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Abstract— The aim of this research is to extend the discrim- 
ination of a decision tree builder by adding polynomials of 
the base inputs to the inputs. The polynomials used to 
extend the inputs are evolved using the quality of the 
decision trees resulting from the extended inputs as a fitness 
function. Our approach generates a decision tree using the 
base inputs and compares it with a decision tree built using 
the extended input space. Results show substantial 
improvements. Rough set reducts are also employed and 
show no reduction in discrimination through the 
transformed space. 
 
Index Terms—Decision tree building, Polynomials 

I.  INTRODUCTION 

This paper addresses the well-known problem of data 
mining where given a set of data; the expected output is a 
set of rules. Decision trees using the ID3 approach [1], 
[2] are popular and in most cases successful in generating 
rules correctly. Extensions to ID3 such as C4.5 and 
CART are developed to cope with uncertain data. Fu et al 
[3] used C4.5 followed by a Genetic Algorithm (GA) to 
evolve better quality trees; in Fu’s work C4.5 was used to 
seed a GA, which were then used as a basis for evolving 
better trees then using Genetic Programming (GP) 
techniques to cross over the trees. Many rule discovery 
techniques combining ID3 with other intelligent 
techniques such as genetic algorithms and genetic 
programming have also been suggested [4], [5], [6]. 
Generally, when using ID3 with genetic algorithms, 
individuals which are usually fixed length strings are 
used to represent decision trees and the algorithm evolves 
to find the optimal tree. When Genetic Programming is 
used to generate decision trees, individuals are variable 
length trees, which represent the decision tree. Variations 
in these approaches can be found in the gene encoding. 
One rule per individual as done in Greene [7], Freitas et 
al [8], [9] is a simple approach but the fitness of a single 
rule is not necessarily the best indicator of the quality of 
the discovered rule set. Encoding several rules in an 
individual requires longer and more complex operators 

[10], [11]. In genetic programming, a program can be 
represented by a tree with rule conditions and/or attribute 
values in the leaf nodes and functions in the internal 
nodes. Here the tree can grow dynamically and pruning 
of the tree is necessary [12]. Papagelis & Kelles [13] used 
a gene to represent a decision tree and the GA then 
evolves to find the optimal tree, similar to Fu et al [3]. To 
further improve the quality of the trees, Eggermont et al 
[14] applied several fitness measures and ranked them 
according to their importance in to tackle uncertain data. 
Previous work has taken the input space as a given and 
used evolution to produce the trees. In this work, as we 
shall see, the trees are generated using a variant of C4.5 
and the input space is evolved rather than the trees, in 
direct contrast to other workers. 

A vast majority of the approaches use decision trees as 
a basis for the search in conjunction with either a GA or 
GP to further improve the quality of the trees. Our 
approach described in this paper addresses continuous 
data and adds polynomials of the input values to extend 
the input set. A GA is used to search the space for these 
polynomials based on the quality of the tree discovered 
using a version of C4.5. 

II.  ITERATIVE DISCRIMINATION 

ID3, C4.5 and their derivatives proceed by selecting an 
attribute that results in an information gain with respect to 
the dependent variable. A simple data set with 2 
continuous attributes that are linearly separable is shown 
in Fig. 1.  

Applying C4.5 to the data set gives the result shown in 
Figure 2, which was first documented in [15]. If no errors 
are required over a large training set then the complexity 
of the decision tree grows with the size of the training set. 
This is unsatisfactory. 

Anticipating the results of the proposed system a higher 
level discriminant of x−y in addition to the two basic 
variables x and y would give the result shown in Fig. 3. 
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Fig. 1. A granularised version of the linearly separable set of data based 
on a 2 dimensional data set. 

 
 
x <= -0.25 : 
| y > -0.75 : in (36.0) 
: 
: 
: 
x > -0.25 : 
| y <= 0.75 : out (40.0) 
| y>0.75: 
: 
: 
: 
 
Evaluation on training data (128 items): 
 
Before Pruning    After Pruning 
-------------------   ------------------------ 
Size  Errors         Size Errors  Estimate 
27    1( 0.8%)      27   1( 0.8%)    (13.3%) 
 
Fig. 2. The decision tree produced by C4.5 from the linearly separable 
data shown in Figure 1. The size of 27 indicates why this tree is not 
replicated here. 
 
x-y <= -0.5 : out (64.0) 
x-y > -0.5 : in (64.0) 
 
Evaluation on training data (128 items): 
 
Before Pruning    After Pruning 
-------------------   ----------------------- 
 
Size   Errors         Size Errors   Estimate 
3        0( 0.0%)     3      0( 0.0%) ( 2.1%) 
 
Fig. 3. The decision tree produced by C4.5 from the linearly separable 

data using the discriminant value x − y. 
 

