
ConTest: A GUI-Based Tool to Manage Internet-
Scale Experiments over PlanetLab

Basheer Al-Duwairi

Jordan University of Science and Technology/Department of Network Engineering and Security, Irbid, Jordan
Email: basheer@just.edu.jo

Mohammad Marei, Malek Ireksossi, and Belal Rehani

Jordan University of Science and Technology/Department of Computer Engineering, Irbid, Jordan
Email: {mymarei, malek.erq, belalrehani}@hotmail.com

Abstract— PlanetLab is being used extensively to conduct
experiments, implement and study large number of
applications and protocols in Internet-like environment.
With this increase in PlanetLab usage, there is a pressing
need to have efficient way to setup and mange experiments.
This paper proposes a graphical user interface-based tool,
called ConTest, to setup and mange experiments over
PlanetLab. ConTest enables PlanetLab users to setup
experiment and collect results in a transparent and easy
way. This tool also allows different measurements for
different variables over the PlanetLab network. The paper
discusses the design and implementation of ConTes and
shows different scenarios.

Index Terms—Internet measurements, PlanetLab. API,
Networking, GUI.

I. INTRODUCTION

PlanetLab is an open shared platform for developing,
deploying, and accessing planetary scale applications [1].
Currently, it has more than 1100 nodes distributed all
over the world. It allows its users to freely access the
shared nodes, upload programs and execute them. It is
used by many distributed applications developers all
around the world for testing their applications (e.g., [2, 3,
4, 5]). It can also serve the purpose of having machines
distributed all around the Internet to break the limit of
locality and allow the users to perform their
measurements on random nodes at random places to
ensure generality and confidence in the obtained results.

PlanetLab is being used extensively to conduct
experiments, implement and study large number of
applications and protocols in Internet-like environment.
These applications and protocols fall into different areas
that include real-time measurements of delay, bandwidth,
and security. With this increase in PlanetLab usage, there
is a pressing need to have efficient way to setup and
mange experiments. Having such tool would be a great
assist not only for Planetlab community, but also to new
researchers/users who find it difficult to explore and
utilize this platform. In fact, several systems (as described
in Section V) have been proposed to achieve that goal.

This paper builds on previous efforts in this direction and
proposes a GUI-based tool, called ConTest, that allows
users to visually manage experiments in Internet-like
environment. In this regard, ConTest provides great deal
of flexibility and simplicity to conduct experiments over
PlanetLab. Using this tool, users have the ability to
visually create the network topology they want simply by
selecting PlanetLab nodes as they appear on the world
map view. Also, it allows users to specify the role of
each node (client, server, or proxy) and to generate
different type of traffic (e.g., TCP, UDP, ICMP, etc.). In
addition, ConTest has the capability to perform basic
operations in sequence or in parallel. This include
authentication, file upload, and command execution.

ConTest provides efficient and simple way to deploy and
test applications over Planetlab. With this tool it becomes
very easy to study the properties of Internet applications
and protocols. It also becomes easy to measure their
performance in terms of response time, delay jitter,
packet loss, etc. With its ability in supporting application
deployment and monitoring in Internet-Like environment
such as PlanetLab, we believe that ConTest would
promote research in this field and would significantly
contribute to the increase of PlanetLab users because of
its attractive features that hide many of the complications
behind the scene.

The rest of this paper is organized as follows: Section II
explains ConTest architecture. Section III discusses
implementation details. Section VI discusses security
issues. Section V discusses related work. Finally,
conclusion and future work is presented in Section VI.

II. CONTEST ARCHITICURE

The design and implementation of ConTest is based on
modularity and usability concepts. In this regard, ConTest
is composed of several modules with each module having
specific functionality. In particular, ConTest has the
following modules: Authentication Module, Command
execution module, File management module, and
Connection management module. What follows is a
description of each module.

164 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jetwi.4.2.164-171

A. Authentication Module

Typically, users access PlanetLab nodes through slices.
Basically, a slice is a multi-user account registered on the
PlanetLab Central (PLC) to offer all the users of that
account the same resources on the nodes which they add
to their slice such that users of that account work on the
same project and preserve node’ resources of that slice.
Accessing a PlanetLab node requires the user to have
access to the slice to which the node belongs to.
PlanetLab offers a web interface for the users to allow
them to access their slices and see the nodes registered
there. But it also offers an API that allows external
programs to communicate with PLC databases through
remote procedure calls (RPC) to retrieve users' account
and node information. ConTest utilizes this API to
perform authentication.

