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Abstract— Cloud computing offers on-demand access to
computational resources. One of the major challenges in
cloud environments is to enforce the elasticity of the pro-
cesses that execute in the cloud, avoiding Service Level
Agreements (SLAs) violations and reducing waste with idle
resources. We propose an autonomic resource management
system for cloud computing, called VOLTAIC (Volume Op-
timization Layer To AssIgn Cloud resources). The proposal
analyzes usage profiles of physical and virtual elements
and defines heuristics based on differential utilization level
that guarantee an enhanced allocation of virtual elements.
VOLTAIC introduces algorithms to determine proper pa-
rameters to allocate cloud elements and to automatically
migrate those elements to avoid performance degradation
due to server saturation. Results obtained through the
implementation of the system in a small-scale environment
show that the system efficiently assigns virtual elements
and ensures proper resource allocation to virtual elements.
We also developed a virtual network simulator for cloud
environments to attest the high performance of VOLTAIC in
broader scenarios. Results show improvements in up to 10%
in the amount of offered cycles due to correct assignment
of virtual elements.

I. I NTRODUCTION

Cloud computing introduces a new provisioning model
for technology infrastructure. In this model, clients hire
providers that dynamically offer processor, memory, disk,
and network resources. This can be achieved through the
use of the virtualization technology [1], which imple-
ments a hardware abstraction that enhances the flexibility
of resource allocation. This flexibility confers elasticity
in the cloud environment, defined as the capacity of
providing resources on-demand and at the same time
ensuring Quality of Service (QoS) of clients [2]. Service
providers must develop efficient cloud systems to avoid
the waste with idle resources, ensure QoS and fulfill
dynamic workload demands. Armbrustet al. [3] claim
that the main cloud challenges are the service availability
and the elastic resource provision that scales with the
demand and reduces costs without violating Service Level
Agreements (SLA).

Virtualization allows on-demand remapping of virtual
resources over physical resources and thus enables the

This paper is based on “VOLTAIC : Volume Optimization Layer To
AssIgn Cloud resources,” by Carvalho, H. E. T., and Duarte, O. C. M.
B, which appeared in the International Conference on Information and
Communication systems (ICICS12), Jordan, Irbid, April 2012.

adaptation of systems to dynamic workloads. This remap-
ping primitive is defined as migration and allows work-
load transfers among different physical machines with-
out interrupting their execution. Currently, migration is
manually triggered by network managers to load balance
data centers [10]. This reallocation scheme is inefficient
because of its high reaction time, which is inadequate
to dynamic workload environments like clouds. The au-
tonomic migration is an even greater challenge, because
there is a need to consider multiple parameters of the
current machines and to estimate future resource demands
of machines.

In this article, we propose VOLTAIC, which performs
autonomic migrations to provide elasticity in the resource
provisioning of a cloud environment, guaranteeing QoS
for the clients and enhancing the usage of available re-
sources. Using the profile analysis of virtual and physical
elements, the system performs a dynamic allocation of
elements. The utilization profiles of virtual elements are
compared among themselves and among the profiles of
resources offered by the physical machines. VOLTAIC
searches the most adequate physical server to each virtual
element by considering the likelihood between the profile
of the virtual element and the profile offered by the
physical server.

VOLTAIC was implemented and tested in a real en-
vironment and uses Libvirt API [4]. Thus, VOLTAIC
is applicable to all virtualization platforms that supports
Libvirt, such as Xen [5], VMWare [6], KVM [7], etc.
In order to validate the proposed system in large scale
environments, we developed a cloud environment sim-
ulator. The simulator receives utilization profiles of real
machines and generates outputs that validate the modeling
for the proposed scenario. The obtained results show that
VOLTAIC is efficient for elasticity provision and en-
hances the availability of resources. The proposal reduces
in up to 10% the denial rate of processor resources when
compared to proposals of the literature.

The article is structured as follows. Section II presents
the related work, which aims in management of cloud en-
vironments and migration of virtual elements. Section III
shows the proposed architecture, its behavior and the
proposed algorithms. Section IV and Section V shows
the implementation of VOLTAIC, the development of
the simulator and the results of the proposal. Finally,
Section VI presents the conclusions and future directions
of this work.
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II. RELATED WORK

The development of mechanisms that ensure elastic-
ity in resource provision is a big challenge. There are
many works that address the virtual element allocation in
physical substrates, but most of the proposals focus on
the admission control of virtual elements and ignore the
resource consumption variability that requires dynamic re-
allocations. Fajjariet al. developed an admission system
based on ant colony meta-heuristics to solve this kind of
problem [8]. Alkmimet al.developed mapping algorithms
that minimizes the resource utilization in virtual network
environments [9]. The minimization goal is to optimize
the resource utilization by avoiding the instantiation of
unneeded nodes. For instance, if it’s possible to fulfill all
virtual network needs in a smaller number of physical
resources, the virtual elements can be consolidated in a
smaller number of physical elements thus minimizing the
resource waste.