III.  MORE  COMPLEX DISCRIMINANTS 
 

So far we have made no more progress than Konstam 
[16] who used a GA to find linear discriminants. He 
makes the comment that the technique can be applied to 
quadratic discriminants. However he makes no statements 
about focusing the search. A set of data was prepared 
using the same data points as above to explore higher 
order and higher dimensional discriminants. The data 
prepared used a torus such that points inside the torus 
were in the concept and points outside the torus, 
including those that are within the inner part of the torus, 

were deemed outside the concept. Fig. 4 illustrates the 
data set although, as above, does not show all the points. 

Applying C4.5 to the data set represented in Fig. 4 
gives the decision tree shown in Fig. 5. This decision tree 
is smaller than the decision tree derived from the linearly 
separable data although the function used to produce the 
data is much more complex, and the predictions from the 
tree show fewer errors. The decision tree is difficult to 
interpret. 
 

 
 

Fig. 4. A granularised version of the torus illustrating a 
quadratic form. 

 
x <= -3.25 : out (16.0) 
x > -3.25 : 
| x > 2.75 : out (16.0) 
| x < 2.75 : out (16.0) 
| | y <= -3.25 : out (12.0) 
| | y > -3.25 : 
| | | y <= 2.75 : in (72.0/24.0) 
| | | y > 2.75 : out (12.0) 
3 
 
Evaluation on training data (128 items): 
Before Pruning After Pruning 
--------------  ------------------------ 
Size   Errors   Size Errors    Estimate 
9   24(18.8%)9    24(18.8%)(25.5%) 
 

Fig. 5. The decision tree produced by C4.5 from the toroidal data. 
 
 

Taking the toroidal data set, Fig. 4, and adding another 
attribute computed from the sum of squares of x and y 
gives better discrimination and a more interpretable tree 
shown in Fig. 6. Notice that the decision tree is much 
smaller with 5 decision points compared to 9, and has no 
errors compared with 18.8% in the original tree, Fig. 5. 

IV.  NON PROJECTABLE DATA SETS 

Thus far we have seen data sets that can be projected 
onto 1 dimension and which result in large trees but are 
nonetheless useful predictors. Section III shows that these 
trees can be reduced in size considerably by adding 
higher dimensional combined functions of the original 
data elements. 
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r2 > 8.125 : out (72.0) 
r2 <= 8.125 : 
| r2 <= 0.625 : out (8.0) 
| r2 > 0.625 : in (48.0) 
 
Evaluation on training data (128 items): 
Before Pruning After Pruning 
-------------------   ------------------------ 
Size  Errors          Size Errors   Estimate 
5       0( 0.0%)      5      0( 0.0%) ( 3.1%) 
 
Fig. 6. The decision tree produced by C4.5 from the augmented 
toroidal data. r2 is the sum of the squares of x and y. 
 

With the data sets shown in Figs 7 and 11, C4.5 does 
not produce a tree at all. Of the two data sets presented a 
higher order combined attribute results in a concise tree 
where no tree is produced without the higher order 
attribute. In the case of the quadrant data set, a concise 
decision is possible with the unaugmented data set, one is 
not produced by C4.5. 

A. Banded data set 
This test shows a data set that does not project down 

onto 1 dimension. This 2 dimensional data set results in 
the following tree from C4.5, Fig. 8. 
 

 
 

Fig. 7. A granularised version of banded linearly separable data. 
 
out (128.0/52.0) 
 
Evaluation on training data (128 items): 
 
Before Pruning After Pruning 
------------------   ------------------------ 
Size Errors         Size Errors       Estimate 
1      52(40.6%)  1      52(40.6%) (44.1%) 
 

Fig. 8. The decision tree produced by C4.5 from the banded data. 
 

The decision tree produced from the banded data, 
Figure 8, is shown in Fig. 8 and is almost useless. It does 
not reveal any useful information from the data. The most 
that can be gained from this data is that there are 52 
elements in the concept and the rest are out. Adding the 
attribute x − y gives the tree shown in Fig. 9, this is a 
good predictor and also makes the information held in the 
data clear. 
 

B. Quadrant data set 
 

This test shows a data set that cannot be discriminated 
by C4.5, however a decision tree does exist. It is shown if 
Fig. 10. This clear 2 dimensional data set results in the 
following tree from C4.5, Figure 12. 
 

