of Web UML XML description. In this part, 
the coordinates for each element are specified by four 
points as shown in bold text in Fig.7. These points are: 
1. Padding-left: sets the left padding (space) of an 

element. 
2. Padding-Top: sets the top padding (space) of an 

element. 
3. Width:  sets the width for element. 
4. Height: sets the height for element. 

These points are structured as: Padding-left, Padding-
Top, Width, and Height. 

Fig. 7 represents the third part of Web UML XML 
description. In this part, the stereotype of element is 
specified by UWE profile. Also, Fig. 7 is divided into two 
parts as shown by the dashed lines, First part specifies the 
stereotype of element from class type, and the second part 
also specifies the stereotype of element from property 
type, as is shown by bold text in Fig. 7. 

C. Mapping Process Stage 
The mapping process is considered the main part of 

our approach. This process accepts the VIPS XML 
description as input file and produces Web UML XML 

description as output file. Substantially, the mapping 
process consists of the following steps: 
1. Firstly, Contrast Map table between HTML elements 

and UWE stereotypes, as shown in Table III. 
2. Read the VIPS XML Description for each block, this 

step continues until the end of VIPS XML 
Description file is reached.   

3. The VIPS XML attributes for each element are 
examined, and then useful information from these 
attributes such as the type of element and coordinates 
are extracted.  

4. The extracted information for all elements in block is 
stored together in the data structure list for block. 

5. Examine the data structure list for each block to 
check whether the block has a collection of elements 

TABLE III.   
VIPS XML ATTRIBUTES AND THEIR DESCRIPTION. 

HTML Element UEW stereotype 
<div> </div> 

<span></span> 
<fieldset></fieldset> 

Group Presentation 

<select> 
<input type=” radio”/> 

<input type=”checkbox”/> 

Selection 
 

<button></button> 
<input  type=" reset " /> 

<input  type=" button " /> 
<input  type=" submit " /> 

Button 
 

<input  type=" file " /> 
File upload 

 
<input  type=" text " /> 

<input  type=" password " /> 
< textarea></ textarea> 

Text input 
 

<a href=””></a> Anchor 

<p> </p> 
Text 

 
<form > </form> Form 

<img src=””></img> Image 

138 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER



 
Figure 10. Simple UML Presentation Model. 

Figure 11.Web Page before Segmentation Stage. 

1:  Input: VIPS XML description for blocks in the segmented Web 
Page. 
2:  Output: UML XML description for blocks in the segmented 
page.  
3:  Begin 
4:  Counter  1            // Counter for blocks. 
5:  total_blocks  N // N is the no. of blocks in segmented page. 
6:  For counter to total_blocks step by 1 
7:  Block  list_of_blocks [counter] 
8:  Counter_elemnent    1              // Counter for elements in 
block 
9:  While Block contains elements with VIPS XML description  
10: Element  Block [Counter_elemnent]                                
11:VIPS_ Info  Extract useful information from VIPS XML att. 
of Element. 
12: WebUMLXML_info  Mapping _to_WebUMLXML (VIPS_ 
Info).  
13: Block [Counter_elemnent]        WebUMLXML_info 
14: Counter_elemnent INCREMNET BY 1 
15: End While 
16: Store the information of block and elements into Web UML 
XML file. 
17: End for 
  

Figure 9. Mapping Process Pseudo Code. 

that have the same type or not. For example, check 
whether the blocks contain a collection of anchors or 
not. 

6. Mapping location step is considered the most 
important step; this step needs to change the 
coordinates for elements to become consistent within 
UML presentation model. 

7. Mapping from HTML element to UWE Stereotypes. 
8. Now, the content of data structure list for each block 

is Web UML XML Description. This content is 
stored into Web UML XML file. 

Fig. 9 shows the pseudo code for mapping process. 

