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Abstract— This paper proposes a novel constrained cluster-
ing method that is based on a graph-cut problem formalized
by SDP (Semi-Definite Programming). Our SDP approach
has the advantage of convenient constraint utilization com-
pared with conventional spectral clustering methods. The
algorithm starts from a single cluster of a whole dataset
and repeatedly selects the largest cluster, which it then
divides into two clusters by swapping rows and columns of
a relational label matrix obtained by solving the maximum
graph-cut problem. This swapping procedure is effective
because we can create clusters without any computationally
heavy matrix decomposition process to obtain a cluster label
for each data. The results of experiments using datasets
from the ODP and WebKB corpus demonstrated that our
method outperformed other conventional and the state of
the art clustering methods in many cases. In particular, we
discuss the difference between our approach and another
similar one that uses the same SDP formalization as ours.
Since the number of constraints used in the experiments is
relatively small and can be practical for human feedback, we
consider our clustering provides a promising basic method
to interactive Web clustering.

I. INTRODUCTION

Clustering has long been one of the most essential and
popular techniques in data mining [1]. It is used not only
for visualization of huge data sets but also for image
segmentation [2], medical applications, recommendation
systems, and so on.

Constrained clustering is a semi-supervised learning
approach that utilizes pre-given knowledge about data
pairs to improve normal clustering accuracy [3], [4].
The knowledge used is generally of two simple types:
a constraint about data pairs that must be in the same
cluster, and a constraint about data pairs that must be in
a different cluster. These are usually called must-link and
cannot-link, respectively.

Recent research about distance metric learning inter-
prets the constraint information as the distance or kernel
value of data pairs and tries to produce a new distance
measure or kernel matrix for a whole dataset to ensure
the distance of must-link is small and the distance of
cannot-link is large [5], [6], [7]. In this research, we do
not interpret the constraint as a distance or kernel value
but rather as a relational label that indicates whether data
pairs should be in the same cluster or not. Our objective is
to predict the correct label for each data pair (not for each
individual piece of data) by using sample labels converted

from pre-given constraint information according to the
framework of the transductive learning.

Our method is based on the graph-cut problem. Al-
though graph-cut based clustering (e.g., spectral clus-
tering) is a well known approach and many methods
have been proposed so far [8], [9], their solutions are
mostly based on the graph spectrum obtained by eigen
decomposition, which requires complicated processes to
add in the constraint information. Our approach is to solve
it as a semi-definite programming (SDP) problem. The
advantage of SDP is that we can naturally incorporate
constraints without any complicated processing and do
not need any specific objective functions (e.g., normalized
cut) to avoid a trivial solution (as is the case with many
other spectral clustering methods).

In terms of formalization, our problem is the same
as Li’s [10] or Hoi’s [11], although the introduction is
completely different. The most critical difference is the
interpretation of the SDP solution. They interpret the
solution as a kernel matrix and use it for multi-class
clustering, while we interpret it as a label matrix (as
described above) and use it for two-class clustering. As
we will show in the experiments, our two-class clustering
approach performs better than the multi-class clustering
approach. Our approach is based on the divide and con-
quer algorithm. It starts from a single cluster of a complete
dataset and repeatedly selects the largest cluster, which
it then divides into two clusters until we get the target
numbers of clusters. In each iteration, we obtain relational
labels for all data pairs from the solution of the SDP
problem. We then use the label matrix to create clusters
by swapping rows and columns to reduce the clusters’
label distribution entropies. This swapping procedure is
very effective because we can create clusters without any
computationally heavy matrix decomposition processing.

In summary, we propose a constrained clustering
method that has the following features.

• Clustering is performed based on the relational labels
of all data pairs that are obtained by solving a
graph-cut problem formalized by semi-definite pro-
gramming. Our SDP approach has the advantage
convenient constraint utilization compared with con-
ventional spectral clustering methods.

• The interpretation of the obtained matrix is different
from Li and Hoi’s approaches, although the problem
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formalization is similar. They use the matrix as a
kernel matrix for one-time multi-class clustering,
while we use it as binary label matrix for divide
and conquer-based two-class clustering.

These advantages make constrained clustering more effi-
cient, especially in the case of small number of constraints
such as interactive web clustering like [12].