The authentication module is a program that
communicates directly with the PlanetLab central API. It
accepts the authentication information (email, PlanetLab
password and slice name) from the main module. This
information is then validated by the PLC. After that, it
retrieves the slice info from the PLC and the node list
registered on this slice, with all the necessary data about
each node (ID, name, location, status, etc.) as illustrated
in Fig. 1.

B. Command Execution Module

The command execution module allows users to run their
own custom commands on the nodes to which they have
access (i.e., within their slices). Also, it is used in the
connection management module to run the tests requested
by the user. In order for the tool to communicate with the
remote nodes and access their resources to perform the
required test, and due to the security restrictions on the
access to PlanetLab nodes, any connection to the nodes
must be established through the secure shell (SSH)
protocol. Therefore, command execution is done through
SSH connections, where the command execution module

connects to the desired nodes using the secure public key
cryptography authorization, sends the command to the
destination nodes and retrieves the output and error
messages from each node.

C. File Management Module

Similar to the command execution module, file copying is
done through SSH and using the secure copy function.
After accepting the key pair identification, the files are
uploaded to the destination nodes and their console dump
is retrieved to ensure that the copying process was
successful.

D. Connection Management Module

This module represents the operational core of the tool. In
order for the user to perform their tests, they need to
connect the nodes together using a testing program which
they also need to upload. The connection management
module does that for the user. Also, this module heavily
utilizes the program capabilities. It uses a special class to
setup the connections required by the user. The role of
each node (e.g., client, server) is determined using the
programmed connection algorithm. The connection
management module communicates with the map
interface on the user interface to help the user select their
connection topology in a simple and efficient way. It also
utilizes the file copying and command execution modules
to upload the test files to the desired nodes, execute these
files, retrieve the results from each node and output these
results to the GUI.

The results associated with an experiment are stored to
separate files for reference. Also some statistics (e.g.,
bandwidth, round trip time, etc.) are displayed to the
users upon the execution of these experiments. Fig 2.
shows the execution flow for the connection management
module and its interaction with other modules in each
step.

E. The Graphical User Interface (GUI) module.

Figure 1: How the authentication module accesses the

API to retrieve node list

Figure 2: Execution flow in the connection

management module

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 165

© 2012 ACADEMY PUBLISHER

The GUI represents the main program that links all other
modules of the tool. The GUI module accepts user inputs
and manages outputting results and error messages to the
user in text file format and to the program log. It
communicates with the authentication module to read
node data and display them in table format, as well as
identify and show their location on the world map using
the retrieved coordinates from the authentication module.
It also sends the user input to the command execution and
file management modules and retrieves the console log
from each module to display it in the program log or save
it to separate files. Also, it integrates the connection
management module with the command execution/file
management modules to achieve the tests required by the
user.

F. ConTest Classes

GUI class: The core of ConTest is the GUI module/class,
which connects the other modules together and manages
their interactions. This class is responsible for interacting
with the user, I/O management between the sub-classes,
and error handling. Most of the content of the main class
concerns the graphical widgets displayed on the GUI, the
initiating of the other modules and the management of
their inputs and outputs. So we won't go deep into
describing this class as it contains many auto generated
elements (the graphical widgets). That leaves us with the
sub-classes in the design, which are:

Copying thread class: The copying thread class is the
class that represents the file management module.
Instances of this class receive and store the essential data
of the nodes to which the copying is going to be
performed, as well as the data of the file to be copied to
the nodes, this includes:

• Node name.
• Key file (for the ssh connection).
• Source file (the file to be copied).
• Destination directory on the remote node.

The instances run a scp (secure copy) command using the
information passed by the main module, retrieves the
console output from the remote nodes and relay this
output to the GUI.

 Execution thread class: Similar to the file copying class,
instances of this class contain the data of the nodes which
the command is going to be executed on:

• Node name.
• Key file.
• Command string.

Each instance of this class runs a ssh command using that
information, which is passed to it by the main module,
retrieves the console output from the remote nodes and
relays this output back to the GUI.

 Node view class: This class is mainly used to represent
the nodes graphically, it also stores all the available data
of the nodes, namely:

• Node ID.
• Node name.
• Location.
• Status.
• Coordinates (for display in the GUI's map view).

