
Context-oriented Software Development

Basel Magableh
Trinity College Dublin, Ireland, Ireland

Email: magablb@cs.tcd.ie

Stephen Barrett
Trinity College Dublin, Ireland, Ireland

Email: Stephen.barrett@tcd.ie

Abstract— Context-oriented programming is an emerging
technique that enables dynamic behaviour variation based
on context changes. In COP, context can be handled directly
at the code level by enriching the business logic of the
application with code fragments responsible for performing
context manipulation, thus providing the application code
with the required adaptive behavior. Unfortunately, the
whole set of sensors, effectors, and adaptation processes is
mixed with the application code, which often leads to poor
scalability and maintainability. In addition, the developers
have to surround all probable behavior inside the source
code. As an outcome, the anticipated adjustment is
restricted to the amount of code stubs on hand offered by
the creators. Context-driven adaptation requires dynamic
composition of context-dependent parts. This can be
achieved trough the support of a component model that
encapsulates the context-dependent functionality and
decouples them from the application’s core-functionality.
The complexity behind modeling the context-dependent
functionality lies in the fact that they can occur separately
or in any combination, and cannot be encapsulated because
of their impact across all the software modules. Before
encapsulating crosscutting context-dependent functionality
into a software module, the developers must first identify
them in the requirements documents. This requires a formal
development paradigm for analyzing the context-dependent
functionality; and a component model, which modularizes
their concerns. COCA-MDA is proposed in this article as
model driven architecture for constructing self-adaptive
application from a context oriented component model.
Index Terms— Adaptable middleware, Context oriented
component, Self-adaptive application, Object.

I. INTRODUCTION

There is a growing demand for developing applications
with aspects such as context awareness and self-adaptive
behaviors. Self-adaptive software evaluates its own
behavior and changes its behavior when the evaluation
indicates that it is not accomplishing what the software is
intended to do, or when better functionality or
performance is possible. Traditionally, self-adaptability is
needed to handle complexity, robustness of unanticipated
conditions, changing of priorities and polices governing
the objective goals, and changing conditions in the
contextual environment. Hirschfeld et al. [1] considered
context to be any information that is computationally

accessible and upon which behavioral variations depend.
A context-dependent application adjusts its behavior
according to context conditions arising during execution.
The techniques that enable applications to handle the
contextual application are generally known as “context-
handling” techniques. Context handling is of vital
importance for developers and for self-adaptive
architecture since it provides dynamic behavioral
adaptation and makes it possible to produce more useful
computational services for end users in the mobile
computing environment [2]. The mobile computing
environment is heterogeneous and dynamic. Everything
from devices used, resources available, network
bandwidths, to user context, can change drastically at
runtime [3]. This presents the application developers with
the challenge of tailoring behavioral variations to each
specific user and context. With the capacity to move and
the desire to be socially collaborative, mobile computing
users might benefit from the self-adaptability and the
context-awareness features that are supported by self-
adaptive applications.

This article focuses on describing a development
paradigm for Context-Oriented Programming, which
enables self-adaptability features in this emerging class of
applications. The development methodology Context
Oriented Component-based Application Model-Driven
Architecture (COCA-MDA) modularizes the
application’s context-dependent behavior into context-
oriented components. The components separate the
application’s functional concerns from the extra-
functional concerns. The application is organized into
two casually connected layers: the base layer, which
provides the application’s core structure, and the meta-
layer, where the COCA-components are located, and
which provides compassable units of behavior. The
component model design (COCA-components) has been
proposed in previous work in [4]. A COCA-component
refers to any subpart of the software system that
encapsulates a specific context-dependent functionality in
a unit of behavior contractually specified by interfaces
and explicit dependences. The result from this
methodology is a component-based application described
by an architecture description language, COCA-ADL.
COCA-ADL is used to bridge the gap between the

172 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jetwi.4.2.172-180

software models in the platform-independent model of
the MDA and the software architecture runtime model.
Such employment of the ADL decouples the application’s
architecture design from the target platform
implementation.

The rest of the article is structured as follows. Section
II discusses behavioral variability support in Context-
Oriented Programming and aspects. Section III describes
the rationale for providing a development paradigm for
context-oriented Programming. Section IV describes the
COCA-component model. Section V describes the
COCA-ADL elements. The COCA-MDA phases are
described in Section VII. Section VIII demonstrates a
case study designed using the COCA-MDA and
implemented with the COCA-middleware.

