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Abstract— Context-oriented programming is an emerging 
technique that enables dynamic behaviour variation based 
on context changes. In COP, context can be handled directly 
at the code level by enriching the business logic of the 
application with code fragments responsible for performing 
context manipulation, thus providing the application code 
with the required adaptive behavior. Unfortunately, the 
whole set of sensors, effectors, and adaptation processes is 
mixed with the application code, which often leads to poor 
scalability and maintainability. In addition, the developers 
have to surround all probable behavior inside the source 
code. As an outcome, the anticipated adjustment is 
restricted to the amount of code stubs on hand offered by 
the creators. Context-driven adaptation requires dynamic 
composition of context-dependent parts. This can be 
achieved trough the support of a component model that 
encapsulates the context-dependent functionality and 
decouples them from the application’s core-functionality. 
The complexity behind modeling the context-dependent 
functionality lies in the fact that they can occur separately 
or in any combination, and cannot be encapsulated because 
of their impact across all the software modules. Before 
encapsulating crosscutting context-dependent functionality 
into a software module, the developers must first identify 
them in the requirements documents. This requires a formal 
development paradigm for analyzing the context-dependent 
functionality; and a component model, which modularizes 
their concerns. COCA-MDA is proposed in this article as 
model driven architecture for constructing self-adaptive 
application from a context oriented component model.  
Index Terms— Adaptable middleware, Context oriented 
component, Self-adaptive application, Object.  
 

I. INTRODUCTION 

There is a growing demand for developing applications 
with aspects such as context awareness and self-adaptive 
behaviors. Self-adaptive software evaluates its own 
behavior and changes its behavior when the evaluation 
indicates that it is not accomplishing what the software is 
intended to do, or when better functionality or 
performance is possible. Traditionally, self-adaptability is 
needed to handle complexity, robustness of unanticipated 
conditions, changing of priorities and polices governing 
the objective goals, and changing conditions in the 
contextual environment. Hirschfeld et al. [1] considered 
context to be any information that is computationally 

accessible and upon which behavioral variations depend. 
A context-dependent application adjusts its behavior 
according to context conditions arising during execution. 
The techniques that enable applications to handle the 
contextual application are generally known as “context-
handling” techniques. Context handling is of vital 
importance for developers and for self-adaptive 
architecture since it provides dynamic behavioral 
adaptation and makes it possible to produce more useful 
computational services for end users in the mobile 
computing environment [2]. The mobile computing 
environment is heterogeneous and dynamic. Everything 
from devices used, resources available, network 
bandwidths, to user context, can change drastically at 
runtime [3]. This presents the application developers with 
the challenge of tailoring behavioral variations to each 
specific user and context. With the capacity to move and 
the desire to be socially collaborative, mobile computing 
users might benefit from the self-adaptability and the 
context-awareness features that are supported by self-
adaptive applications. 

This article focuses on describing a development 
paradigm for Context-Oriented Programming, which 
enables self-adaptability features in this emerging class of 
applications. The development methodology Context 
Oriented Component-based Application Model-Driven 
Architecture (COCA-MDA) modularizes the 
application’s context-dependent behavior into context-
oriented components. The components separate the 
application’s functional concerns from the extra-
functional concerns. The application is organized into 
two casually connected layers: the base layer, which 
provides the application’s core structure, and the meta-
layer, where the COCA-components are located, and 
which provides compassable units of behavior. The 
component model design (COCA-components) has been 
proposed in previous work in [4]. A COCA-component 
refers to any subpart of the software system that 
encapsulates a specific context-dependent functionality in 
a unit of behavior contractually specified by interfaces 
and explicit dependences. The result from this 
methodology is a component-based application described 
by an architecture description language, COCA-ADL. 
COCA-ADL is used to bridge the gap between the 
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software models in the platform-independent model of 
the MDA and the software architecture runtime model. 
Such employment of the ADL decouples the application’s 
architecture design from the target platform 
implementation. 

The rest of the article is structured as follows. Section 
II discusses behavioral variability support in Context-
Oriented Programming and aspects. Section III describes 
the rationale for providing a development paradigm for 
context-oriented Programming. Section IV describes the 
COCA-component model. Section V describes the 
COCA-ADL elements. The COCA-MDA phases are 
described in Section VII. Section VIII demonstrates a 
case study designed using the COCA-MDA and 
implemented with the COCA-middleware. 