It also contains pointers to other nodes. These pointers
are used in creating linked lists that help in constructing
the required connections for the tests performed by the
connection management module. Fig. 3 illustrates the
relationship between the different classes; it also shows
the relationship between the main module and the
authentication module.

III. IMPLEMENTATION DETAILS

A. Tools and Programs used to Implement ConTest

ConTest was implemented using Qt Qreator [6][7], a
widely used IDE (integrated development environment)
that helps programmers create powerful graphical tools,
which provides an effective way to integrate an easy to
use, simple graphical interface with the ability to perform
a wide set of different operations (like accessing APIs,
using the SSH commands, displaying map, etc.). Qt
Qreator has a huge library of graphical and non graphical
classes and functions that enable the programmer to do
almost anything they want, helping them give their
programs the maximum functionality. It uses C++ as the
programming language, and its set of libraries makes the
programming process fast and effective, and helps the
programmer to focus on the core functionality of their
program while it handles the graphical aspects.

In addition Ping [8, 9] and Iperf [10] have been integrated
within ConTest to provide means to measure different
aspects of network performance related metrics, such as
round trip time and connection throughput. In ConTest,
this can be done by starting two processes on the

Figure 3: Relationship between different classes

166 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER

designated remote node, one measures the bandwidth
using Iperf tool and the other measures the round trip
time using the ping command. These processes then
return their output through SSH to the program in order
for it to record it locally and analyze it to get the required
connectivity statistics about all the nodes of interest to the
user.

B. Inter-process Communication

The main program, the GUI, constitutes the main process
that initializes and connects other processes, thus the
other sub-processes take their required running data from
the GUI through an inter-process link, then they run their
separate codes independently in the background and
return the output to the main program through the same
link.

When created, each sub-process gets initialized and sent
its parameters, and then each process establishes a
connection to the main process through two channels, the
standard output channel (stdout), which communicates all
outputs from this process to the main process, and the
standard error channel (stderr) which transfers the error
messages (if any) from the sub-process back to the calling
process. Even when a sub-process needs to communicate
with another sub-process, this communication needs to go
through the main process as illustrated in Fig. 4.

C. Multi-threading

Since the execution of commands and file copying
through the SSH is a lengthy process, and since we need
to do a lot of copying, command execution and file
writing, along with the active interaction with the GUI,
we had to program the tool in the form of threads.
Threads are, essentially, child processes that execute
concurrently. Each separate thread runs in parallel with
the GUI, thus keeping the program responsive at all times
and increasing the utilization of the machine resources.

Of course, these threads need to access the GUI to write
their output through it to the user, however, multiple
threads writing to the same object (i.e. the program log) is
prohibited as it can cause access errors and even program
crashes. So we had to use the concept of event/event

handler or, as it is called in the Qt environment,
signal/slot pair. When a thread has some output that it
needs to write to the interface, it emits a signal to the GUI
telling it that its output is ready. The GUI receives this
signal through a specific slot and puts it in the queue of
signals that wish to access the interface. This regulation
prevents multiple access to one object at the same time
and gives each thread its turn to write to the interface.

D. Authentication

As mentioned earlier, the PlanetLab Central has high
security standards that restricts the access to their user
and node databases, but fortunately, they provide the API
to access their PLC database and retrieve the node data
we require for our tool, thus we have programmed the
separate authentication script. This script does the
authentication through the API functions and using the
user's data provided in the GUI (their slice name and
PlanetLab registered email and password), and retrieves
the detailed node list for that specific user. Also, the
connection to the nodes themselves requires the use of the
SSH protocol, and since SSH uses public key
cryptography to authenticate to the remote computer, we
had to ask the user for the key file which they have
registered in their PlanetLab account.

Another issue with the SSH connections is that SSH
protocol requires the key's password each time you
connect to the remote host for confirmation. This is the
default process and it is recommended as it prevents
altering or theft the user's SSH key, but if the user needs
to access multiple hosts at a time, it will make the
connection process more redundant and time consuming.
However, since this check can be disabled through the
command options, we decided to give the user the liberty
to choose whether to enable this confirmation or not, but
disabling the check is not recommended as it may raise
security warnings and risk the user's key security.

VI. CONTEST FUNCTIONALITY AND USAGE

ConTest provides an easy and flexible way to setup and
perform experiments over PlanetLab. This is done mainly
through the experiment manager interface, where the user
specifies experiment parameters and through the
connection tester interface which establishes different
connection schemes between nodes and measures some
aspects of these connections. Before going into the
details of these two interfaces we describe the way
authentication is performed.