D. UML Presentation Model Generation Stage 
After mapping process stage, the Web UML XML 
description is used as input file for Magicdraw tool to 
generate UML presentation model. The UML 
presentation model in Fig. 10 is generated by parsing the 
WebUML XML Description in Fig. 5, Fig.7 and Fig. 7 
which form the simple HTML block as shown in Fig. 8. 

IV.  IMPLEMENTATION DETAILS 

The process described in section 3 is implemented 
using C#.Net Programming language (.NET Framework 
3.5). This language provides the object oriented 
programming which assists in programming process 
through providing the libraries which provides many 
features. In addition, we use the following APIs: 
1. microsoft.mshtml.dll 
2. MSXML3.dll 
3. PageAnalyzer.dll 

The PageAnalyzer.dll is considered the main API used 
in our implementation; this dll file generates the VIPS 
XML Description for any Web Page. 

The main challenges which we faced during the 
implementation process are: 

1. Mapping the coordinates of element and block in 
VIPS XML Description to coordinates in Web UML 
XML Description. 

2. Take into account all the HTML elements. 

V.  CASE STUDY OF  THE PROPOSED APPROACH 

In this section, we will illustrate the reverse 
engineering process described earlier by applying it to a 
specific website. 

A. Page Segmentation 
Fig. 11 shows the home page for goalzz web site , this 

page is segmented using the VIPS algorithm into blocks 
as shown in Fig. 12, some of these blocks are small and 
others are large in size depending on the structure of the 
page. The page layout of the segmented page is shown in 
Fig. 13. In addition, Fig. 14 shows the DOM tree for the 
segmented page. 

B. Mapping Process 
After the page segmentation process, the VIPS 

algorithm assigns each block, sub-block, and element 
with XML descriptions; these descriptions capture some 
properties of each block and sub-block in the web page, 
then the VIPS XML format is mapped and transformed 
into the Web UML XML format as illustrated in Fig. 2. 

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 139

© 2012 ACADEMY PUBLISHER



 
Figure 15. UML Presentation Model for Goalzz Homepage. 

Figure 14. DOM Tree for Segmented Page. 

Figure 13. Page Layout for Goalzz Homepage. 

 
Figure 12.Web Page after Segmentation Stage. 

C. UML Presentation Model Generation Stage 
After the mapping and transformation process is 

achieved, the presentation model can be imported and 
manipulated in the Magicdraw modeling tool. Fig.15 
shows the presentation model for goalzz home page. 

VI.  SUMMARY AND FUTURE WORK 

In this paper we present an approach of reverse 
engineering web applications into UML web presentation 
model. This issue is evolved from the more generic 
reverse engineering process, concentrating on the 
structure of the web page. We have presented an 
approach to the identification of structure in a web page 
and model this structure in UML presentation model. The 
approach relies on a number of structured techniques 
such as page segmentation. 

Future work will concentrate on building a complete 
framework which automatically builds the UML 
presentation model for any given application. The process 
of presenting the UML presentation model will be 
automated and will apply content mining along with the 

segmentation technique to accurately identify different 
blocks of the web page. 

Also, we will work on handling Dynamic HTML pages 
(DHTML).  By DHTML pages we mean pages which 
change its layout on the client side. So you will have a 
unique URL with different page layout segmentation. For 
example consider a faculty member website, page simply 
list the faculty member publication, if the user clicks on 
any publication the abstract of that publication will be 
shown on the page without the need to connect back to 
the server. Handling DHTML pages introduces two 
issues that need to be considered in our future work. First, 
we need to make sure that the segmentation process takes 
this into consideration. Second, we need to check if UWE 
notation is flexible and rich enough to capture and model 
such a dynamic behavior of the web page. 

ACKNOWLEDGMENT 

This research was supported in part by German 
Research Foundation (DFG), Higher Council for Science 
and Technology (HCST) and Jordan University of 
Science and Technology (JUST). 

REFERENCES 

[1] G. A. D. Lucca, A. R. Fasolino, and P. Tramontana, 
"Reverse engineering web applications: the WARE 
approach," Journal of Software Maintenance and 
Evolution: Research and Practice, v.16, n.1-2, p.71-101, 
January-April 2004 “doi:10.1002/smr.281”. 