 

II. VARIABILITY MANAGEMENT WITH CONTEXT-
ORIENTED PROGRAMMING AND ASPECTS 

Compositional adaptation enables an application to 
adopt a new structure/behavior for anticipating concerns 
that were unforeseen during the original design and 
construction. Normally, compositional adaptation can be 
achieved using the separation of concerns techniques, 
computational reflection, component-based design, and 
adaptive middleware [5]. The separation of concerns 
enables the software developers to separate the functional 
behavior and the crosscutting concerns of the self-
adaptive applications. The functional behavior refers to 
the business logic of an application [5]. Context-driven 
behavioral variations are heterogeneous crosscutting 
concerns and a set of collaborated aspects that extend the 
application behavior in several parts of the program and 
have an impact across the whole system. Such behavior is 
called crosscutting concerns. Crosscutting concerns are 
properties or areas of interest such as quality of service, 
energy consumption, location awareness, users’ 
preferences, and security. This work considers the 
functional behavior of an application as the base-
component that provides the user with context-free 
functionality. On the other hand, context-dependent 
behavior variations are considered as crosscutting 
concerns that span the software modules in several 
places. 

Context-oriented programming is an emerging 
technique that enables context-dependent adaptation and 
dynamic behavior variations [6, 7]. In COP, context can 
be handled directly at the code level by enriching the 
business logic of the application with code fragments 
responsible for performing context manipulation, thus 
providing the application code with the required adaptive 
behavior [8]. Unfortunately, the whole set of sensors, 
effectors, and adaptation processes is mixed with the 
application code, which often leads to poor scalability 
and maintainability [9]. In general, the proposed COP 
approaches support fine-grained adaptation among the 
variant behaviour that were introduced at the compile 
time, A special compiler is needed for performing the 
context handling operation. To best of our knowledge, 
COP does not support dynamic composition of software 

modules and have no support for introducing new 
behaviour/or adjusting the application structure to 
anticipate the context changes. In addition, the developers 
have to surround all probable behavior inside the source 
code. As an outcome, the anticipated adjustment is 
restricted to the amount of code stubs on hand offered by 
the creators. On the other hand, it is impractical to 
forecast all likely behaviors and program them at the 
source code.  

For a more complex context-aware system, the same 
context information would be triggered in different parts 
of an application and would trigger the invocation of 
additional behavior. In this way, context handling 
becomes a concern that spans several application units, 
essentially crosscutting into the main application 
execution. A programming paradigm aiming at handling 
such crosscutting concerns (referred to as aspects) is 
aspect-oriented programming (AOP) [10]. In contrast to 
COP, Using the AOP paradigm, context information can 
be handled through aspects that interrupt the main 
application execution. In order to achieve self-adaptation 
to context in a manner similar to COP, the context-
dependent behavioral variations must be addressed. 
Unfortunately, the aspect-oriented development 
methodology can be used to handle homogeneous 
behavioral variations where the same piece of code can 
be invoked in several software modules [11, 12], and it 
does not support adaptation of aspects to context in what 
is called context-driven adaptation [9]. Moreover, static 
AOP is classified as a compositional adaptation 
performed in compile time [5]; anticipating context 
changes at runtime is not an option, especially with the 
presence of unforeseen changes. Another approach 
supported by AOP is called dynamic weaving for aspects 
[13]; this injects the code in the program execution 
whenever a new behavior is needed. However, existing 
AOP languages tend to add a substantial overhead in both 
execution time and code size, which restricts their 
practicality for small devices with limited resources [14].  