The rest of the paper is organized as follows. First we
explain the standard maximum graph cut problem and
its solution by semi-definite programming relaxation in
Section II. Next, we describe our clustering algorithm,
which is based on the approximate solution of the SDP.
We describe the entire clustering procedure including
binarizing and swapping of the solution matrix in Section
III. Section IV shows the results of experiments performed
using datasets from the ODP and WebKB corpus. We
discuss our methods in Section V, and finally we conclude
our work in Section VI.

II. CONSTRAINED GRAPH CUT PROBLEM

Graph-cut formalization is a powerful clustering ap-
proach that many algorithms have adopted. In this section,
we first formalize the maximum cut problem and then
introduce a solution by semi-definite programming.

A. Maximum Cut Problem

The objective of the problem is to divide a graph into
two parts as its cut amount reaches the maximum. More
formally, consider a graph G = (V,E), where V is a set
of vertices and E is a set of edges. The problem is to find
partitioning (V1, V2) such as V1∪V2 = V and V1∩V2 = φ
and a maximum cut amount of

∑
i∈V1,j∈V2

wij . Here,
wij is the weight of an edge between data i ∈ V1 and
data j ∈ V2. We decide on a “maximum” cut when wij

is defined by some distance (e.g., Euclid distance). In
contrast, if wij is defined by some similarity (e.g., Gauss
kernel), the “minimum” cut is appropriate.

By introducing a cluster label variable ui for each
vertex, we can formalize the maximum cut problem as
follows.

Maximum Cut Problem

maximize
1
4

∑
i∈V1

∑
j∈V2

wij(1 − uiuj)

subject to u2
k = 1 (k ∈ V )

uk =
{

+1 (k ∈ V1)
−1 (k ∈ V2)

According to the standard method of spectral clustering
or segmentation by the random walk model, we can solve
this problem with the method of Lagrange multipliers.
The ui labels are obtained as eigen vectors corresponding
to the second largest eigen value.

Our aim is to incorporate given constraints into the
above problem and find a method to solve constrained

 

  

 

 
 

Figure 1. Cannot-link is not applicable in divide and conquer approach

maximum cut problems. While there are constrained ver-
sions of spectral clustering methods, we adopt a different
approach, solution by semi-definite programming (SDP),
which is practically easier to use because it can handle
constraints intrinsically.

B. Formalization by SDP

Semi-definite programming is a kind of convex op-
timization that is used to relax several optimization
problems such as combinatorial optimization, 0-1 integer
programming, and non-convex quadratic programming.
Since the maximum cut problem is an example of 0-1
integer programming, SDP can also relax it.

For the standard formalization of SDP, we transform
the above objective function into a matrix representation
with a weight matrix W and a matrix X whose element
is the product of ui and uj .

∑
i∈V1

∑
j∈V2

wij(1 − uiuj) = (diag(W e) − W ) • X

= L • X

X = uT u

u = (u1, u2, ..., un), n = |V |

L is the graph Laplacian matrix and e is a vector whose
elements are all one. As a final step, we add must-link
constraints to formalize the constrained maximum cut
problem as follows.

Maximum Cut Problem with SDP Relaxation

maximize L • X

subject to Eii • X = 1, (i = 1 ∼ n)
Eij • X = 1, (i, j) ∈ M

X � O

Eij is an n×n matrix in which only the (i, j) element
is 1, and all others are 0. M is a set of must-link.
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(a) Grouping patterns

                

               

               

               

               

               

 

 

 

 

 

               

 

               

 

               

 

               

 

               

 

 

 

 

  

 

 

 

(b) Sort pattern groups
Figure 2. Clustering process using label matrix
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Figure 3. Clustering Boundary

Although available constraints are not limited to must-
link, meaning we can also use cannot-link, it is very
difficult to select applicable cannot-links during multi-
class clustering because the partitioning order determined
in the graph cut process is usually unpredictable in
advance. Figure 1 gives an idea of the difficulty of using
cannot-link. There are three data in the figure - a, b, c -
and cannot-link is applicable only at the second cut. It
cannot be used at the first cut because b and c are in the
same cluster at that time.

There are several freely available SDP solvers that we
can use to obtain an approximate solution X̃ . Although
we need to decompose X̃ to obtain partitioning label u,
we found a way to complete partitioning by using only
X̃ . We explain this method in the next section.

III. CLUSTERING THROUGH SWAPPING ROWS AND
COLUMNS IN A LABEL MATRIX

In this section, we describe a concrete partitioning
procedure using matrix X̃ , which is given as the SDP
solution, and then an entire clustering with an iterative
dual-partitioning process.