II. VARIABILITY MANAGEMENT WITH CONTEXT-
ORIENTED PROGRAMMING AND ASPECTS

Compositional adaptation enables an application to
adopt a new structure/behavior for anticipating concerns
that were unforeseen during the original design and
construction. Normally, compositional adaptation can be
achieved using the separation of concerns techniques,
computational reflection, component-based design, and
adaptive middleware [5]. The separation of concerns
enables the software developers to separate the functional
behavior and the crosscutting concerns of the self-
adaptive applications. The functional behavior refers to
the business logic of an application [5]. Context-driven
behavioral variations are heterogeneous crosscutting
concerns and a set of collaborated aspects that extend the
application behavior in several parts of the program and
have an impact across the whole system. Such behavior is
called crosscutting concerns. Crosscutting concerns are
properties or areas of interest such as quality of service,
energy consumption, location awareness, users’
preferences, and security. This work considers the
functional behavior of an application as the base-
component that provides the user with context-free
functionality. On the other hand, context-dependent
behavior variations are considered as crosscutting
concerns that span the software modules in several
places.

Context-oriented programming is an emerging
technique that enables context-dependent adaptation and
dynamic behavior variations [6, 7]. In COP, context can
be handled directly at the code level by enriching the
business logic of the application with code fragments
responsible for performing context manipulation, thus
providing the application code with the required adaptive
behavior [8]. Unfortunately, the whole set of sensors,
effectors, and adaptation processes is mixed with the
application code, which often leads to poor scalability
and maintainability [9]. In general, the proposed COP
approaches support fine-grained adaptation among the
variant behaviour that were introduced at the compile
time, A special compiler is needed for performing the
context handling operation. To best of our knowledge,
COP does not support dynamic composition of software

modules and have no support for introducing new
behaviour/or adjusting the application structure to
anticipate the context changes. In addition, the developers
have to surround all probable behavior inside the source
code. As an outcome, the anticipated adjustment is
restricted to the amount of code stubs on hand offered by
the creators. On the other hand, it is impractical to
forecast all likely behaviors and program them at the
source code.

For a more complex context-aware system, the same
context information would be triggered in different parts
of an application and would trigger the invocation of
additional behavior. In this way, context handling
becomes a concern that spans several application units,
essentially crosscutting into the main application
execution. A programming paradigm aiming at handling
such crosscutting concerns (referred to as aspects) is
aspect-oriented programming (AOP) [10]. In contrast to
COP, Using the AOP paradigm, context information can
be handled through aspects that interrupt the main
application execution. In order to achieve self-adaptation
to context in a manner similar to COP, the context-
dependent behavioral variations must be addressed.
Unfortunately, the aspect-oriented development
methodology can be used to handle homogeneous
behavioral variations where the same piece of code can
be invoked in several software modules [11, 12], and it
does not support adaptation of aspects to context in what
is called context-driven adaptation [9]. Moreover, static
AOP is classified as a compositional adaptation
performed in compile time [5]; anticipating context
changes at runtime is not an option, especially with the
presence of unforeseen changes. Another approach
supported by AOP is called dynamic weaving for aspects
[13]; this injects the code in the program execution
whenever a new behavior is needed. However, existing
AOP languages tend to add a substantial overhead in both
execution time and code size, which restricts their
practicality for small devices with limited resources [14].

III. RATIONALE

Context changes are the causes of adaptation. A
context-driven adaptation requires the self-adaptive
software to anticipate its context-dependent variations.
The context-dependent variation can be classified into
actor-dependent, system-dependent, and environment-
dependent behavior variations. The complexity behind
modeling these behavior variations lies in the fact that
they can occur separately or in any combination, and
cannot be encapsulated because of their impact across all
the software modules. Context-dependent variations can
be seen as collaboration of individual features (aspects)
expressed in requirements, design, and implementation,
and are sufficient to qualify as heterogeneous crosscutting
concerns in the sense that different code fragments are
applied to different program parts. Before encapsulating
crosscutting context-dependent behaviors into a software
module, the developers must first identify them in the
requirements documents. This is difficult to achieve