 

III. RATIONALE 

Context changes are the causes of adaptation. A 
context-driven adaptation requires the self-adaptive 
software to anticipate its context-dependent variations. 
The context-dependent variation can be classified into 
actor-dependent, system-dependent, and environment-
dependent behavior variations. The complexity behind 
modeling these behavior variations lies in the fact that 
they can occur separately or in any combination, and 
cannot be encapsulated because of their impact across all 
the software modules. Context-dependent variations can 
be seen as collaboration of individual features (aspects) 
expressed in requirements, design, and implementation, 
and are sufficient to qualify as heterogeneous crosscutting 
concerns in the sense that different code fragments are 
applied to different program parts. Before encapsulating 
crosscutting context-dependent behaviors into a software 
module, the developers must first identify them in the 
requirements documents. This is difficult to achieve 
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because, by their nature, context-dependent behaviors are 
tangled with other behaviors, and are likely to be 
included in multiple parts (scattered) of the software 
modules. Using intuition or even domain knowledge is 
not necessarily sufficient for identifying the context-
dependent parts of self-adaptive applications. This 
requires a formal procedure for analyzing them in the 
software requirements and separating their concerns. 
Moreover, a formal procedure for modeling these 
variations is needed. Such analysis and modeling 
procedures can reduce the complexity in modeling self-
adaptive applications. In this sense, a formal development 
methodology can facilitate the development process and 
provide new modularization of a self-adaptive software 
system in order to isolate the context-dependent from the 
context-free functionalities. Such a methodology, it is 
argued, can decompose the software system into several 
behavioral parts that can be used dynamically to modify 
the application behavior based on the execution context. 

Behavioral decomposition of a context-aware 
application can provide a flexible mechanism for 
modularizing the application into several units of 
behavior. Because each behavior realizes a specific 
context condition at runtime, such a mechanism requires 
separation of the concerns of context handling from the 
concern of the application business logic. In addition, 
separation of the application’s context-dependent and 
context-independent parts can support a behavioral 
modularization of the application, which simplifies the 
selection of the appropriate parts to be invoked in the 
execution whenever a specific context condition is 
captured. The adaptive software operates through a series 
of substates (modes). The substates are represented by j, 
and j might represent a known or unknown conditional 
state. Examples of known states in the generic form 
include detecting context changes in a reactive or 
proactive manner. 

 

 
Figure 1: Behavioral Decomposition Model  

In the presence of uncertainty and unforeseen context 
changes, the self-adaptive application might be notified 
about an unknown condition prior to the software design. 
Such adaptation is reflected in a series of context-system 

states. (C+S)ji denotes the ith combination of context-

dependent behavior, which is related to the decision 
points j by the notion mode Mjk. In this way, the 

development methodology decomposes the software into 

a set of context-driven and context-free states. At 
runtime, the middleware transforms the self-adaptive 
software form statei into statei+1, considering a specific 

context condition tjk, as shown in Figure 1. This enables 

the developer to clearly decide which part of the 
architecture should respond to the context changes tjk, 

and provides the middleware with sufficient information 
to consider a subset of the architecture during the 
adaptation; this enhances the adaptation process, impact, 
and cost and reduces the computation overhead from 
implementing this class of applications in mobile devices. 

Self-adaptive and context-aware applications can be 
seen as the collaboration of individual behavioral 
variations expressed in requirements, design, and 
implementation. This article contributes by proposing a 
model-driven architecture (COCA-MDA) integrated with 
a behavioral decomposition technique, based on 
observation of the context information in requirements 
and modeling. As a result of combining a decomposition 
mechanism with MDA, a set of behavioral units is 
produced. Each unit implements several context-
dependent functionalities. This requires a component 
model that encapsulates these code fragments in distinct 
architecture units and decouples them from the core-
functionality components. This is what motivates the 
research towards proposing a context-oriented component 
model (COCA-component). Context-driven adaptation 
requires dynamic composition of context-dependent 
parts, which enables the developer to add, remove, or 
reconfigure components within an application at runtime. 

Each COCA-component embeds a specific context-
dependent functionality (C+S)ji, realized by a context-

oriented component (COCA-component) model. Each 
COCA-component realizes several layers that encapsulate 
a fragment of code related to a specific software mode 
layer(Mjk), as shown in Figure 1. The developers have 

the ability to provide a decision policy(jk) for each 

decision point (j) whenever a specific context-related 

condition is captured. Hereafter, the COCA-components 
are dynamically managed by COCA-middleware and 
their internal parts to modify the application behavior. 
The COCA-middleware performs context monitoring, 
dynamic decision-making, and adaptation, based on 
policy evaluation. The decision policy framework is 
maintained in modeling and runtime time.  