140 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER



[2] E. J. Chikofsky and J. H. II Cross, "Reverse engineering 
and design recovery: a taxonomy," Software, IEEE, vol.7, 
no.1, pp.13-17, January 1990 “doi:10.1109/52.43044”. 

[3] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, VIPS: a vision-
based page segmentation algorithm, Microsoft Technical 
Report, MSR-TR-2003-79, November 2003.  

[4] S. Tilley and S. Huang, "Evaluating the reverse engineering 
capabilities of Web tools for understanding site content and 
structure: a case study,"  Proceedings of the 23rd 
International Conference on Software Engineering, pp. 514- 
523,  May 2001 “doi: 10.1109/ICSE.2001.919126”. 

[5] S. Chung and Y.-S. Lee, "Reverse software engineering 
with UML for Web site maintenance," Proceedings of the 
First International Conference on Web Information 
Systems Engineering, vol.2, pp.157-161, 2000 “doi: 
10.1109/WISE.2000.882874”. 

[6] R. Virgilio and R. Torlone, "A Structured Approach to 
Data Reverse Engineering of Web Applications," 
Proceedings of the 9th International Conference on Web 
Engineering, San Sebastián, Spain, June 2009 “ 
doi:10.1007/978-3-642-02818-2_7”. 

[7] B. Djelloul, M. Mimoun, and B. S. Mohamed, "Ontology 
based Web Application Reverse-Engineering Approach," 
INFOCOMP Journal of Computer Science, vol. 6, pp. 37-
46, March 2007.  

[8] C. Kroiß and N. Koch, "The UWE Metamodel and Profile 
– User Guide and Reference", Technical Report 0802, 
Ludwig-Maximilians-Universität München, p. 35, 
February 2008. 

 
Natheer Khasawneh is an Assistant Professor in the 
Department of Software Engineering at Jordan University of 
Science and Technology since 2005. He received his BS in 
Electrical Engineering from Jordan University of Science and 
Technology in 1999. He received his Master and PhD degrees 
in Computer Science and Computer Engineering from 
University Akron, Akron, Ohio, USA in the years 2002 and 

2005 respectively. His current research interest is data mining, 
biomedical signals analysis, software engineering and web 
engineering. 
 
Oduy Samarah is a Master student in the Department of 
Computer Engineering at Jordan University of Science and 
Technology since 2009. He received his BS in Computer 
Engineering from Jordan University of Science and Technology 
in 2009. His current research interest is in Wireless sensor 
network, software engineering and web engineering. 
 
Safwan Al-Omari is an assistant professor in the department of 
Software Engineering at Jordan University of Science and 
Technology. Dr. Safwan Al-Omari received his PhD degree in 
Computer Science from Wayne State University in 2009. He 
received his Master degree in Computer and Information 
Science from the University of Michigan-Dearborn and 
Bachelor degree in Computer Science from the University of 
Jordan in 2003 and 1995, respectively. His current research is in 
software engineering, service-oriented computing, and cloud 
computing.. 
 
Stefan Conrad is a Professor in the Department of Computer 
Science at Heinrich-Heine-University Duesseldorf, Germany. 
He was an Associate Professor in the Department of Computer 
Science at Ludwig-Maximilians- University in Munich, 
Germany, from 2000 to 2002. From 1994 to 2000, he was an 
Assistant Professor at the University of Magdeburg where he 
finished his ‘Habilitation’ in 1997 with a thesis on federated 
database systems. From 1998 to 1999, he was also a Visiting 
Professor at the University of Linz, Austria. He received his 
PhD in Computer Science in 1994 at Technical University of 
Braunschweig, Germany. His current research interests include 
database integration, knowledge discovery in databases, and 
information retrieval. He is a (co)author of two books (in 
German) and a large number of research papers. 

 

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 141

© 2012 ACADEMY PUBLISHER