A. Authentication

The authentication dialog pops up at the start-up of the
program, it requires the following data to enable you to
use the device:
• Email: the e-mail which you have registered in your

PlanetLab central account.

Figure 4: Process communication through channels

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 167

© 2012 ACADEMY PUBLISHER

• Password: the password of your account.
• Slice name: the name of a slice reserved for you on

PlanetLab.
• Key file: the directory of your private key that is

used to access the nodes through the secure shell
(ssh).

Upon a successful authentication, user information will
be displayed in the upper right corner; the number of
nodes in the provided slice will be displayed in the
program log. Also the details of the node list registered
on the slice are displayed in the table view and the nodes
themselves are represented on the map as shown in Fig.5.

[Figure 8: Authentication successful]

B. Experiment Management

In this tab, user can execute commands on remote nodes
or upload files to them. The basic functions that can be
performed within this tab are:
• Node selection: Nodes can be selected by clicking on

them in the node list table or by clicking on the
nodes' icons on the map. Information about a node
can be obtained by hovering the mouse pointer on
it, this will display a tool tip showing the node
details.

• Command execution: To execute a command, you
simply select the nodes on which you want to run
your command, insert the command text with all
variables in the command text box, and then click
the “run command” button. The output from each
node will be displayed on the program log.

• Uploading Files: To upload files to nodes, go to the
“copy file” tab, from there you can select the file
which you want to upload using the “browse”
button, you can also specify the destination
directory on the remote nodes which you want to
store your file in, after selecting the nodes you click
“upload file” to start uploading your file. When
uploading is done, the log will display the output
from the remote consoles to verify that the process
is successful, if there are no error messages then the
file is uploaded.

C. Connection Testing

Connection testing tab provides an interface for users that
allows them to test the connection between any nodes
from the list of nodes within a slice. It also allows
selecting the protocol of preference. The test results are
displayed on the program log and stored to external files
for documentation. The basic functions that can be
performed within this tab are:

• Test Protocol: from here you should be able to select

your has its own client, server and forwarding
program. You can select the protocol from the “test
protocol” drop down box. And you can also browse
for your own programs if you have customized a
code to be used with ConTest. To restore the defaults
test programs, just press the “restore defaults”
button.

• The Map Interface: In the connection tester, you can
add nodes to test only through the map interface.
This is done by clicking on a node using the left
mouse button. As long as you keep selecting nodes
using the left button you will keep the path open.
Until you close it by clicking a node using the right
mouse button, thus setting it as a server. Currently,
you can’t give a single node two roles (e.g. a client
and a server at the same time).

After setting up your connection, you click the “run test”
button to start your test, when the test is done, its results
are displayed on the program log as shown in Fig.6.

D. Illustrative Examples

We consider two scenarios to show the functionality and
flexibility that ConTest offers in setting up and executing
experiments over PlanetLab. In the first scenario, we
show how to use the tool to obtain information about the
disk usage percentage on each node within a slice. In the
second scenario, we show how to perform round trip time
measurements between two nodes and how to assign
roles for each node.

Figure 5: After successful authentication

Figure 6: Adding nodes to a path, : The test results
showing on the program log

168 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER

Example 1-Retrieving Disk Usage Percentage: In this
example, we show how to access multiple PlanetLab
nodes simultaneously and perform a simple test to obtain
the percentage of the disk space used on each node within
a slice. In order to perform this test, a shell script
responsible for obtaining the disk space usage has been
uploaded on each node within our slice. This was done by
selecting all nodes from the list in the node list view and
uploading the shell script “diskUsuage.sh”. To find the
disk usage percentage on a node, the shell script was
executed via the execute command tab where the path of
the script “testScript/deskUsage.sh” is specified. Disk
usage percentage is displayed in the program log area as
shown in Fig. 7.

Example 2: Round Trip Time (RTT) Measurements

In ConTest, the connection test interface allows users to
specify the role of each node in an experiment. In this
regard, a node can be specified to be a client, a server, or
a forwarding node (i.e., a proxy). Also, it allows them to
upload the code that is suitable for the role of each node.
Measuring the round trip time between two nodes is a
simple example that we describe here to illustrate this
functionality.