IV. CONTEXT-ORIENTED COMPONENT MODEL       
(COCA-COMPONENT) 

The COCA-component model was proposed in [21], 
based on the concept of a primitive component 
introduced by Khattak et al. in [17] and Context-Oriented 
Programming (COP) [13]. COP provides several features 
that fit the requirements of a context-aware application, 
such as behavioral composition, dynamic layers 
activation, and scoping. This component model 
dynamically composes adaptable context-dependent 
applications based on a specific context-dependent 
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functionality. The authors developed the component 
model by designing components as compositions of 
behaviors, embedding decision points in the component 
at design time to determine the component behaviors, and 
supporting reconfiguration of decision policies at runtime 
to adapt behaviors. 

 

 
Figure 2: COCA-component Conceptual Diagram  

The COCA-component has three major parts: a static 
part, a dynamic part, and ports. The component itself 
provides information about its implementation to the 
middleware. The COCA-component has the following 
attributes: ID, name, context entity, creation time, 
location, and remote variable. The Boolean attribute 
remote indicates whether or not the components are 
located on the distributed environment. The decision 
policy and decision points are attributes with getter and 
setter methods. These methods are used by the 
middleware to read the attached PolicyID and manipulate 
the application behavior by manipulating the decision 
policy. 

The COCA-component handles the implementation of 
a context-dependent functionality through employing the 
delegate design pattern [6], so the adaptation manager 
invokes these components whenever the COCA-
component is notified by the context manager. A delegate 
is a component that is given an opportunity to react to 
changes in another component or influence the behavior 
of another component. The basic idea is that two 
components coordinate to solve a problem. A COCA-
component is very general and intended for reuse in a 
wide variety of contextual situations. The base-
component stores a reference to another component, i.e., 
its delegate, and sends messages to the delegate at critical 
times. The messages may only inform the delegate that 
something has happened, giving the delegate an 
opportunity to do extra processing, or the messages may 
ask the delegate for critical information that will control 
what happens. The delegate is typically a unique custom 
object within the controller subsystem of an application 
[6]. 

At this stage, each COCA-component must adopt the 
COCA-component model design. A sample COCA-
component is shown in Figure 2; it is modeled as a 
control class with the required attributes and operations. 
Each layer entity must implement two methods that 
collaborate with the context manager. Two methods 
inside the layer class, namely ContextEntityDidChanged 
and ContextEntityWillChanged, are called when the 
context manager posts the notifications in the form 
[NotificationCeneter 
Post:ContextConditionDidChanged]. This triggers the 
class layer to invoke its method 
ContextEntityDidchanged, which embeds a subdivision 
of the COCA-component implementation. 

V. COCA-ADL: A CONTEXT-ORIENTED 
COMPONENT-BASED APPLICATION ADL 

The aim of this section is to introduce the architecture 
description language COCA-ADL. COCA-ADL is an 
XML-based language used to describe the architecture 
produced by the development methodology COCA-
MDA. COCA-ADL is used to bridge the gap between the 
application models and the implementation language. 
Thus, it enables the architecture to be implemented by 
several programming languages.  

  

  
Figure 3: COCA-ADL Elements 

COCA-ADL is designed as a three-tier system. The 
first level consists of the building blocks, i.e., the 
components, including the COCA-component and base-
component. The second refers to connectors, and the third 
refers to the architecture configuration, which includes a 
full description of the state-machine models, which 
describes an activity diagram plus the decision policies’ 
syntax. Figure 3 shows the main elements of COCA-
ADL. Each element is associated with an architecture 
template type. The main features provided by the element 
types are instantiation, evolution, and inheritance. 