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 173

© 2012 ACADEMY PUBLISHER

because, by their nature, context-dependent behaviors are
tangled with other behaviors, and are likely to be
included in multiple parts (scattered) of the software
modules. Using intuition or even domain knowledge is
not necessarily sufficient for identifying the context-
dependent parts of self-adaptive applications. This
requires a formal procedure for analyzing them in the
software requirements and separating their concerns.
Moreover, a formal procedure for modeling these
variations is needed. Such analysis and modeling
procedures can reduce the complexity in modeling self-
adaptive applications. In this sense, a formal development
methodology can facilitate the development process and
provide new modularization of a self-adaptive software
system in order to isolate the context-dependent from the
context-free functionalities. Such a methodology, it is
argued, can decompose the software system into several
behavioral parts that can be used dynamically to modify
the application behavior based on the execution context.

Behavioral decomposition of a context-aware
application can provide a flexible mechanism for
modularizing the application into several units of
behavior. Because each behavior realizes a specific
context condition at runtime, such a mechanism requires
separation of the concerns of context handling from the
concern of the application business logic. In addition,
separation of the application’s context-dependent and
context-independent parts can support a behavioral
modularization of the application, which simplifies the
selection of the appropriate parts to be invoked in the
execution whenever a specific context condition is
captured. The adaptive software operates through a series
of substates (modes). The substates are represented by j,
and j might represent a known or unknown conditional
state. Examples of known states in the generic form
include detecting context changes in a reactive or
proactive manner.

Figure 1: Behavioral Decomposition Model

In the presence of uncertainty and unforeseen context
changes, the self-adaptive application might be notified
about an unknown condition prior to the software design.
Such adaptation is reflected in a series of context-system

states. (C+S)ji denotes the ith combination of context-

dependent behavior, which is related to the decision
points j by the notion mode Mjk. In this way, the

development methodology decomposes the software into

a set of context-driven and context-free states. At
runtime, the middleware transforms the self-adaptive
software form statei into statei+1, considering a specific

context condition tjk, as shown in Figure 1. This enables

the developer to clearly decide which part of the
architecture should respond to the context changes tjk,

and provides the middleware with sufficient information
to consider a subset of the architecture during the
adaptation; this enhances the adaptation process, impact,
and cost and reduces the computation overhead from
implementing this class of applications in mobile devices.

Self-adaptive and context-aware applications can be
seen as the collaboration of individual behavioral
variations expressed in requirements, design, and
implementation. This article contributes by proposing a
model-driven architecture (COCA-MDA) integrated with
a behavioral decomposition technique, based on
observation of the context information in requirements
and modeling. As a result of combining a decomposition
mechanism with MDA, a set of behavioral units is
produced. Each unit implements several context-
dependent functionalities. This requires a component
model that encapsulates these code fragments in distinct
architecture units and decouples them from the core-
functionality components. This is what motivates the
research towards proposing a context-oriented component
model (COCA-component). Context-driven adaptation
requires dynamic composition of context-dependent
parts, which enables the developer to add, remove, or
reconfigure components within an application at runtime.

Each COCA-component embeds a specific context-
dependent functionality (C+S)ji, realized by a context-

oriented component (COCA-component) model. Each
COCA-component realizes several layers that encapsulate
a fragment of code related to a specific software mode
layer(Mjk), as shown in Figure 1. The developers have

the ability to provide a decision policy(jk) for each

decision point (j) whenever a specific context-related

condition is captured. Hereafter, the COCA-components
are dynamically managed by COCA-middleware and
their internal parts to modify the application behavior.
The COCA-middleware performs context monitoring,
dynamic decision-making, and adaptation, based on
policy evaluation. The decision policy framework is
maintained in modeling and runtime time.

IV. CONTEXT-ORIENTED COMPONENT MODEL
(COCA-COMPONENT)

The COCA-component model was proposed in [21],
based on the concept of a primitive component
introduced by Khattak et al. in [17] and Context-Oriented
Programming (COP) [13]. COP provides several features
that fit the requirements of a context-aware application,
such as behavioral composition, dynamic layers
activation, and scoping. This component model
dynamically composes adaptable context-dependent
applications based on a specific context-dependent

174 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER

functionality. The authors developed the component
model by designing components as compositions of
behaviors, embedding decision points in the component
at design time to determine the component behaviors, and
supporting reconfiguration of decision policies at runtime
to adapt behaviors.