SandPiper [10] is a system that monitors virtual ma-
chines with the objective of detecting and fixing hotspots
in physical servers. Hotspots are defined as the unavail-
ability of resources in physical servers. This unavailability
causes degradation in the performance of virtual machines
which share resources in these physical servers. The
results of the proposal demonstrate that singular hotspots
can be detected and mitigated in less than 20 seconds and
that the proposal can be extended to data center scenarios.
The proposal is tested with some artificially generated
workload, generated with Httperf. This artificial workload
states that clients make requests to virtual machines and
each small request demands lots of processing power.
Besides, the proposal offers two monitoring approaches.
The first approach is the black-box approach, where
the monitoring happens independently of the operational
systems and the applications which execute in virtual
machines. The second approach is the gray-box approach,
which explores processor behaviors from the executing
virtual machines.

By detecting the hotspots, SandPiper applies an inter-
active algorithm which orders servers as function of their
volumes, defined as

V ol =
1

1− cpu
·

1

1−memory
·

1

1− network
, (1)

which is a value that represents the volume of used re-
sources as a function of processor, memory and network.
After the ordering procedure, the algorithm classifies,
within each machine, the virtual elements that use more
resources. Then, the system iteratively reallocates the vir-
tual elements that belong to higher volume machines into
lower volume machines, until all hotspots are mitigated.
The resource allocation of VOLTAIC is significantly dif-
ferent from SandPiper because it takes into consideration
the compatibility of the usage similarity of physical and
virtual machines. Besides, our proposal uses a more
flexible volume metric that allows a better pondering in
the importance of each resource in the accounting of the
system load. The new parameters indicate the need to

execute management algorithms before the environment
reaches critical situations. VOLTAIC also allows the uti-
lization of an adaptation of the punishment algorithm
proposed by Carvalhoet al. to enforce that VOLTAIC
algorithms can achieve enough processing power to fulfill
its objectives [11].

Violin [12] presents a proposal that is similar to Sand-
Piper. It provides an environment capable of scaling dy-
namically and migrating elements. The proposal focuses
on the utilization of the memory ballooning mechanism,
which allows the dynamic memory allocation, and the
processor scheduling of Xen platform to deliver resources
to virtual elements. The proposal uses relocation policies
that verify if a given policy of a virtual element can
be fulfilled in the current physical node. If it is not
possible, Violin migrates the virtual element to another
physical node. The proposed environment is composed
of virtual machines connected through a virtual network
which allows the separation of the management of Violin
from the management tasks of the physical infrastructure.
The proposal is divided in two main components:

1) Enabling Mechanisms:The enabling mechanisms
include the virtual environments from users and
the resource monitoring processes of physical ma-
chines. These processes monitor the processor and
memory consumption through hypervisor calls to
detect the availability of resources;

2) Adaption Manager: The adaption manager com-
municates with monitoring process to generate a
global view of resource availability. The global
view deals with monitoring information of all Violin
instances.

The proposal does not offer optimal resource alloca-
tions but instead uses relocation based policies to verify
if a given virtual element can have its policies fulfilled in
the current physical node. If the policies are not fulfilled,
Violin migrates the virtual element to a different physical
node capable of providing the needed policies.

Gonget al.propose Press (PRedictive Elastic ReSource
Scaling for cloud systems) [13]. The system is focused
on cloud environments where elasticity must minimize
the operational costs of providers and at the same time
enforce service level objective (SLOs), defined as key
elements of the SLAs established between providers and
clients. The SLOs provide ways to measure the perfor-
mance of service providers in a manner that allows both
sides to attest if the SLAs are violated. The greatest
challenge of the elasticity is to decide where and when to
allocate resources, which is a non-trivial problem because
application demands can vary over time, hardening the
characterization of its patterns. The objective of Press is
to develop an efficient prediction schema based on models
that avoid the complexity of profile analysis and model
calibration.

In order to predict resource consumption, Press uses
two complementary techniques. First, it uses signal pro-
cessing techniques to identify repetitive patters, called
signatures, which are used in prediction. If the techniques
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are not able to identify signatures, Press uses a statistic
approach to detect short-term patterns and applies Markov
chains to predict the near future resource consumption.
The proposal avoids sub-estimation of resources and
tolerates overestimation to reduce SLO violations.

Press is compatible with Xen platform and validates its
results through Google cluster data. The system presents
good prediction results. One of the greatest contributions
of the authors is the idea of using utilization signatures,
which take into account the profile variation as a metric
to know the reliability of the current profiles when they
are used as near future predictors.