VI. COCA-MDA DEVELOPMENT APPROACH 

COCA-MDA has adopted the component collaboration 
architecture (CCA) and the entity model. The CCA 
details how to model the structure and behavior of the 
components that comprise a system at varying and mixed 
levels of granularity. The entity model describes a meta-
model that may be used to model entity objects that are a 
representation of concepts in the application problem 
domain and define them as composable components [17]. 
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COCA-MDA partitioning the software into three 
viewpoints: the structure, behavior, and enterprise 
viewpoints. The structure viewpoint focuses on the core 
component of the self-adaptive application and hides the 
context-driven component. The behavior viewpoint 
focuses on modeling the context-driven behavior of the 
component, which may be invoked in the application 
execution at runtime. The enterprise viewpoint focuses on 
remote components or services, which may be invoked 
from the distributed environment. The design of a 
context-aware application according to the COCA-MDA 
approach was proposed in [18]. The use of COCA-MDA 
for developing self-adaptive applications for indoor 
wayfinding for individuals with cognitive impairments 
was proposed in [19]. Evaluating the COCA-MDA 
productivity among the development effort was 
demonstrated in [20]. This article focuses on describing 
in detail the process of analyzing and classifying the 
software requirements, and how the software is designed 
through the platform-independent model and the 
platform-specific model. Model transformation and code 
generation were discussed in a previous work [18]. 

VII. CONTEXT-ORIENTED COMPONENT-BASED 
APPLICATION EXAMPLE 

IPetra is a tourist-guide application that helps the client 
to determine the bravura historical city of Petra, Jordan. 
IPetra offers a map–client interface maintained by an 
augmented reality browser (ARB). The browser exhibits 
many points of interest (POI) inside the physical outlook 
of the tool’s camera. Information related to every POI is 
exhibited inside the camera overlay outlook. The POIs 
comprise edifices, tourist services sites, restaurants, 
hotels, and ATMs in Petra. The AR browser offers an 
instantaneous live direct physical display inside the 
portable camera. When the client positions the portable 
camera in the direction of a building, an explanation 
confined to a small area related to that edifice is shown to 
the client. 

Constant use of the device’s camera, backed by 
attaining data from many sensors, can consume the tool’s 
resources. This needs the application to adjust its tasks 
among several contexts to maintain quality of service 
without disrupting the function’s tasks. The function 
requires frequent updates of client position, network 
bandwidth, and battery level. 

Figure 6 summarizes the modeling tasks, using the 
associated UML diagrams. The developer starts analysis 
of an application scenario to capture the requirements. 
The requirements are combined in one model in the 
requirements diagram. The requirements diagram is 
modeled using a use-case diagram that describes the 
interaction between the software system and the context 
entity. The use-case is partitioned into two separate 
views. The core-structure view describes the core 
functionality of the application. The extra-functionality 
object diagram describes the COCA-component 
interaction with the core application classes. The state 
diagram and the activity diagram are extracted from the 
behavioral view. Finally, the core structure, the 

behavioral models, and the context model are 
transformed into the COCA-ADL model. 
 

A. Computational Independent Model 
In the analysis phase, the developers analyze several 

requirements using separation of concern techniques. The 
developers focus on separating the functional 
requirements from the extra-functional requirements as 
the first stage. They then separate the user and context 
requirements from each other. There are two subtasks in 
the analysis phase.  

 

  
Figure 6:  Modelling tasks  

1)   Task 1: Requirements capturing by textual analysis: 
In this task, the developer identifies the candidate 
requirements for the illustration scenario using a 
textual analysis of the application scenario. It is 
recommended that the developer identifies the 
candidate actors, use-cases, classes, and activities, as 
well as capturing the requirements in this task. This can 
be achieved by creating a table that lists the results of 
the analysis. This table provides an example of a data 
dictionary for the proposed scenario.  

 
2)   Task2: Identifying the extra-functional requirements 

and relating them into the middleware functionality: 
The first step in the process is to understand the 
application’s execution environment. The context is 
classified in the requirements diagram, based on its 
type, and whether it comes from a context provider or 
consumer. A context can be generated from a physical 
or logical source (i.e., available memory), or resources 
(i.e., battery power level and bandwidth). The 
representations of sensors and resources on the 
application that is going to consume them at runtime 
refers to the context consumers. 
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Figure 7:  Requirements UML profile 

The next level of requirements classification is to 
classify the requirements based on their anticipation 
level; this can be foreseeable, foreseen, or unforeseen. 
This classification allows the developer to model the 
application behavior as much as possible and to plan for 
the adaptation actions. However, to facilitate this 
classification framework, a UML profile is designed to 
support the requirements analysis and to be used by the 
software designer, as shown in Figure 7. 