Figure 2: COCA-component Conceptual Diagram

The COCA-component has three major parts: a static
part, a dynamic part, and ports. The component itself
provides information about its implementation to the
middleware. The COCA-component has the following
attributes: ID, name, context entity, creation time,
location, and remote variable. The Boolean attribute
remote indicates whether or not the components are
located on the distributed environment. The decision
policy and decision points are attributes with getter and
setter methods. These methods are used by the
middleware to read the attached PolicyID and manipulate
the application behavior by manipulating the decision
policy.

The COCA-component handles the implementation of
a context-dependent functionality through employing the
delegate design pattern [6], so the adaptation manager
invokes these components whenever the COCA-
component is notified by the context manager. A delegate
is a component that is given an opportunity to react to
changes in another component or influence the behavior
of another component. The basic idea is that two
components coordinate to solve a problem. A COCA-
component is very general and intended for reuse in a
wide variety of contextual situations. The base-
component stores a reference to another component, i.e.,
its delegate, and sends messages to the delegate at critical
times. The messages may only inform the delegate that
something has happened, giving the delegate an
opportunity to do extra processing, or the messages may
ask the delegate for critical information that will control
what happens. The delegate is typically a unique custom
object within the controller subsystem of an application
[6].

At this stage, each COCA-component must adopt the
COCA-component model design. A sample COCA-
component is shown in Figure 2; it is modeled as a
control class with the required attributes and operations.
Each layer entity must implement two methods that
collaborate with the context manager. Two methods
inside the layer class, namely ContextEntityDidChanged
and ContextEntityWillChanged, are called when the
context manager posts the notifications in the form
[NotificationCeneter
Post:ContextConditionDidChanged]. This triggers the
class layer to invoke its method
ContextEntityDidchanged, which embeds a subdivision
of the COCA-component implementation.

V. COCA-ADL: A CONTEXT-ORIENTED
COMPONENT-BASED APPLICATION ADL

The aim of this section is to introduce the architecture
description language COCA-ADL. COCA-ADL is an
XML-based language used to describe the architecture
produced by the development methodology COCA-
MDA. COCA-ADL is used to bridge the gap between the
application models and the implementation language.
Thus, it enables the architecture to be implemented by
several programming languages.

Figure 3: COCA-ADL Elements

COCA-ADL is designed as a three-tier system. The
first level consists of the building blocks, i.e., the
components, including the COCA-component and base-
component. The second refers to connectors, and the third
refers to the architecture configuration, which includes a
full description of the state-machine models, which
describes an activity diagram plus the decision policies’
syntax. Figure 3 shows the main elements of COCA-
ADL. Each element is associated with an architecture
template type. The main features provided by the element
types are instantiation, evolution, and inheritance.

VI. COCA-MDA DEVELOPMENT APPROACH

COCA-MDA has adopted the component collaboration
architecture (CCA) and the entity model. The CCA
details how to model the structure and behavior of the
components that comprise a system at varying and mixed
levels of granularity. The entity model describes a meta-
model that may be used to model entity objects that are a
representation of concepts in the application problem
domain and define them as composable components [17].

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 175

© 2012 ACADEMY PUBLISHER

COCA-MDA partitioning the software into three
viewpoints: the structure, behavior, and enterprise
viewpoints. The structure viewpoint focuses on the core
component of the self-adaptive application and hides the
context-driven component. The behavior viewpoint
focuses on modeling the context-driven behavior of the
component, which may be invoked in the application
execution at runtime. The enterprise viewpoint focuses on
remote components or services, which may be invoked
from the distributed environment. The design of a
context-aware application according to the COCA-MDA
approach was proposed in [18]. The use of COCA-MDA
for developing self-adaptive applications for indoor
wayfinding for individuals with cognitive impairments
was proposed in [19]. Evaluating the COCA-MDA
productivity among the development effort was
demonstrated in [20]. This article focuses on describing
in detail the process of analyzing and classifying the
software requirements, and how the software is designed
through the platform-independent model and the
platform-specific model. Model transformation and code
generation were discussed in a previous work [18].