Hirofuchi et al. developed an efficient migration algo-
rithm based on post-copy migration to optimize migration
in cloud environments [14]. Authors say that current
migration algorithms are based on iterative pre-copy mi-
gration which may require an unpredictable amount of
time to finish migration process. In data center scenarios
this time unpredictability harms the efficiency of mi-
gration algorithms and management strategies. By using
the implementation of Hirofuchi, it is possible to use
post-copy migration on KVM, which is based on the
idea of migrating virtual machine states first and then
copy memory pages. This migration enables an accurate
prediction of migration time and allows faster migrations
because it only depends on the time to transfer the entire
memory and the time to transfer the virtual machine
states. Given the post-copy algorithm implementation,
the authors develop a machine consolidation mechanism
that uses post-copy and an allocation scheme to ensure
performance. They define dedicated and shared servers.
All virtual machines execute in shared servers. When a
given machine uses more than a defined threshold, the
system wakes a dedicated server and migrates the virtual
machine to it. The proposal cannot predict efficiently the
resource demands and can lead the system to situations
where there are no sufficient dedicated servers to fulfill
the resource demands. In this case the proposed system
may suffer performance problems. In this case, a solution
like VOLTAIC can relocate virtual machines according to
their consumption profiles to attenuate the problem.

Houidi et al.propose an adaptive mechanism to provide
resources in virtual network environments [15]. Authors
take into account network restrictions such as topology
limitations and SLA constraints to enhance network per-
formance and enhance tolerance to failures. They believe
that in the same manner that virtual machines can be
allocated dynamically in different physical machines, vir-
tual networks can be dynamically allocated in different
machines as well. This extension to virtual networks adds
new management parameters such as the connectivity
among virtual elements, delays in virtual links and virtual
network topologies. The proposed system enables the
dynamic relocation of virtual networks as a response of
the creation of new networks. The proposed system is
distributed and based on agents which monitor physical
elements. Agents detect link failures and change virtual
network allocation to maintain the constraints of each

virtual network.
We have proposed SLAPv, an adaptive control mecha-

nism for virtual network environments [11]. The proposal
is based on adaptive punishments applied to virtual ele-
ments to enforce SLAs and provide a better utilization of
idle resources. SLAPv verifies if virtual machines violate
the contracted SLAs and the proposal is limited to the
distribution of resources within a single physical node.
Another contribution is the adoption of a fuzzy metric
to verify the saturation level of physical resource on
each physical node, defined as system charge. The system
charge reflects parameters such as processor usage, mem-
ory and network. This metric was adapted into VOLTAIC
as a criterion to execute dynamic allocation mechanisms.
Besides, VOLTAIC allows the management of resources
in a broader level, because it allows the utilization of the
migration primitive to enhance the resource provision for
virtual elements. In this manner, the resource control is
not restricted to a single physical machine and allows the
allocation of resources among different physical elements
of a cloud environment. The profiles are not applied
to explicitly verify the SLAs. Instead, they are used to
understand the variation and the correlation of machine
behavior and its time variation, because it is one of the
criteria that is applied to select migration candidates in
VOLTAIC.

In this paper, we propose VOLTAIC system that is an
autonomous resource manager for cloud environments,
which allocates virtual elements, enhances the QoS of-
fered to clients and avoids the waste of computational
resources. The system charge metric used in our SLAPv
proposal was adapted into VOLTAIC as a criterion to exe-
cute dynamic allocation mechanisms. The proposal allows
resource management in a broader level, because it allows
the utilization of the migration primitive to enhance the
resource provision for virtual elements. The system uses
libvirt to interact with virtualization platforms and
manage physical machines. Thus, it is compatible with
any virtualization platform that supportslibvirt, such
as Xen, VMWare, KVM, etc., differently from existent
proposals that work only with specific virtualization en-
vironments [10], [11], [13]. By adopting the utilization
of a single interface to manage virtual platforms, we can
augment the applicability of the proposed system, but
it inherits some problems related to which information
can be extracted by each platform due tolibvirt
limitations. Besides, results show that the absence of
some platforms-specific information does not affect the
performance of the proposal. We must also mention that
the platforms must provide live migration mechanisms as
well.

III. T HE VOLTAIC SYSTEM

The name VOLTAIC is inspired in nature, where elec-
trical charge differences induce charge exchange through
voltaic arcs. In the same way real clouds balance electrical
charges among each other, the proposed VOLTAIC system
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Figure 1. A VOLTAIC module managing a set of physical machines and orchestrating the resource allocation.

balances resource consumption in cloud computing envi-
ronments. The autonomic management is characterized
as a process of observation and decision making in
the proposed environment, without human intervention.
Therefore, the autonomic manager perceives the behavior
of physical and virtual machines, analyzes and predict
possible saturation situations, and makes decisions. These
decisions can encompass the temporary resource prun-
ing [11] and live migration of virtual elements [16].