As shown in Figure 8, extra-functional requirements 
are captured during this task, for example, requirement 
number 3: adapt the location service. IPetra is required to 
adapt its behavior and increase the battery life. This is 
achieved by adopting a location service that consumes 
less power. For example, if the battery level is low, the 
IPetra application switches off the GPS location services 
and uses the cell-tower location services. Using an IP-
based location reduces the accuracy of the location but 
saves battery energy. In addition, the application may 
reduce the number of POIs it displays to the most recent 
device location. Moreover, the application reduces the 
frequency of the location updates. On the other hand, if 
the battery level is high and healthy, IPetra uses the GPS 
service with more accurate locations. The application 
starts listening for all events in the monitored region 
inside Petra city. 

 
3)   Task 3: Capturing user requirements: This task 

focuses on capturing the user’s requirements as a 
subset of the functional requirements, as shown in the 
UML profile in Figure 7. This task is similar to a 
classical requirement-engineering process where the 
developers analyze the main functions of the 
application that achieve specific goals or objectives. 

B. Modelling: Platform Independent Model  
In order to be aware of possible resources and context 

variations and the necessary adaptation actions, a clear 
analysis of the context environment is the key to building 
dynamic context-aware applications.  
4)   Task 4: Resources and context entity model  

Resources and context Model refers to generic a 
overview of the underlying device’s resources, sensors, 
and logical context provider. This diagram is modelling 
the engagement between the resources and the application 
under development. It facilitates the developer to 
understand the relationship between the context providers 
and their dependency. 

 
5) Task 5: use-cases 
The requirements diagram in Figure 8 represents the main 
inputs for this task. Each requirement is incorporated into 
a use-case, and the developers identify the actor of the 
requirement. An actor could be a user, system, or 
environment. The use-cases are classified into two 
distinct classes, i.e., the core functionality and extended 
use-cases, by the context conditions. The first step is to 
identify the interaction between the actor and the 
software functions to satisfy the user requirement in a 
context-free fashion. For example, the displaying POIs 
functionality in the figure is context independent in the 
sense that the application must provide it, regardless of 
the context conditions. All these use-cases are modeled 
separately, using a class diagram that describes the 
application core-structure or the base-component model, 
as shown in the following task. 
 

 
Figure 8:  Functional and extra-functional partial requirements diagram  

6)   Task 6: modeling the application core-structure  
 In this task, a classical class diagram models the 

components that provide the application’s core functions. 
These functions are identified from the use-case diagram 
in the previous task. However, the class diagram is 
modeled independently from the variations in the context 
information. For this scenario, some classes, such as 
“Displaying POIs”, “Route-planningUI”, “CameraUI”, 
“MapUI”, and “User Interface”, are classified to be on the 
application core. These classes provide the core functions 
for the user during his tour of Petra city. Figure 9 shows 
the core-structure class-model without any interaction 
with the context environment or the middleware.  
7) Task 7: identifying application-variant behavior 

(behavior view):  
In this phase, the developers specify how the application 
can adapt to context conditions to achieve a specific goal 
or objectives. After specifying the core elements of the 
application in the previous task, the behavioral view is 
identified in this task. This task identifies when and 
where an extra-functionality can be invoked in the 
application execution. This means the developer has to 
analyze the components involved, their communication, 
and possible variations in their subdivisions, where each 

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 2, MAY 2012 177

© 2012 ACADEMY PUBLISHER



division realizes a specific implementation of that 
COCA-component. 

To achieve this integration, the developers have to 
consider two aspects of the context-manager design: how 
to notify the adaptation manager about the context 
changes, and the how the component manager can 
identify the parts of the architecture that have to respond 
to these changes. These aspects can be achieved by 
adopting the notification design pattern in modeling the 
relation between the context entity and the behavioral 
component. Hereafter, these extra-functionalities are 
called the COCA-components. Each component must be 
designed on the basis of the component model described 
in Figure 2. 
 