Fig. 8 shows the results of measuring RTT between a
client (the green node) and a server (the pink node). It
also shows the results of measuring RTT between the
same nodes assuming that the traffic is forced to pass
through another node (the proxy) represented by orange
in this example. Such setup is commonly used for indirect
communication and it can serve for testing triangular

Figure 7: Using ConTest to obtain disk usage percentage of each node within a slice (Example 1)

Figure 8. The results of measuring round trip time between two nodes (Example 2)

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 169

© 2012 ACADEMY PUBLISHER

routing or even studying some characteristics of fast flux
networks which is becoming a very important problem
[11][12].

It is important to emphasize here that using ConTest to
perform such experiments over PlanetLab provides great
deal of flexibility and saves a lot of time to setup and run
the experiment and collect the related results. So instead
of using the CLI to access each node individually to
upload the files, execute commands or setting up tests,
ConTest automates this process and saves the user's time
and effort.

V. RELATED WORK

Since the deployment of PlanetLab, there have been a lot
of efforts to simplify the setup and control of experiments
over this distributed testbed. These efforts focused mainly
on providing a graphical user interface to select nodes,
execute commands, and perform different measurement
tests. These tools typically take advantage of the
PlanetLab Central (PLC) which provides detailed
information about PlanetLab nodes such as host name,
geographical location, TCP connectivity. It also provides
convenient interfaces for adding/removing nodes. Planet
lab manager [13] is one of these tools. It basically allows
users to choose nodes for their slices and then to choose
some of these nodes for an experiment based on the
common information about these nodes. It has the
capability of deploying experiment files and execution
single/multiple command on every node in parallel. It
also provides means to monitor the progress of an
experiment and to view the output from the nodes.

PlanetLab application manager [14] is another tool that
was designed to simplify deployment and monitoring and
running applications over PlanetLab. It has several
features that enable users to centrally manage their
experiments and monitor their applications. The tool is
composed of two components: the server side which
requires access to aPostagreSQl/MySQL Database
element and a PhP web server to allow web access. On
the other hand, the client side is basically a shell script
that runs under bash. The client side shell scripts require
specific customizations making it a little bit complicated.

Stork is a software installation utility service that installs
and maintains software for other services [15]. It allows
users to install software on a large number of PlanetLab
nodes and keep that software updated for a long period of
time. It also has and a novel security system that
empowers users and package creators while reducing
trust in a repository administrator. As a results Stork
provides a secure, scalable, effective way to maintain
tarball and RPM packages and software on large
networks.
Other tools have been developed to simplify the process
of evaluating the characteristics of PlanetLab nodes, thus
allowing users to select suitable nodes for their
experiments. e. g., pShell [16], CoDeeN [17] [18]. The
pShell is a Linux shell that provides basic commands to

interact with PlanetLab nodes. However, for pShell users,
they still need to manually select suitable nodes.

ConTest share many of these features with other tools.
The most obvious difference between ConTest and other
tools is that ConTest provide a visual way to select nodes
within a slice using the world map view. It also, allow
users to visually construct the network topology and
project it on the map. Moreover, users can specify the
role of each node to be client, server, or forwarding node.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the design and
implementation of ConTest, a graphical user interface-
based tool that enables researchers to visualize
experiments over PlanetLab network. ConTest is a
powerful graphical tool that helps PlanetLab users access
nodes within their slices, upload files and execute
commands easily, with no complications and with much
fewer security restrictions compared to the command line
access, which is the default way of accessing PlanetLab
network. It also helps users perform different tests on the
nodes they choose and automates gathering and
summarizing the results for these tests. Also, it gives the
users the ability to utilize its connection automation to
run their own tests using their custom testing
applications. This tool would be of a great help So this
tool is a very promising tool as it has unlimited
improvement possibilities which we hope we will be able
to explore to make it a more effective tool in the world of
distributed applications testing and development.

As part of our ongoing efforts to improve ConTest’s
functionality and usability, we seek to achieve the
following goals:

• In the current implementation, the user can
browse remote machine folders using the
browsing commands (like ls). Future release of
ConTest will enable browsing directories on a
remote node graphically to increase the usability
and ease of use.

• Enhance our tool's testing capabilities by adding
some additional statistics. Users of the tool can
easily help in improving this aspect since the test
codes are separated from the main tool
functionality, so virtually any codes can be
tested and used.

• Improving the graphical design of the tool.
Specifically the map view. In particular, we will
increase the accuracy of the coordinate mapping
and add the zooming feature to make the map
interface easier to use.