The system is composed of three main modules. The
first module is the Statistic Collector (SC), which interacts
with libvirt, retrieves the monitoring statistics of
each physical machine, and stores this information in
a database. The second module is the Profile Analyzer
(PA), which uses the information collected and stored
by the Statistic Collector to extract knowledge from the
virtualization platforms. This knowledge comprises uti-
lization profiles of virtual elements, offered profiles (OPs)
of physical machines, system charge, and the mapping of
virtual elements in physical elements. The third module is
the Orchestrator (OC) that uses the knowledge acquired
by the Profile Analyzer to manage physical and virtual
machines. It controls the amount of resources that are
offered to each virtual machine and organizes virtual
element migrations to balance the resource distribution.

A. VOLTAIC Architecture

The system uses a management model in which a
physical machine (PM) configured with a VOLTAIC
module manages a given set of physical machines, as
seen in Fig. 1. VOLTAIC manages this set of machines,
controls the offered resources, and dynamically migrates
virtual elements, avoiding resource saturation. If a set
of PMs is inside a single administrative domain, it is
possible to enable interaction among them, with resource
announcements and requisitions. Hence, we extend the

system capability, offering resources to virtual elements
under domain of other VOLTAIC machines, improving
resource utilization and enhancing the provided services.

B. The Statistic Collector Module

The Statistic Collector (SC) module useslibvirt to
interact with the physical machines and retrieves moni-
toring information. The SC retrieves processor utilization,
allocated memory and network utilization of physical ma-
chines and virtual elements. We can adjust the sampling
frequencies, avoiding that well defined events synchro-
nizes with times of inactivity in SC retrieval process. The
sampling frequency is correlated with the reaction time
of the system.
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Figure 2. Probability density function (PDF) for a virtual machine
                                      executing RIPv2 protocol.

C. The Profile Analyzer Module

The Profile Analyzer (PA) module processes infor-
mation acquired by the Statistic Collector. The analy-
sis involves the collection of information regarding the
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mapping of virtual elements into each physical element
and the generation of time series, which reflects the
relationship between resource consumption and time.
VOLTAIC generates profiles based on cumulative distri-
bution functions (CDFs) and probability density functions
(PDFs). These profiles represent the consumption pattern
of each virtual machine. We observe in Fig. 2an example
extracted from virtual machines executing RIPv2 routing
protocol. The profiles represent how the virtual machines
use processor resources in time.

These functions allow the estimation of future resource
demands of each machine and allows the estimation of a
given element be served in a given physical machine. For
instance, given a probability distribution of the past activ-
ities of the virtual machines, its possible to estimate the
amount of resources that will be used in near future.This
kind of analysis is based on Sandpiper [10]. Besides
the utilization profile, physical machines also possess
an offered profile (OP), which represents the profile of
availability of resources. This profile is then processed
when there is a need to select the proper physical machine
to serve a given virtual machine that needs to be migrated.
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Figure 3. System charge associated with processor and memory
                                                    utilization.

Based on the profiles and time series, the Profile
Analyzer generates a metric defined as system charge.
This metric is generated according to Carvalhoet al.
and represents a nebulous conjunction among system
variables, such as processor utilization, memory and net-
work utilization [11]. We can see in Fig. 3 a graphical
representation of how system charge value varies for
different memory and processor utilization values.

Therefore, system managers can model which parame-
ters are the most important in the system charge and how
the variation of parameters influences the decision mak-
ing scheme. Through this metric and its time variation,
the system detects physical machines that are close to
saturation. By detecting this risk, VOLTAIC pro-actively
eliminates the problem through dynamic reallocation of
virtual elements.

D. The Orchestrator Module

The Orchestrator is the main module of VOLTAIC.
It is responsible for decision making and for machine

management. The decision is based on the execution
of charge and resource control algorithms. The charge
control algorithm examines the variability of the charge
of physical systems and detects bottlenecks in resource
offering that generates losses. If the average load of the
last samples extrapolates a given security threshold, the
load control algorithm begins the reallocation procedures.
The resource control algorithm allows the system to
estimate future resource consumptions and decides the
best allocation for each virtual element.