As described in the previous section, we solve the
maximum cut problem with relaxed SDP, so the elements

Algorithm 1 Constrained Iterative Graph Cut Clustering
1: Input: D0 // Dataset
2: W // Weight Matrix
3: M // Must-Link Set
4: K // Number to be Clustered
5: Output: C = {D1, D2, ..., DK} // K clusters
6:
7: Let C = D0

8: for i = 1 to K-1 do
9: Select the largest cluster Dmax

t

10: Extract a subset of must-link constraints Msub
t

related to Dmax
t

11: Input Dmax
t and Msub

t to SDP solver and get
divided clusters {D1

t , D2
t }

12: Subtract Dmax
t from C

13: Add {D1
t , D2

t } to C
14: end for

of X̃ are assigned a real value ranging from -1 to 1.
We therefore decided on a different approach in which
we first binarize X̃ with 0-1 values, then swap rows and
columns to maximize the evaluation measure, and finally
determine the partitioning border.

The concrete procedures are as follows.
1) Each element of X̃ is binarized as follows.

X̃ij =
{

1, if X̃ij ≥ 0
0, if X̃ij < 0

The value does not matter because we treat 0 and
1 as a character in the following steps.

2) For each row, treat the column’s value as a char-
acter (0 or 1) and make a string (or pattern) by
concatenating each character in the original order.
Next, make groups of the same string (select a
representative of each kind of string). Figure 2(a)
illustrates this procedure.

3) Determine the most frequent string s0, and calculate
the Hamiltonian distance between s0 and the other
strings. Next, align other strings in descending order
of the Hamming distance. String s1 is the most
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TABLE I.
DIRECTORIES USED IN ODP CORPUS

No. Directory #data
1 Anomalies and Alternative Science 47
2 Science in Society 45
3 Environment/Water Resources 42
4 Astronomy 24
5 Technology/Structural Engineering 24
6 Agriculture 19
7 Biology/Genetics 16
8 Social Sciences/Linguistics 15
9 Physics 15
10 Earth Sciences 11
11 Math 10
12 Chemistry 6

TABLE II.
DATASETS IN ODP CORPUS

Dataset #data #cluster
odp odd 154 6
odp even 120 6
odp small 92 7

odp all 274 12

similar to s0. Figure 2(b) illustrates this procedure.
4) Determine the partitioning boundary according to

the following measure.

F (i, j) =
4∑

k=1

−pSi log(pSi)−(1−pSi) log(1−pSi)

(i, j) represents the partitioning boundary. If we
partition the above aligned matrix in the boundary
between i’s row and j’s row (i.e., also in the
boundary of i’s column and j’s column ), there
are four partitioned areas in the matrix. pk

0 and pk
1

are the probabilities of 0 and 1, respectively, that
appears in the area k. Thus, F (i, j) is the sum of
the entropy in four areas when partitioned between
ith and jth row (and column). The more clearly
partitioned, F (i, j) becomes lower.

5) Determine the boundary at the lowest F (i, j).
This is a heuristic method because the original problem

is a combinatorial one and practically intractable. There
is no guarantee for obtaining global optimum. However,
experimentally it works well, as described in the next
section.

We describe an entire procedure of our clustering
algorithm in Algorithm 1.

IV. EXPERIMENTS

A. Datasets

We evaluated our proposed method on two Web page
corpora. One is a ODP corpus, a set of web pages
extracted from the Open Directory Project (ODP)1 by
ourselves. We selected 12 subdirectories from the the
“Science” top directory, and downloaded top pages of the

1http://www.dmoz.org/

TABLE III.
WEBKB CORPUS

Dataset #data #cluster
student 558 4
faculty 153 4

staff 46 4
course 244 4
project 86 4
other 3033 4

Web sites listed in each directory. We removed tags and
stopwords from the pages, and stemmed each word. The
summary of each directory is listed in Table I.

We treated each directory as a target cluster, and
made four datasets using those clusters. One is a dataset
(odp all) using all the directories in the corpus. The other
two (odp odd and odp even) are half size of odp all. The
directories of odp odd and odp even are selected from
the odd and even number ones in Table I, respectively.
The final one (odp small) is a set of small directories
(No.6∼12) that include under 20 data. We summarize
about datasets in Table II.