• Even though we enable the user to choose the
test codes, it is still, somehow, a limited feature.
On the far view, we want to enable the users to
conduct their own experiments based on the
connection setup they choose, instead of limiting
them by simple connection testing codes.

170 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER

ACKNOWLEDGMENT

The authors would like to thank Dr. Mohammad
Fraiwan for his constructive thoughts and comments to
improve this work.

REFERENCES

[1] PlanetLab. [Online] http://www.planetlab.org.
[2] [18] M. J. Freedman, E. Freudenthal, & D. Mazires,

(2004) “Democratizing content publication with coral”,
In Proceedings of the 1st USENIX Symposium on
Networked Systems Design and Implementation (NSDI
’04).

[3] V. Ramasubramanian, & E.G. Sirer, (2004) “O(1) lookup
performance for power-law query distributions in peer-to-
peer overlays”, In NSDI , pp 99-112.

[4] K. Park, & V.S. Pai, (2006) “Scale and performance in
the coblitz large-file distribution service”, In Proc. 3rd
Symposium on Networked Systems Design and
Implementation (NSDI 06).

[5] N. Spring, D. Wetherall, & T. Anderson, (2002)
“Scriptroute: A public internet measurement facility”.

[6] Nokia Corporation, Qt Creator,
qt.nokia.com/products/developer-tools, 2010.

[7] Qt Centre Forum - Qt Centre Community Portal,
www.qtcentre.org.

[8] Charles Morin, Randy, "How to PING", 2001.
[9] Forouzan and Behrouz, "Data Communications And

Networking", 2007.
[10] Iperf project, sourceforge.net/projects/iperf, 2008.
[11] Holz, T., Gorecki, C., Rieck, K., Freiling, F.: Measuring

and detecting fast-flux service networks. In: Proceedings
of the Network & Distributed System Security
Symposium (2008).

[12] Passerini, E., Paleari, R., Martignoni, L., Bruschi, D.:
FluxOR: detecting and monitoring fast-flux service
networks. Detection of Intrusions and Malware, and
Vulnerability Assessment pp. 186–206 (2008).

[13] PlanetLab Experiment Manager,
http://www.cs.washington.edu/research/networking/cplan
e/

[14] R. Huebsch. Planetlab application manager.
http://appmanager.berkeley.intel-research.net/, 2004.

[15] J. Cappos and J. Hartman. Why it is hard to build a long-
running service on PlanetLab. In Proc. Workshop on Real,
Large Distributed Systems (WORLDS), San Francisco,
CA, Dec. 2005.

[16] B. Maniymaran, pShell: An Interactive Shell for
Managing Planetlab Slices, http://cgi.cs.mcgill.ca/
anrl/projects/pShell/index.php/

[17] L.Wang, V. Pai and L. Peterson, The Effectiveness of
Request Redirection on CDN Robustness, Proceedings of
the 5th OSDI Symposium, December 2002.

[18] CoDeeN, Princeton University:
http://codeen.cs.princeton.edu/

Basheer Al-Duwairi received the PhD
and MS degrees in computer
engineering from Iowa State University
in Spring 2005 and Spring 2002,
respectively. Prior to this, he received
the BS degree in electrical and
computer engineering from Jordan
University of Science and Technology
(JUST) Irbid, Jordan in 1999. He has

been an assistant professor at the Department of Network
Engineering and Security at JUST since fall 2009; prior to this,
he was an assistant professor in the Computer Engineering
Department at the same university from fall 2005 to fall 2009.
His research expertise are in the areas of trusted Internet
encompassing Internet Infrastructure Security focusing on
DDoS, Botnets, and P2P security, Wireless Network security,
and Resource Management in real-time systems. He has
coauthored several research papers in these fields. He has given
tutorials at reputed conferences, served as a member of
technical program committee and session chair in many
conferences. He also served as Assistant Dean for Student
Affairs, Chairman of Computer Engineering Department, Vice
Dean for Computer and Information Technology, and the
Director of Computer and Information Cenetr, all at JUST.
http://www.just.edu.jo/~basheer

Mohammad Marei, Malek Ireksossi, and Belal Rehani are
undergraduate students at the department of computer
engineering at Jordan University of Science & Technology.
They are expected to graduate in summer 2011.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 171

© 2012 ACADEMY PUBLISHER