1) Resource Allocation Algorithms:The load control
algorithm monitors the load of physical systems and
detect if a given physical machine sustained an average
load that exceeds a security threshold for a predefined
time period. If this happens, migration algorithms are
triggered. In the implementation and in the simulation,
this period comprises the last five system charge measure-
ments. The security limit was defined as0.80. This design
choice was made because the value of0.80 minimizes the
number of migrations whilst at the same time the system
is sensible enough to react to system load variations.
Values higher than0.8 makes the system less reactive to
resource utilization variation and thus migrations occur
too late and the amount of wasted resources increases.
Values lower than the defined value keeps the system
working but makes the system hard to converge because
it induces more migrations than needed to assure good
performance. This limit can assume values in interval
[0, 1], which is the range of values that can be assumed by
the system load. The critical machine selection algorithm
sorts physical machines as a function of their system
loads and the amount of critical virtual machines on each
physical machine.
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Figure 4. Evolution of time profiles for a workload with low correlation.

Critical virtual machines are those allocated on satu-
rated physical systems and that are responsible for an
amount of the system load that is higher than a pre-
determined limit and which profile variations in time
demonstrate low correlation. The profile variation in time
is a reflex of the probability that the virtual machine
possesses a predictable behavior. If a virtual machine
shows high correlation among consecutive profiles, this
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          Figure 5. Evolution of time profiles for a workload with high
                                                  correlation.

Figure 6. Selection of critical physical machines.

indicates that this virtual machine has higher chances
of behaving in the same way in near future. Otherwise,
the machine shows unstable behavior and the proposed
algorithm aims to allocate it in another physical machine
to avoid the disturbance of well-behaved machines that
share the same physical resources. The algorithm can be
seen in Fig. 6. In the algorithm, theVlimit input means
the established threshold for virtual machines. There, the
criticality() function evaluates the contribution of
the virtual machine in the total load of the physical
machine which hosts it and the profile variability of the
virtual machine. Criticality is defined as

criticidade = α · [ v.charge ] + (1− α) · [1− abs(ρ) ]
(2)

and establishes a relation of the impact of the virtual
machine in the physical machine and the correlation of
adjacent profiles of the same machine (represented asρ).
The machine profile is stored as a sliding window of
fixed length. In our experiments,α was set as0.5, which
means that the equal weight is given to both charge and
correlation. After the evaluation of criticality, the function
returns a tuple with the criticality value and a boolean

value which indicates if this value violates the established
threshold. In Fig. 4, we observe an example of how a
virtual machine profile varies in time. In this example, the
correlation among profiles is low. In Fig. 5 we observe
a virtual machine in which the correlation of subsequent
profiles is very high.

ThesortByCriticalVMs() function groups phys-
ical machines with similar charge values and sort this
groups in function of the number of critical virtual
machines in each of them. Therefore, the first returned
elements represent machines with higher charge and more
critical virtual machines.

After this procedure, VOLTAIC executes the virtual
machine migration selection algorithm. This algorithm,
seen in Fig. 7, iterates over physical machine candidates.
For each candidate, the algorithm observes if the recent
consumption profile and its correlation between the profile
and the offered profile (OP) of physical machines, sorted
from lower to higher charge. The adopted correlation
method is the Pearson correlation, which is obtained
by dividing the covariance by the product of standard
deviation of two variables. If the profile is correlated and
the average consumption of the virtual machine is smaller
than the one offered by the physical machine, the virtual
machine is migrated. Otherwise, the next virtual machine
is analyzed.

Figure 7. Selection of migration candidates.

IV. I MPLEMENTATION AND SIMULATION

VOLTAIC is implemented in Python and usespython-
libvirt for virtualization platform communication. The
implementation is based on multi-thread programming,
where threads are responsible for monitoring each ma-
chine. The monitoring stores information in a database.
The Profile Analyzer uses this information to generate
usage profiles and the system charge.

In order to test a broad range of parameters and
perform migration tests in larger scale, we also developed
a discrete event simulator for virtual environments. The
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simulator is developed in python and allows the configu-
ration of physical and virtual machines. The simulator1

offers creation, destruction, migration, and event schedul-
ing primitives. Each execution step represents a unit of
simulation time. The main classes of the simulator are
detailed below.

The simulator was developed according to object ori-
ented modeling paradigm. The simplified class diagram
cam be seen in Fig. 9. In the diagram, we see the
main entities of the model. The simulator is the main
entity. It is responsible for storing processing simulation
steps. We can configure the number of steps, log the
information of each step, configure each physical and
virtual machine, and so on. Besides, we can program event
triggers to execute methods related with the operation of
the simulator. The simulator stores algorithm objects and
physical machine objects. Algorithm objects represent all
the algorithms that can be used to manage virtualized
environments. Physical machine objects represent real
physical machines and store virtual machine objects.
Finally, the virtual machine entity represents a virtual
machine which executes in the system and its resource
consumption pattern.

A. Physical Machines

The physical machines entities are similar to real
machines. We define the maximum processor capacity,
memory, and network resources that are offered on each
simulation step and also we associate virtual machines
to physical machines. The implementation also simulates
a generic virtualization platform, which allows the uti-
lization of virtualization primitives (creation, destruction,
and migration), and also the implementation of different
resource schedulers. The simulator user adds costs to
perform the primitives and schedule tasks.