We also used the WebKB corpus 2. This corpus consists
of seven datasets, and each one has fixed five clusters
named “Cornel”, “Texas”, “Washington”, “Wisconsin”
and “misc”, respectively. Since the last “misc” cluster
consists of Web pages from miscellaneous universities
and lacks unity, we removed it from each dataset. We also
removed department dataset because it has only one page
for each cluster. The datasets are summarized in Table III.
We applied the same preprocessing as ODP corpus and
evaluated each method on all the datasets.

B. Compared methods

We compared our proposed method with other three
methods. The notation and brief introduction of each
method is listed below.

GCUT This is our proposed method. We calculated
the Euclid distance for the weight of the graph
edge, which is indicated as wij in the maximum
graph cut problem in Section II. We used the
SDPT3 package 3 to solve SDP. The default
parameters are used for each run.

PCP PCP is one of the state of the art distance
metric learning methods proposed by Li [10].
It learns a kernel matrix using the same SDP
formulation with ours. The difference between
two methods lies in the usage of the solution
matrix. PCP uses it as a kernel matrix for kernel
k-means while ours uses it for iterative graph
cut. The weight of the graph edge and the
parameters for SDPT3 are the same with GCUT.
Since this method can use both must/cannot-
link constraints, we conducted two trials. One
is the trial using only must-link constraints, the
other uses both must/cannot-link constraints. the

2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
3http://www.math.nus.edu.sg/ mattohkc/sdpt3.html
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(d) odp all

Figure 4. Results of ODP corpus (horizontal axis is the number of constraints and vertical axis is NMI)

former is denoted by PCP(m) and the latter is
PCP(m/c).

ITML ITML is an another distance metric learning
method proposed by Jain [13]. It learns a trans-
form matrix to calculate desired distance. Since
this method follows online learning process,
we tuned its learning parameter η by selecting
the best value from 0.1 to 1.0 with 0.1 steps.
Clustering is done by normal k-means with
learned Euclid distance. Since cannot-link on
this method showed terrible performance deteri-
oration, we applied only must-link for it.

CKM CKM is the constrained k-means clustering
algorithm (called COP-Kmeans) proposed by
Wagstaff [14]. Since cannot-link often caused
deadlock and stopped all the algorithm pro-
cedure, we applied must-link only as well as
ITML.

C. Other settings

We use normalized mutual information (NMI) to mea-
sure the clustering accuracy. NMI is calculated by the

following formula.

NMI(C, T ) =
I(C, T )√

H(C)H(T )

where C is the set of clusters returned by each algorithm
and T is the set of true clusters. I(C, T ) is the mutual
information between C and T , and H(C) and H(T ) are
the entropies.

Constraints are selected randomly. We changed the
number of constrains from 0 to 100 with 10 steps. For
each number of constraints, we selected 10 different sets
of constraints and used the same sets for each method.
The NMI is calculated as the average value of those 10
sets.

D. Results

Figure 4 is the results of the ODP corpus. The horizon-
tal axis is the number of constraints and the vertical axis
is the value of normalized mutual information (NMI).

In this corpus, GCUT outperformed other methods in
all the datasets, especially at the points where the number
of constraints is small.

PCP(m/c) showed comparable or slightly better perfor-
mance at some points in the odp odd, the odp even and
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(f) other

Figure 5. Results of the WebKB corpus (horizontal axis is the number of constraints and vertical axis is NMI)

odp small datasets though it remained the second best or
worse in other points. PCP(m) is slightly worse than PCP.
CKM outperformed other methods without GCUT in the
odp all dataset. ITML did not show the good results in
this corpus.

Figure 5 shows the results of the WebKB corpus. The
meaning of the horizontal and vertical axis is the same
as the ODP corpus. In this corpus, GCUT indicated the
best results in four datasets. The results in the other two
datasets is comparable and slightly worse than the other
methods. GCUT showed clearly better performance espe-
cially in the student and “other” datasets whose number
of data is relatively larger than others. The performance

of all methods in “other” dataset is low because the topic
of this dataset is diverse and does not have unity as a
cluster. GCUT also showed better performance than other
methods in the staff and project datasets whose number of
data is relatively small. In those datasets, performance gap
between GCUT and others widened as the number of con-
straints increased. PCP showed comparable and slightly
better performance in the course and faculty datasets. We
did not observe significant difference between PCP(m/c)
and PCP(m) in this corpus. The performance of CKM
and ITML remained worse than GCUT and PCP in all
the datasets.

The performance of GCUT as well as all the other
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methods does not grow monotonically and sometimes
drops despite the increase of constraints. This is because
the effectiveness of constraints are generally quite uneven.
Some sets of constraints may work better for some
methods. On the other hand some sets may bring neg-
ative effect (e.g. because of must-link constraints related
outliers).

V. DISCUSSIONS

Our proposed clustering method (GCUT) repeatedly
divides the largest cluster into two sub-clusters until the
given number of clusters is obtained. This procedure
delivers a good property compared to a one-time multi-
class clustering approach represented by PCP as shown in
the experiments. The results indicate that we can obtain
more accurate clusters if we interpret the SDP problem
described in Section II as a constrained graph cut problem
and use its solution for iterative two-class clustering.

As described in Section I, our method uses the same
SDP formulation as PCP. However the purpose, derivation
and interpretation of the solution for our method is
different from PCP. In this section, we explain a brief
introduction of PCP and clarify the difference from our
method, and then discuss the cause of the experimental
results in the previous section.

PCP is a method to produce a kernel matrix of a dataset
by projecting original feature vectors to a higher dimen-
sional space. Constraints are used as desired inner product
values for some selected data pairs in the projected feature
space. In order to propagate the effect of the constraints
to other data pairs, Li et al. formulated an optimization
problem according to a well-known regularization in
spectral graph theory.

Optimization Problem derived in PCP

minimize
1
2

n∑
i,j=1

wi,j ||
φ(xi)√

dii

− φ(xj)√
djj

||2F

subject to < φ(xi), φ(xi) >F = 1 i = 1, 2, ..., n

< φ(xi), φ(xj) >F = 1 ∀(xi, xj) ∈ M

< φ(xi), φ(xj) >F = 0 ∀(xi, xj) ∈ C

Here, φ(xi) is a feature vector in the projected space,
wij is an initial similarity between data i and j, dii is∑

k wik, and < ·, · >F indicates inner product calculation
in the projected space. The objective function of the above
problem can be finally transformed into the formula L•X
that is the same one as described in Section II.

In this way, GCUT and PCP solve the same SDP
problem except for the use of cannot-link. However their
derivations of the problem are different from each other
like following.

1) PCP places the SDP problem as a basis to define
a proximity measure in a dataset. Thus it solves a
SDP problem only once for a clustering trial. The
proximity measure is actually got as a kernel matrix.

2) The SDP problem in GCUT is a constrained graph
cut clustering problem itself. Thus it iterates to
solve SDP k − 1 times. k is a target number of
clusters.

Though the reason for the performance increase of
GCUT compared with PCP superficially seems to be
multiple SDP executions, it is more important that the
derivations of the SDP problem in both methods are
different. GCUT derives from a constrained graph cut
problem while PCP derives from a problem to define a
desired proximity measure.

VI. CONCLUSIONS

In this paper, we proposed a constrained clustering
method that is based on a graph-cut problem formalized
by semi-definite programming and deterministic iterative
two-class partitioning approach. While graph-cut based
clustering is a particularly promising way to improve
conventional techniques like k-means method, few meth-
ods have been proposed, which can naturally incorporate
constraint like must-link.

Our method has the advantages of more convenient
constraint incorporation compared to other graph-cut
based method such as spectral clustering and can uti-
lize SDP’s solution matrix more appropriately compared
with other SDP-based methods. Since our method adopts
deterministic clustering approach unlike k-means using
random seeds, the performance is stable and robust to out-
liers. These advantages were clearly demonstrated through
experiments using many datasets from two Web corpus.
Results showed that our proposed clustering method con-
stantly outperformed conventional methods in many cases
and utilized constraints effectively.

A few problems still remain in this work. First, we
need to investigate how the constraint quality influences
the clustering. This is an active learning problem and
in the future we aim to develop a new active-learning
technique by utilizing the properties of our clustering
methods. Second, we need to develop a constraint propa-
gation method to improve clustering accuracy even if the
number of constraint is small. There are already various
propagation methods in place [15], but we need something
more powerful to improve the effectiveness of very small
constraints.

The advantages of our proposed clustering is efficiency,
especially in the case of small number of constraints.
Thus we are planning to apply this clustering method to
interactive (Web) clustering with GUI [12].
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