V.  GENETIC ALGORITHM 
 

The genetic algorithm attached to the front of c4.5 has 
a few special features. It follows most of the guidelines in 
[17], [18] and so has aspects designed to preserve 
inheritability and to ensure that no part of the genome has 
an inordinate effect on the phenome. With this in mind 
the structure of the genome is made up from a set of 
integers, rather than a binary genome. 
 
x-y <= -2 : out (38.0) 
x-y > -2 : 
| x-y <= 1.5 : in (52.0) 
| x-y > 1.5 : out (38.0) 
 
Evaluation on training data (128 items): 
Before Pruning After Pruning 
-------------- ------------------------ 
Size Errors    Size Errors    Estimate 
5 0( 0.0%)  5    0( 0.0%)  ( 3.2%) 
 
Fig. 9. The decision tree produced by C4.5 from the banded data given the 
added input feature of x-y. 
 
x <= 0.0 : (64.0) 
| y<=0.0:in(32.0) 
| y>0.0:out(32.0) 
x > 0.0 : (64.0) 
| y <= 0.0 : out (32.0) 
| y > 0.0:in(32.0) 
 
Evaluation on training data (128 items) 
 
Before Pruning After Pruning 
-------------------   ------------------------ 
Size Errors           Size Errors    Estimate 
6      0( 0.0%)       6    0( 0.0%)  ( 3.2%) 
 
Fig. 10. The decision tree, which could be used to discriminate the 
quadrant data, but cannot be produced by C4.5. 
 

 
 

Fig. 11. A granularised version of quadrant data set. 
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out (128.0/52.0) 
 
Evaluation on training data (128 items): 
 
Before Pruning After Pruning 
-------------- ------------------------ 
Size Errors Size Errors Estimate 
 1 52(40.6%)1 52(40.6%)(44.1%) 
 
Fig. 12. The decision tree produced by C4.5 from the quadrant data. 
 
x*y <= -2 : out (38.0) 
x*y > -2 : 
| x*y <= 1.5 : in (52.0) 
| x*y > 1.5 : out (38.0) 
 
Evaluation on training data (128 items): 
 
Before Pruning   After Pruning 
-------------------   ------------------------ 
Size Errors          Size Errors   Estimate 
5      0( 0.0%)      5      0( 0.0%) ( 3.2%) 
 

Fig. 13. The decision tree produced by C4.5 from the quadrant data 
given the added input feature of x*y. 

 

A. Genetic Structure 
The chromosome can deliver several genes 

corresponding to several combined attributes. The 
chromosome is a fixed maximum length and achieves a 
variable number of genes by an activation flag. Each gene 
delivers one new attribute and each variable is a linear 
combination of simpler variables. 

1) Variable.: If the number in the variable slot is N and 
there are K basic continuous variables in the data set and 
M variables in the gene prior to this one then N mod (K + 
M ) refers to variable within those K + M variables. 

2) Function.: If the function is a monadic function then 
it is applied to variable 1, otherwise to both. The 
prototype system has a set of simple arithmetic functions, 
power, multiplication, division and subtraction. This is 
sufficient to extract all the decision trees we have 
considered. 

3) Number of genes and gene length.: The variable 
length chromosome has disadvantages as the effect on the 
gene itself of the two fields that determine the length of 
the gene is considerably more than any other field and 
can be destructive. The variable length gene has similar 
disadvantages. The gene structure finally chosen for the 
system is shown in Fig. 14. 
 
 

Active  

 Variable 1 

Function 
Variable 2 

 
Fig. 14. This shows the basic structure of the gene adopted. The 
Active/Variable/Function/Variable is repeated up to the gene length. 
 

This potentially has some of the properties of recessive 
genes that are attributed to diploid gene structures 
although no experiments have been conducted to 
determine this. An example gene is shown in Figure 15. 
This gene has 4 segments, 1 of which is active. Each 
segment has 2 attributes, some active and some not. The 

function field is interpreted as 2 for plus, 3 for minus, 5 
for multiply. No other function types are illustrated. 
 

1  active 
 1 x 

3 - 
2 y 

0  inactive 
 1 x 

5 * 
1 x 

0  inactive 
 2 y 

5 * 
2 y 

0  inactive 
 4 x2 

2 - 
5 y2 

Fig. 15. An exemplar gene. x and y are variables number 1 and 2. The 
first new variable is x − y and is variable number 3. As this is activated 
then it will be made available as an input to the decision tree generator. 
If variable 6 is activated then because it relies on variables 4 and 5 they 

will also be kept but not necessarily activated. 
 

VI.  EXEMPLAR DATA 
 

The system described above was applied to some data 
sets taken from the Machine Learning Repository [19] in 
order to compare the capability of the system with other 
known decision tree generators. 
 

The experiment compares the decision trees generated 
by C4.5 and the decision trees generated by C4.5 with the 
enhanced input space. The results consist of 

• the percentage of correct results on the training set 
• the percentage of correct results on the test set 
• the of degrees of freedom for the decision space 
• the probability that the result could not have arisen 

by chance  
• the decision tree size 

 
A. Experimental results 

Each data set was split randomly into two sets, the 
training set which comprised 90% of the data and the test 
set, which comprised 10% of the data. The split was 
generated by choosing whether a particular data point 
was to be in the training set or the test set using a random 
number generator. This way any temporal aspects that 
may be in the data are accounted for. Notice the degrees 
of freedom are different for the training set and the test 
set, this is because there were no data elements belonging 
to one of the categories in the test set, where there were 
elements in the training set. 
 