The implemented processor scheduler makes a fair
resource distribution among virtual machines (propor-
tional division). For instance, if the physical machine only
provides 100 processing units per step and two machines
try to use 100 units each, each machine receives only
50 processing units and the simulator stores that virtual
machines lost resources in this interaction. In this case,
each machine achieved a loss of 50 processing units.

1The simulator is available for download and can be found in
http://www.gta.ufrj.br/˜hugo/virtsim/.
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B. Virtual Machines

Virtual machine entities inherit characteristics from
physical machine entities, but there is no implementation
of the virtualization platform. We define processor, mem-
ory, and network thresholds. Besides, the virtual machine
entity allows the utilization of customized profiles for
each resource, enabling the injection of real resource con-
sumption patterns in the simulator to see the VOLTAIC
reaction to it. We can also opt for distribution functions
to generate machine profiles. In this manner, given that
the developer possesses knowledge of the types of virtual
machines that will be deployed in real scenarios, it is
possible to simulate access patterns even without the
existence of real profiles.

C. VOLTAIC and the Simulation Manager

In simulation, VOLTAIC possesses its own entity, ca-
pable of interacting with physical and virtual machines.
VOLTAIC allows the execution of the monitoring tasks,
migration algorithms, and migration candidate selection
algorithms. This interaction is accomplished through the
simulation manager. The simulation manager coordinates
all simulation activities. We can define the number of
simulation rounds and the number of steps for each round.
The simulation manager also helps the system to perform
migrations, by invoking sending and reception methods
on each physical machine. At the end of the execution,
we can generate a log of all operations and procedures
that were taken during the simulation.

V. RESULTS

The implementation and simulation results were ob-
tained in two identical physical machines (PM1 and
PM2), connected by Intel 82599EB 10 Gbps cards
through an optic fiber. The servers have two Intel Xeon
X5570 processors, with a total of 16 physical cores and
24 GB of DDR3 1066 MHz memory. The virtualization
platform that was used was KVM and thelibvirt
version was 0.9.6.

The test methodology follows the evolution of
VOLTAIC system, with the intention to demonstrate the
validity of each step of the development of the proposal.
Initially, we perform tests that demonstrate the proper
working of the proposal when it is implemented in a small
real environment. The parameters generated in this small
real environment is then used to calibrate the simulator.
We capture real utilization profiles from this scenario. The
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Figure 9. Simplified class diagram of the proposed simulator.

simulator is then fed with the real scenario information,
such as the estimated migration time and the resource
utilization profiles. Next, we test the behavior of the
simulator when it is subjected to real profiles. We observe
that the simulator shows a behavior that is equal to
the real system implementation. After that, we simulate
environments with higher number of virtual and physical
machines, to evaluate the performance of the system and
the resource allocation schemes in broader scenarios.

In the first implementation test, we created two virtual
machines. Each virtual machine receives processing tasks
and uses up to 16 of the available cores. If the physical
machine cannot provide enough processing, virtual ma-
chines suffer from utilization capability reduction until
there are enough resources available.

In Fig. 8, we observe the processor utilization of
two virtual machines (VM1 and VM2) during time.
The processing scale represents the total utilization of
processor resources, which varies from zero to1.600%,
which represents the full utilization of all the 16 available
cores. Initially the two virtual machines are allocated in
physical machine 1. We can see that in the instantt=20
seconds VM1 receives an intensive processing task, which
elevates its processor utilization from0% to 1.000%. In
this situation, the physical machine is totally saturated
and even a small positive variation of processor usage can
generate performance losses. VOLTAIC detects the aug-
ment in the processor demand and opts for automatically
migrate VM1, which is the virtual machine that shows
higher probability of saturating PM1 to PM2, to fairly
distribute the charge among physical machines, as seen in
Fig. 10. Therefore, VOLTAIC relocates virtual machines
according to the physical machines that can provide the
resource profile which is the most compatible with each
virtual machine.

To enhance the scale of tests, we developed a virtual
environment simulator. To validate the simulator, the same
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Figure 11. Equivalence between simulation and implementation.

utilization profile from Fig. 8 and the physical machines
configurations were reproduced in the simulator and we
observed the system charge variation. Results show that
for the same real charge, the simulator shows the same
behavior in processor variation and in system charge
variation, as seen in Fig. 11. The simulation steps were
associated to the time in seconds of the real system
execution.
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Figure 12. Lost cycles in function of the number of virtual machines.