VII. CONTEXT-ORIENTED COMPONENT-BASED
APPLICATION EXAMPLE

IPetra is a tourist-guide application that helps the client
to determine the bravura historical city of Petra, Jordan.
IPetra offers a map–client interface maintained by an
augmented reality browser (ARB). The browser exhibits
many points of interest (POI) inside the physical outlook
of the tool’s camera. Information related to every POI is
exhibited inside the camera overlay outlook. The POIs
comprise edifices, tourist services sites, restaurants,
hotels, and ATMs in Petra. The AR browser offers an
instantaneous live direct physical display inside the
portable camera. When the client positions the portable
camera in the direction of a building, an explanation
confined to a small area related to that edifice is shown to
the client.

Constant use of the device’s camera, backed by
attaining data from many sensors, can consume the tool’s
resources. This needs the application to adjust its tasks
among several contexts to maintain quality of service
without disrupting the function’s tasks. The function
requires frequent updates of client position, network
bandwidth, and battery level.

Figure 6 summarizes the modeling tasks, using the
associated UML diagrams. The developer starts analysis
of an application scenario to capture the requirements.
The requirements are combined in one model in the
requirements diagram. The requirements diagram is
modeled using a use-case diagram that describes the
interaction between the software system and the context
entity. The use-case is partitioned into two separate
views. The core-structure view describes the core
functionality of the application. The extra-functionality
object diagram describes the COCA-component
interaction with the core application classes. The state
diagram and the activity diagram are extracted from the
behavioral view. Finally, the core structure, the

behavioral models, and the context model are
transformed into the COCA-ADL model.

A. Computational Independent Model
In the analysis phase, the developers analyze several

requirements using separation of concern techniques. The
developers focus on separating the functional
requirements from the extra-functional requirements as
the first stage. They then separate the user and context
requirements from each other. There are two subtasks in
the analysis phase.

Figure 6: Modelling tasks

1) Task 1: Requirements capturing by textual analysis:
In this task, the developer identifies the candidate
requirements for the illustration scenario using a
textual analysis of the application scenario. It is
recommended that the developer identifies the
candidate actors, use-cases, classes, and activities, as
well as capturing the requirements in this task. This can
be achieved by creating a table that lists the results of
the analysis. This table provides an example of a data
dictionary for the proposed scenario.

2) Task2: Identifying the extra-functional requirements

and relating them into the middleware functionality:
The first step in the process is to understand the
application’s execution environment. The context is
classified in the requirements diagram, based on its
type, and whether it comes from a context provider or
consumer. A context can be generated from a physical
or logical source (i.e., available memory), or resources
(i.e., battery power level and bandwidth). The
representations of sensors and resources on the
application that is going to consume them at runtime
refers to the context consumers.

176 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER

Figure 7: Requirements UML profile

The next level of requirements classification is to
classify the requirements based on their anticipation
level; this can be foreseeable, foreseen, or unforeseen.
This classification allows the developer to model the
application behavior as much as possible and to plan for
the adaptation actions. However, to facilitate this
classification framework, a UML profile is designed to
support the requirements analysis and to be used by the
software designer, as shown in Figure 7.

As shown in Figure 8, extra-functional requirements
are captured during this task, for example, requirement
number 3: adapt the location service. IPetra is required to
adapt its behavior and increase the battery life. This is
achieved by adopting a location service that consumes
less power. For example, if the battery level is low, the
IPetra application switches off the GPS location services
and uses the cell-tower location services. Using an IP-
based location reduces the accuracy of the location but
saves battery energy. In addition, the application may
reduce the number of POIs it displays to the most recent
device location. Moreover, the application reduces the
frequency of the location updates. On the other hand, if
the battery level is high and healthy, IPetra uses the GPS
service with more accurate locations. The application
starts listening for all events in the monitored region
inside Petra city.

3) Task 3: Capturing user requirements: This task

focuses on capturing the user’s requirements as a
subset of the functional requirements, as shown in the
UML profile in Figure 7. This task is similar to a
classical requirement-engineering process where the
developers analyze the main functions of the
application that achieve specific goals or objectives.

B. Modelling: Platform Independent Model
In order to be aware of possible resources and context

variations and the necessary adaptation actions, a clear
analysis of the context environment is the key to building
dynamic context-aware applications.
4) Task 4: Resources and context entity model

Resources and context Model refers to generic a
overview of the underlying device’s resources, sensors,
and logical context provider. This diagram is modelling
the engagement between the resources and the application
under development. It facilitates the developer to
understand the relationship between the context providers
and their dependency.

5) Task 5: use-cases
The requirements diagram in Figure 8 represents the main
inputs for this task. Each requirement is incorporated into
a use-case, and the developers identify the actor of the
requirement. An actor could be a user, system, or
environment. The use-cases are classified into two
distinct classes, i.e., the core functionality and extended
use-cases, by the context conditions. The first step is to
identify the interaction between the actor and the
software functions to satisfy the user requirement in a
context-free fashion. For example, the displaying POIs
functionality in the figure is context independent in the
sense that the application must provide it, regardless of
the context conditions. All these use-cases are modeled
separately, using a class diagram that describes the
application core-structure or the base-component model,
as shown in the following task.

Figure 8: Functional and extra-functional partial requirements diagram

6) Task 6: modeling the application core-structure
 In this task, a classical class diagram models the

components that provide the application’s core functions.
These functions are identified from the use-case diagram
in the previous task. However, the class diagram is
modeled independently from the variations in the context
information. For this scenario, some classes, such as
“Displaying POIs”, “Route-planningUI”, “CameraUI”,
“MapUI”, and “User Interface”, are classified to be on the
application core. These classes provide the core functions
for the user during his tour of Petra city. Figure 9 shows
the core-structure class-model without any interaction
with the context environment or the middleware.
7) Task 7: identifying application-variant behavior

(behavior view):
In this phase, the developers specify how the application
can adapt to context conditions to achieve a specific goal
or objectives. After specifying the core elements of the
application in the previous task, the behavioral view is
identified in this task. This task identifies when and
where an extra-functionality can be invoked in the
application execution. This means the developer has to
analyze the components involved, their communication,
and possible variations in their subdivisions, where each

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 177

© 2012 ACADEMY PUBLISHER

division realizes a specific implementation of that
COCA-component.

To achieve this integration, the developers have to
consider two aspects of the context-manager design: how
to notify the adaptation manager about the context
changes, and the how the component manager can
identify the parts of the architecture that have to respond
to these changes. These aspects can be achieved by
adopting the notification design pattern in modeling the
relation between the context entity and the behavioral
component. Hereafter, these extra-functionalities are
called the COCA-components. Each component must be
designed on the basis of the component model described
in Figure 2.

Figure 9: I-Petra Core-Classes structure

The IPetra application is modularized into several
COCA-components. Each component models one extra-
functionality such as the LocationCOCA−component in
Figure 10. The COCA-component sublayers implement
several context-dependent functionalities that use the
location service. Each layer is activated by the
middleware, based on context changes. After applying the
observer design pattern and the COCA-component model
to the use-cases, the class diagram for the middleware
functionality “Update Location” can be modeled as
shown in Figure 10. Figure 10 shows a COCA-
component modelled to anticipate the ’direction output’.
The COCA-component implements a delegate objects
and sub layers; each layer implements a specific context-
dependent function. The COCA-middleware uses this
delegate object to redirect the execution among the sub
layers, based on the context condition.
Invoking different variations of the COCA-component
requires identification of the application architecture,
behavior, and the decision policies in use. As mentioned
before, these decision policies play an important role in
the middleware functions, which use them in handling,
the architecture evolution, and the adaptation action. The
model in Figure 10 helps the developer to extract the
decision policies and the decision points from the
interactions between the context entities and the COCA-
components. Decision policies are used by the
middleware to select suitable adaptation actions among
specific context conditions.

The application behavioural model is used to
demonstrate the decision points in the execution that

might be reached whenever internal or external variables
are found. This decision point requires several parameter
inputs to make the correct choice at this critical time.
Using the activity diagram, the developers can extract
numerous decision polices. Each policy must be modelled
in a state diagram, for example, the Policy: Camera
Flashes is attached to the ’Camera flashes’ COCA-
component. The policy syntax can be described by the
code shown in listing 1.

The IPetra application has been implemented in two
distinct versions, i.e. with and without the COCA-
middleware. The Instruments is a tool application for
dynamically tracing and profiling IPhone devices. The
battery life has been measured by Energy Diagnostics
Instruments running on the device [22]. The energy
Diagnostic used to measure the battery while the device is
not connected to external power supply. The experiments
show that the COCA IPetra application saved the battery-
consuming level by 13% in addition to its self-tuning
adaptability. Fig. 14 shows the experimental results for
energy usage. The IPetra implementation without
adopting the COCA-platform consumes more energy
during context monitoring, draining the battery faster. On
the other hand, when the same application adopts the
COCA-middleware, the application is able to adapt its
behaviour and use less energy. The adaptation time for
handling low and high battery-levels are shown in Figure
13. It is worth mentioning here that when the battery level
is low, the COCA-middleware allocates less memory
because of the size of the COCA-component, which is
small compared to its implementation.

Figure 10: Extra-functionality Object Diagram of the Context Oriented
Components

178 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER

Listing 1: Adaptation time (ms) and memory allocation (KB)

Figure 13: Adaptation time (ms) and memory allocation (KB)

Figure 14: Energy usage for IPetra application.

VIII. EXPERIMENTS EVALUATION

IX. CONCLUSIONS AND FUTURE WORKS

This article described a development paradigm for
building context-oriented applications using a
combination of Model-Driven Architecture that generates
an ADL, which presents the architecture as a
components-based system, and a runtime infrastructure
(middleware) that enables transparent self-adaptation
with the underlying context environment.

Specifically, a Model-Driven Architecture is used to
demonstrate a new approach to building context-aware
and self-adaptive applications by adopting a Model-
Driven Architecture (COCA-MDA). COCA-MDA
enables developers to modularize applications based on
their context-dependent behaviors, enables developers to
separate context-dependent functionalities from the
application’s generic functionality, and enables dynamic
context-driven adaptation without overwhelming the
quality attributes.

The COCA-MDA needs to be improved with respect
to support for both requirement reflection and modeling
requirements as runtime entities. The requirement
reflection mechanism requires support at the modeling
level and at the architecture level. Reflection can be used

to anticipate the evolution of both functional and non-
functional requirements. The decision policies require
more development with respect to policy mismatch and
resolution. This is in line with an improvement in terms
of self-assurance and dynamic evaluation of the
adaptation output.

REFERENCES

[1] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-
oriented programming,” Journal of Object Technology,
vol. 7, no. 3, pp. 125–151, March 2008.

[2] A. K. Dey, “Providing architectural support for building
context-aware applications,” Ph.D. dissertation, Georgia
Institute of Technology, Atlanta, GA, USA, 2000.

[3] N. M. Belaramani, C.-L. Wang, and F. C. M. Lau,
“Dynamic component composition for functionality
adaptation in pervasive environments,” in Proceedings of
the The Ninth IEEE Workshop on Future Trends of
Distributed Computing Systems, ser. FTDCS ’03. plus
0.5em minus 0.4emIEEE Computer Society, 2003, pp.
226–232.

[4] B. Magableh and S. Barrett, “Pcoms: A component model
for building context-dependent applications,” in
Proceedings of the 2009 Computation World: Future
Computing, Service Computation, Cognitive, Adaptive,
Content, Patterns, ser. COMPUTATIONWORLD ’09.
plus 0.5em minus 0.4emWashington, DC, USA: IEEE
Computer Society, 2009, pp. 44–48.

[5] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C.
Cheng, “Composing adaptive software,” Computer,
vol. 37, pp. 56–64, July 2004.

[6] M. Gassanenko, “Context-oriented programming,” in
Proceedings of the EuroFORTH’93 conference,
Marianske Lazne (Marienbad), Czech Republic, 15-18
October 1998, pp. 1–14.

[7] R. Keays and A. Rakotonirainy, “Context-oriented
programming,” in Proceedings of the 3rd ACM
international workshop on Data engineering for wireless
and mobile access, ser. MobiDe ’03, San Diego, CA,
USA, 2003, pp. 9–16.

[8] M. Salehie and L. Tahvildari, “Self-adaptive software:
Landscape and research challenges,” ACM Trans. Auton.
Adapt. Syst., vol. 4, pp. 14:1–14:42, May 2009.

[9] G. Kapitsaki, G. Prezerakos, N. Tselikas, and I. Venieris,
“Context-aware service engineering: A survey,” Journal
of Systems and Software, vol. 82, no. 8, pp. 1285–1297,
2009.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented
programming,” in ECOOP’97 âEuropean Conference on
Object-Oriented Programming, ser. Lecture Notes in
Computer Science. plus 0.5em minus 0.4emSpringer
Berlin / Heidelberg, 1997, vol. 1241, pp. 220–242.