TABLE I 
EXPERIMENTAL RESULTS FOR GLASS DATA SET 

 
 C4.5 C4.5+GP 

Train Correct 92.8 98.5 
Test Correct 75 100 
DOF Train 30 30 
DOF Test 25 25 
probability of not null 1.0 1.0 

Tree size 43 61 
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The glass data set shows a considerable improvement 
for the enhanced input space, however the decision tree is 
larger. 

The iris data set shows an improvement for the 
enhanced input space, but the improvement is marginal, 
however the 
decision tree is smaller. 
 

TABLE II 
EXPERIMENTAL RESULTS FOR IRIS DATA SET 

 
 C4.5 C4.5+GP 

Train Correct 98 100 
Test Correct 100 100 
DOF 6 6 
probability of not null 0.99 0.99 

Tree size 9 7 
 

 
TABLE III 

EXPERIMENTAL RESULTS FOR PIMA INDIANS DATA SET 
 

 C4.5 C4.5+GP 
Train Correct 82.7 98.3 
Test Correct 74.5 84.2 
DOF 2 2 
probability of not null 1.0 1.0 

Tree size 33 119 

 
The Pima indians data set shows a considerable 

improve- ment for the enhanced input space. Both the 
training set and the test set show improvement. The 
enhanced decision tree is also considerably bigger, by a 
factor of nearly 4. 

The experiments have shown that the enhanced system 
is able to significantly improve the quality of the 
decisions made, however this is often at the expense of a 
larger tree. The test on the iris data set indicates that the 
decision tree can be smaller, as shown by some of the 
demonstration data sets earlier in the paper. 
 

VII.  REDUCED DATA SETS 
 

Work by Jensen and Shen on rough set theory aims to 
reduce the input set to a subset of attributes that have the 
same predictive value as the original set [20]. In this 
sense whereas the work reported here extends the input 
space by adding polynomials of the base features, 
Jensen’s work reduces the input space. Using the glass 
data set as an example set of data Jensen’s model 
removes the input value that measures the amount of 
Barium in the glass sample. Initial experiments show that 
the reduced set does reduce accuracy, but only marginally 
and not significantly, see Table IV. 
 

TABLE IV 
EXPERIMENTAL RESULTS FOR GLASS DATA SET COMPARING COMPLETE AND 

REDUCED DATA SETS WITH C4.5 
 

 C4.5 
Complete 

C4.5 
Reduced 

Train Correct 92.8 92.3 
Test Correct 75 70 
DOF Train 30 30 
DOF Test 25 25 
probability of not null 1.0 1.0 

Tree size 43 45 
 

The interim conclusion is that no predictive accuracy 
has been lost; but it is also true that C4.5 alone does not 
extract everything from the data that it is possible to 

extract. The next test evolves the reduced input space to 
extract as much predictive power as it can. 

These preliminary tests indicate that reduction system 
of Jensen and Shen [20] does not remove useful 
information by eliminating input attributes, and coupled 
with the enhanced input space system reported here 
shows no loss of accuracy. 
 

TABLE V 
EXPERIMENTAL RESULTS FOR GLASS DATA SET COMPARING COMPLETE AND 

REDUCED DATA SETS WITH C4.5 AND C4.5 + GP 
 

 C4.5 
Complete 

C4.5 
Reduced 

C4.5+GP 
Complete 

C4.5+GP 
Reduced 

Train Correct 92.8 92.3 98.5 99.0 
Test Correct 75 70 100 100 
DOF Train 30 30 30 30 
DOF Test 25 25 25 25 
probability of 
not null 

1.0 1.0 1.0 1.0 

Tree size 43 45 61 59 
 
 

VIII.  CONCLUSIONS 
 

This paper has extended the capability of decision tree 
induction systems where the independent variables are 
continuous. The incremental decision process has been 
shown to be inadequate in explaining the structure of 
several sets of data without enhancement. The paper has 
shown that introducing variables based on higher order 
and higher dimensional combinations of the original 
variables can result in significantly better decision trees. 
This can all be accomplished by introducing these 
variables at the start of the decision tree generation and a 
suitable method for generating these would be a genetic 
algorithm. A fitness function for a genetic programming 
system has been introduced and serves to discover 
structure in the continuous domain. Although the work of 
[20] shows how to reduce the input set without losing any 
discriminating power they did not achieve all the 
predictive power that the input space could provide 
further work on a variety of different data sets should be 
performed to confirm this. 
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