 
Figure 9: I-Petra Core-Classes structure 

The IPetra application is modularized into several 
COCA-components. Each component models one extra-
functionality such as the LocationCOCA−component in 
Figure 10. The COCA-component sublayers implement 
several context-dependent functionalities that use the 
location service. Each layer is activated by the 
middleware, based on context changes. After applying the 
observer design pattern and the COCA-component model 
to the use-cases, the class diagram for the middleware 
functionality “Update Location” can be modeled as 
shown in Figure 10. Figure 10 shows a COCA-
component modelled to anticipate the ’direction output’. 
The COCA-component implements a delegate objects 
and sub layers; each layer implements a specific context-
dependent function. The COCA-middleware uses this 
delegate object to redirect the execution among the sub 
layers, based on the context condition.  
Invoking different variations of the COCA-component 
requires identification of the application architecture, 
behavior, and the decision policies in use. As mentioned 
before, these decision policies play an important role in 
the middleware functions, which use them in handling, 
the architecture evolution, and the adaptation action. The 
model in Figure 10 helps the developer to extract the 
decision policies and the decision points from the 
interactions between the context entities and the COCA-
components. Decision policies are used by the 
middleware to select suitable adaptation actions among 
specific context conditions.  

The application behavioural model is used to 
demonstrate the decision points in the execution that 

might be reached whenever internal or external variables 
are found. This decision point requires several parameter 
inputs to make the correct choice at this critical time. 
Using the activity diagram, the developers can extract 
numerous decision polices. Each policy must be modelled 
in a state diagram, for example, the Policy: Camera 
Flashes is attached to the ’Camera flashes’ COCA-
component. The policy syntax can be described by the 
code shown in listing 1.  

The IPetra application has been implemented in two 
distinct versions, i.e. with and without the COCA-
middleware. The Instruments is a tool application for 
dynamically tracing and profiling IPhone devices. The 
battery life has been measured by Energy Diagnostics 
Instruments running on the device [22]. The energy 
Diagnostic used to measure the battery while the device is 
not connected to external power supply. The experiments 
show that the COCA IPetra application saved the battery-
consuming level by 13% in addition to its self-tuning 
adaptability. Fig. 14 shows the experimental results for 
energy usage. The IPetra implementation without 
adopting the COCA-platform consumes more energy 
during context monitoring, draining the battery faster. On 
the other hand, when the same application adopts the 
COCA-middleware, the application is able to adapt its 
behaviour and use less energy. The adaptation time for 
handling low and high battery-levels are shown in Figure 
13. It is worth mentioning here that when the battery level 
is low, the COCA-middleware allocates less memory 
because of the size of the COCA-component, which is 
small compared to its implementation. 
 

 

Figure 10: Extra-functionality Object Diagram of the Context Oriented 
Components 
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Listing 1:  Adaptation time (ms) and memory allocation (KB)  

 
Figure 13:  Adaptation time (ms) and memory allocation (KB)   

  

Figure 14:  Energy usage for IPetra application. 

VIII. EXPERIMENTS EVALUATION 

IX. CONCLUSIONS AND FUTURE WORKS 

This article described a development paradigm for 
building context-oriented applications using a 
combination of Model-Driven Architecture that generates 
an ADL, which presents the architecture as a 
components-based system, and a runtime infrastructure 
(middleware) that enables transparent self-adaptation 
with the underlying context environment. 

Specifically, a Model-Driven Architecture is used to 
demonstrate a new approach to building context-aware 
and self-adaptive applications by adopting a Model-
Driven Architecture (COCA-MDA). COCA-MDA 
enables developers to modularize applications based on 
their context-dependent behaviors, enables developers to 
separate context-dependent functionalities from the 
application’s generic functionality, and enables dynamic 
context-driven adaptation without overwhelming the 
quality attributes.  

The COCA-MDA needs to be improved with respect 
to support for both requirement reflection and modeling 
requirements as runtime entities. The requirement 
reflection mechanism requires support at the modeling 
level and at the architecture level. Reflection can be used 

to anticipate the evolution of both functional and non-
functional requirements. The decision policies require 
more development with respect to policy mismatch and 
resolution. This is in line with an improvement in terms 
of self-assurance and dynamic evaluation of the 
adaptation output. 
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