To demonstrate VOLTAIC, the simulator was loaded
with virtual machines with processor utilization profiles
that follows a normalized distribution centered in 200% of
processor utilization. Each virtual machine is configured
with 256 MB of RAM memory and this amount is fixed
for all machines. In the simulations, we do not consider
the utilization of network interfaces. In the beginning of
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Figure 13. CPU utilization in details. VOLTAIC OutperformsSandPiper
          and the execution with no algorithms in the CPU provision.

each simulation round the initial allocation of each virtual
machine is modified and we verify the amount of lost
processing cycles in the system. The lost cycles are related
to simulation steps in which resource demand is higher
than the current configuration of the system can provide.
The lost cycles can be defined as a function of the amount
of cycles required by virtual machines and the amount of
cycles that each physical machine can provide. The total
required cycles of the virtual machines is defined as

Ctotalreq =

n
∑

step=1

m
∑

vm=1

procstepvm (3)

whereprocstepvm represents the amount of processor cycles
required by the virtual machinevm in stepstep. We sum
all the required cycles of each virtual machine in each
simulation round and then calculateCtotalreq . In order to
define the amount of lost cycles on each simulation step,
we define∆step

pm that represents the difference between the
resource demand and the resource capability of physical
machinepm in stepstep. The formal definition of∆ can
be seen in Eq. 4. If the number of required cyclesRstep

req,pm

is greater than the available resourcesR
step
offer,pm, ∆ is

positive. Positive values of delta mean that there were
lost cycles. If∆ is equal to zero, then all the required
resources fit exactly on the physical machine capability.
If ∆ is negative, the physical machine was able to fulfill
the cycle demand.

∆step
pm = Rstep

req,pm −R
step
offer,pm (4)

We also defineCstep
lost as the number of cycles that were

lost in stepstep, as seen in Eq. 5. In this equation, if there

were lost cycles,∆step
pm is positive and then

∆step
pm +|∆step

pm |
2

is equal to the amount of lost cycles. If∆step
pm is less than

or equal to zero, then
∆step

pm +|∆step
pm |

2 is equal to 0 and there
is no contribution to the number of lost cycles.

C
step
lost =

m
∑

pm=1

∆step
pm +

∣

∣∆step
pm

∣

∣

2
(5)

Finally, we defineCtotallost as the total number of
fulfilled cycles divided by the total number of cycles that
were requested, as seen in Eq. 6.

Ctotallost =
100

Ctotalreq

∗
n
∑

step=1

C
step
lost (6)

After the simulation, we develop a statistical analysis
of data and compare the amount of lost resources in
VOLTAIC, SandPiper, and without autonomic migration
algorithms.

The results seen in Fig. 12 show the amount of pro-
cessing cycles that were lost in function of the number
of virtual machines allocated in the physical machines.
The value of lost cycles is derived from the application
of Eq. 6 in all tested conditions. These results were
obtained in the execution of five rounds of 100 simulation
steps and we simulated 10 physical machines. The results
show that VOLTAIC reduces the amount of lost cycles in
more than 10%. We can observe that until the number of
virtual machines reaches 35, the proposal presents better
results than SandPiper. This occurs mainly because the
selection criterion of critical machines takes into account
the correlation of the virtual machine profiles and the
criticality of virtual machines.

As the number of virtual machines increases, the
physical machines became more saturated and eventually
all of them are classified as critical. If this happens,
the priority heuristic that chooses less stable machines
and searches for adequate reception profiles became an
algorithm that takes into account only the system charge,
because all physical machines present saturation symp-
toms and critical machines. Even in these conditions, the
system reduces the lost cycles in 10% when compared to
the results that use no algorithms.

In Fig. 13, we verify the analysis of a random virtual
machine in one of the execution rounds of the tests.
We can verify the processor consumption attempt, and
the processor consumption offered by VOLTAIC, Sand-
Piper, and in the absence of reallocation algorithms. Our
proposal, as time evolves, learns the behavior of virtual
machines and selects a better placement for it. After
58 simulation steps, VOLTAIC found out the physical
machine that better suits the virtual machine and ensure
proper resource allocation for it.

VI. CONCLUSION

Quality of Service and elasticity provision are great
challenges for cloud computing. Efficient resource allo-
cation is fundamental for scalability of this computation
model. We propose VOLTAIC that is an efficient system
to dynamically reallocate virtual elements in physical
machines. VOLTAIC analyzes utilization profiles and,
based on usage correlations, reduces the amount of wasted
processor cycles during normal and saturated scenarios.
This reduction can be achieved through automated virtual
machine migration.

The proposed heuristics predict saturation situations
and trigger the migration algorithms. The algorithms
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detect and select the physical machines that are closer
to saturation and find the best candidates for machine
migration. Results show that the proposed migration
algorithms reduce in up to 10% the amount of wasted
cycles in the offering of processor resources. Therefore,
the results show that the proposal performs well for the
analyzed data center scenarios, maximizing the amount
of instantiated virtual machines, ensuring the fulfillment
of services, avoiding resource waste, and enhancing the
profit of providers.