[11] S. Apel, T. Leich, and G. Saake, “Aspectual mixin layers:
aspects and features in concert,” in Proceedings of the
28th international conference on Software engineering,
ser. ICSE ’06. plus 0.5em minus 0.4emShanghai, China:
ACM, 2006, pp. 122–131.

[12] M. Mezini and K. Ostermann, “Variability management
with feature-oriented programming and aspects,”
SIGSOFT Softw. Eng. Notes, vol. 29, pp. 127–136,
October 2004.

[13] A. Popovici, T. Gross, and G. Alonso, “Dynamic weaving
for aspect-oriented programming,” in Proceedings of the
1st international conference on Aspect-oriented software

If (direction is Provided && Available memory >=
50
&& CPU throughput <= 89 && light level >= 50
&& BatteryLevel >= 50) then {EnableFlashes();}
Else If (BatteryLevel < 50 || LightLevel < 50)
then {DisableFlashes(); SearchForPhotos();}
else If(BatteryLevel < 20)
then DisableFlashes();

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 179

© 2012 ACADEMY PUBLISHER

development, ser. AOSD ’02. plus 0.5em minus
0.4emNew York, NY, USA: ACM, 2002, pp. 141–147.

[14] C. Hundt, D. Stöhr, and S. Glesner, “Optimizing aspect-
oriented mechanisms for embedded applications,” Lecture
Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6141 LNCS, pp. 137–153, 2010.

[15] Y. Khattak and S. Barrett, “Primitive components:
towards more flexible black box aop,” in Proceedings of
the 1st International Workshop on Context-Aware
Middleware and Services: affiliated with the 4th
International Conference on Communication System
Software and Middleware (COMSWARE 2009), ser.
CAMS ’09. plus 0.5em minus 0.4emNew York, NY,
USA: ACM, 2009, pp. 24–30.

[16] E. Buck and D. Yacktman, Cocoa design patterns,
2nd ed. plus 0.5em minus 0.4emDeveloper’s Library,
2010.

[17] “Enterprise collaboration architecture (eca)
specification,” http://www.omg.org/, pp. 1–202, Feb
2004.

[18] B. Magableh and S. Barrett, “Objective-cop: Objective
context oriented programming,” in International
Conference on Information and Communication Systems,
ser. ICICS 2011, vol. 1, May 2011, pp. 45–49.

[19] ------, “Self-adaptive application for indoor wayfinding
for individuals with cognitive impairments,” in The 24th
IEEE International Symposium on Computer-Based
Medical Systems, ser. CBMS 2011, vol. In press,
Lancaster, UK, June 2011, pp. 45–49.

[20] B. Magableh, “Model-Driven productivity evaluation for
self-adaptive Context-Oriented software development,” in
5th International Conference and Exhibition on Next

Generation Mobile Applications, Services, and
Technologies (NGMAST’11), vol. In press, Cardiff,
Wales, United Kingdom, Sep. 2011.

[21] R. Anthony, D. Chen, M. Pelc, M. Perssonn, and
M. Torngren, “Context-aware adaptation in dyscas,” in
Proceedings of the Context-aware Adaptation
Mechanisms for Pervasive and Ubiquitous Services
(CAMPUS 2009), 2009, p. 15.

[22] Ios 4.0 apple developer library.
http://developer.apple.com/library/ios/navigation/ (2010),
"[Online; accessed 1-April-2011]"

Basel Magableh received his MS degree in computer science
from New York Institute of Technology, NY, USA, in 2004. He
is currently a Ph.D. candidate at Distributed Systems Group,
Trinity College Dublin, Ireland. His research focuses in
integrating Model Driven Architecture with a component-based
system to construct self-adaptive and context-aware
applications.
 He is a full-time lecturer in Grafton College of Management
Science, Dublin, Ireland. He was member of staff in the
National Digital Research Center of Ireland from 2008- 2011.

Stephen Barrett is currently a lecturer at Distributed Systems
Group, Trinity College Dublin, Ireland. His research centers on
middleware support for adaptive computing. (with particular
focus on model driven paradigms) and on large scale
applications research (particularly in the context of web search,
trust computation and peer and cloud computing) .

180 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012

© 2012 ACADEMY PUBLISHER