Besides the dynamic allocation proposal, this article
brings as a contribution an implementation of a virtual
environment simulator. This simulator allows the instan-
tiation of virtual elements and virtualization platforms.
The profile of the virtual elements can be loaded from
real traces. Finally, the simulator is extensible and allows
the development of new schedulers and virtualization
proposals. As a future work, we intend to extend the
simulator and to implement new heuristics to dynamically
allocate resources in cloud computing environments.

REFERENCES

[1] N. Fernandes, M. Moreira, Moraes,et al., “Virtual net-
works: Isolation, performance, and trends,”Annals of
Telecomm., pp. 1–17, 2010.

[2] S. Dustdar, Y. Guo, B. Satzger, and H. Truong, “Principles
of elastic processes,”Internet Computing, IEEE, vol. 15,
no. 5, pp. 66–71, 2011.

[3] M. Armbrust, A. Fox, R. Griffith,et al., “Above the clouds:
A berkeley view of cloud computing,” Technical Report
UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, Tech. Rep., 2009.

[4] M. Bolte, M. Sievers, Birkenheuer,et al., “Non-intrusive
virtualization management using libvirt,” inProc. of the
CDATE. EDAA, 2010, pp. 574–579.

[5] M. Bourguiba, K. Haddadou, and G. Pujolle, “Evaluat-
ing Xen-based virtual routers performance,”International
Journal of Communication Networks and Distributed Sys-
tems, vol. 6, no. 3, pp. 268–282, 2011.

[6] E. VMWare, “Server,”GSX Server, product documentation,
2005.

[7] A. Kivity, Y. Kamay, D. Laor, et al., “KVM: the linux
virtual machine monitor,” inProc. of the Linux Symposium,
vol. 1, 2007, pp. 225–230.

[8] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann,
“VNE-AC: Virtual network embedding algorithm based
on ant colony metaheuristic,” inCommunications (ICC),
2011. IEEE, 2011, pp. 1–6.

[9] G. P. Alkmin, D. M. Batista, and N. L. S. Fonseca, “Op-
timal mapping of virtual networks,”GLOBECOM 2011,
2011.

[10] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif,
“Sandpiper: Black-box and gray-box resource management
for virtual machines,”Computer Networks, vol. 53, no. 17,
pp. 2923–2938, 2009.

[11] H. E. T. Carvalho, N. C. F. Fernandes, O. C. M. B. Duarte,
and others., “SLAPv: a service level agreement enforcer
for virtual networks,” in ICNC’12 - ISA, Maui, Hawaii,
USA, Jan. 2012, pp. 713–717.

[12] P. Ruth, J. Rhee, D. Xu, Kennell,et al., “Autonomic
live adaptation of virtual computational environments in
a multi-domain infrastructure,” inICAC’06. IEEE Interna-
tional Conference on. IEEE, 2006, pp. 5–14.

[13] Z. Gong, X. Gu, and J. Wilkes, “PRESS: Predictive elastic
resource scaling for cloud systems,” inNetwork and Ser-
vice Management (CNSM), 2010 International Conference
on. IEEE, 2010, pp. 9–16.

[14] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi, “En-
abling instantaneous relocation of virtual machines with a
lightweight vmm extension,” inCluster, Cloud and Grid
Computing (CCGrid), 2010 10th IEEE/ACM International
Conference on. IEEE, 2010, pp. 73–83.

[15] I. Houidi, W. Louati, Zeghlache,et al., “Adaptive virtual
network provisioning,” inProc. of the 2nd ACM SIG-
COMM workshop on Virtualized infrastructure systems
and architectures. ACM, 2010, pp. 41–48.

[16] C. Clark, K. Fraser, S. Hand, Hansen,et al., “Live mi-
gration of virtual machines,” inin Proceedings of the 2nd
conference on NSDI. USENIX Association, 2005, pp.
273–286.

Hugo E. T. Carvalho is currently a M.Sc. student at the Electric
Engineering Program (PEE) from COPPE and Universidade
Federal do Rio de Janeiro (UFRJ), Brazil. He received his
Computer and Information Engineer degree from UFRJ, Brazil
in 2011. His research interests include network security, server
consolidation, machine learning, cloud computing and network
management.

Otto C. M. B. Duarte received the Electronic Engineer degree
and the M.Sc. degree in electrical engineering from Univer-
sidade Federal do Rio de Janeiro, Brazil, in 1976 and 1981,
respectively, and the Dr. Ing. degree from ENST/Paris, France,
in 1985. Since 1978, he has been a Professor with UFRJ. His
major research interests are in QoS guarantees, security and big
data.

342 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER


