
Service-oriented Software Development and
Management: A CASE Tool-based Approach

Youcef Baghdadi
Sultan Qaboos University/Department of Computer Science, Muscat, Oman

Email: ybaghdadi@squ.edu.om

Bashar Alani and Zuhoor Al-Khanjari
Sultan Qaboos University/Department of Computer Science, Muscat, Oman

Email: bashar.alani@gmail.com, zuhoor@squ.edu.om

Abstract—In order to realize Service-Oriented Architecture

(SOA) with Web Services (WSs), a new engineering

approach is required; we refer to it as Service-Oriented

Software Engineering (SOSE). This approach would sketch

out a method, including a process, models, languages, tools,

and notations. It encompasses three dimensions: (i) services,

(ii) compositions, and (iii) management of both services and

compositions. The existing methods have not considered the

three perspectives neither they have considered how these

perspectives can be achieved together through a

comprehensive approach. This paper presents an

architecture, a specification, and an implementation of a

CASE tool for developing and managing Service-Oriented

Software (SOS). The CASE implements: (1) a metadata that

represents WSs from four perspectives: description,

deployment platforms, legacy systems, and composite

software, and (2) a set of management artifacts built on top

of the metadata. The metadata is implemented as repository,

the core component of the CASE tool architecture.

Index Terms—Web Services; Service-Oriented Software;

Approaches; Metadata; CASE Tool

I. INTRODUCTION
SOA is an architectural style that promotes flexibility

and agility through abstraction, separation of concerns,
loose coupling and interoperability of its components.
WSs technology constitutes a suitable distributed
computing platform [1] to realize SOA [2].

However, realizing SOA with WSs as reference
architecture for SOS requires a new engineering
approach; we refer to as SOSE. This approach should not
only deal with services as basic components, and
software solutions as composites, but more importantly
with the management of both services and composites.
Indeed, the management is a complex task and a serious
challenge, due to the growing number and types of WSs
deployed, and the changing and flexible nature of the
composites built on top of them. Such a complexity
requires tools that automate and support the management
and monitoring efforts [3], [4], [5], [6], [7], [8], [9], [10],
11].

Several methods from both academia and industry
have been developed [12], [13], but neither they have

considered comprehensively the three perspectives, nor
have they showed how these perspectives can be
achieved through a unique comprehensive approach.

Therefore, we advocate for a new CASE tool-based
approach geared towards rapid generation and
management of composites from existing services. The
existing CASE tools such as IBM Rational Rose [14]
generally deal with generating components from a
specification by wrapping existing code into WSs.

The proposed CASE tool, by embedding existing
generators and applications wrappers, can embrace any of
the well-known approaches: top-down, bottom-up, or
their extensions: green-field and meet-in-the-middle
specifically devised to cope with WSs. These approaches
play on the service contract and logic, i.e., whether a
contract already exists (there exists a specification of the
service) or is newly designed, and (ii) whether the logic
already exists (there exists a piece of code implementing
the service) or to be developed [15], [16].

This paper presents an architecture, a specification,
and an implementation of a CASE tool for WSs
development, deployment, composition, and
management. It is based on: (1) a repository
implementing a metadata that represents WSs from four
perspectives, namely WSs description, WSs deployment
platforms, wrapping legacy systems into WSs, and
composites, and (2) a set of management artifacts built on
top of the metadata. These artifacts are required to: (i)
evaluate WSs quality individually [9], (ii) provide rules
governing the control of Business Process Execution
Language (BPEL) [5], and continuous inspection of the
software built out of the services [2], and (iii) align
service-based solutions with business goals [6].

The remainder of this paper is as follows: Section 2
details the metadata of the WSs. Section 3 presents the
management perspective. Section 4 presents the
architecture of the proposed CASE tool. Section 5 details
its specification. The implementation is provided in
Section 6. Section 7 presents related work. Finally, a
conclusion section presents further developments.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012 371

© 2012 ACADEMY PUBLISHER
doi:10.4304/jetwi.4.4.371-378

II. WSs METADATA
WSs metadata, implemented as repository, is the core

component of the CASE tool. The metadata emphasizes
four perspectives of the WSs as shown in Figure 1. These
are:

(P1) Description of WSs with WSDL2

(P2) Wrapping of legacy systems and applications

(P3) Deployment of WSs within their servers

(P4) Development of composites

The objective of having these perspectives is twofold:

1. Guidance towards the realization of SOSE

2. Management and monitoring of the components and
composites as main IT assets

A. WSs Description Perspective

The description of a WS should be specified with a
machine-readable language. It concerns with: (i) the
functional and non-functional requirements of the service,
i.e., what functionality a service provides, (ii) the
communication style, i.e., how it communicates, and (iii)
its locations on the Web, i.e., where to find it.
Accordingly, a description language such as WSDL1 or
WSDL2 expresses three distinct parts:

1) The abstract part expresses the interface of the
service.

2) The concrete binding expresses the communication
aspect and style. The concrete part references (imports or
includes) the abstract part.

3) The implementation part expresses the location of
the service. The implementation part references (includes
or imports) the associated concrete binding.

These three parts are related to each other by
inclusion relationships as distinguished in the metadata as
shown in Figure 1.

B. Services Deployment and Registration Perspective

The metadata, represented with a UML class diagram
in Figure 1, distinguishes the services deployment
perspective. Services are deployed within servers (i.e.,
run-time servers). A server can run as standalone, as Web
server, or within an application run-time server provided
by an environment such as J2EE or .NET. A service
server consists of a service container that manages the life
cycle of the application implementing the services, and a
SOAP processor that processes the exchanged messages.

The service container is responsible for the following:

 Management of the lifecycle of the application that
implements the service

 Generation of the WSDL document, that will be
registered within the Universal Description and
Discovery Interface (UDDI), in which the client
applications can find it and generate a client proxy.
At run time, the client uses the proxy to construct
and send SOAP message to the services

The SOAP processor is responsible for the following:

 Processing of the incoming messages

 Conversion from XML into native Programming
Language (PL) data types

 Routing of the request to the application that
implements the service

C. Legacy Systems Wrapping Perspective

In SOSE, designing and developing a service consists
mostly in wrapping candidate functionalities. Generally,
these functionalities exist in the legacy systems, however
if some functionalities do not exist, we need to develop
them as services. These services are then registered in a
private/public registry. Most of the applications do exist
in the current system. They will be considered as legacy
software applications. These applications are still in use
and need to communicate in a distributed heterogeneous
environment. The UML class diagram in Figure 1
distinguishes the service wrapping perspective.

D. Composition Perspective

Reusability is one of the major properties of services
since services can be reused instead of being redeveloped.
Therefore, WSs stack is seen from a usage point of view
to provide a flexible software composition implementing
Business Processes (BPs). The UML class diagram in
Figure 1 distinguishes the services composition
perspective, where a composite is presented and modeled,
with respect to SOA, by using BPEL (the partners are
WSs).

III. MANAGEMENT PERSPECTIVE
Due to the growing number and types of WSs

deployed as well as the changing and flexible nature of
the composites, the management and monitoring of both
service and composites becomes a complex task and a
serious challenge. Such a complexity requires tools that
automate and support the management and monitoring
efforts. Indeed:
 From a service perspective, the ability to evaluate

WS quality individually is critical towards the
achievement of the service oriented computing
paradigm [9].

 From a composition perspective, not only we need
rules governing the control of BPEL [5], but also a
continuous inspection of the solutions built out of the
services [2].

 From a business perspective, the management would
allow alignment of service-based solutions with
business goals, which requires the assessment of the
impact of service execution [6].

Although, process-monitoring capabilities are
provided by toolsets in platforms for developing,
deploying, and managing service applications (e.g.,
Oracle WebLogic, Vitria BusinessWare), we still need
these tools to be embedded within a larger CASE tool
that provides the necessary metrics and statistics for both

372 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Figure 1. UML class diagram for WSs metadata

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012 373

© 2012 ACADEMY PUBLISHER

basic services and compositions. These metrics and
statistics concern with quality and performance
parameters, namely the workloads and the configuration
of: (i) the WSs servers, (ii) the WSs containers, (iii) the
SOAP engine, and (iv) the composites supporting BPs.
The performance of the WSs as components and the
composites supporting the BPs are depending not only on
the performance of the WSs themselves, but also on the
underlying platform.

IV. CASE TOOL ARCHITECTURE

 A. Definition and Role

CASE tools assist system developers to meet the
challenges they face in their work. These tools provide an
automated environment to design and implement system
projects. The new generation of CASE tools enables
system developers to improve both quality and efficiency
of their system, resulting in a net improvement in
maintenance and development productivity [17].

The proposed CASE tool presents different
perspectives of a WSs stack to come up with a unified
vision of management. It has two main functionalities:
(F1) guidance towards SOS development, and (F2)
control of the quality and performance of WSs and the
composites

F1. Guidance towards SOS development: The CASE tool
assists developers to:

 Develop WSs by using any of the well-known
approaches such as top-down, green-field, bottom-
up, or meet-in-middle

 Develop BPEL specification of executable and
abstract BPs

F2. Control of the performance: The CASE tool is used
to have control over:

 Performance of WSs, the main building blocks of
SOSE, with respect to an efficient usage in
composites

 Performance of the platform, i.e., the involved
servers, namely WSs server, WSs container, and the
SOAP engine with respect to their workloads

 Auditing, monitoring, and troubleshooting

 Dynamic WSs provisioning such as:

o Provisioning WSs to authorized requesters

o Dynamic allocation/de-allocation of severs

 WSs lifecycle/state management:

o Exposing the current state of a WS

o Managing life cycle, including the ability to start
and stop a WS, the ability to make configuration
changes to deployed WSs

o Supporting the versions of WSs

 Performance of composite software

B. CASE Tool Architecture
 The CASE tool architecture is made up of the

following components that are represented as UML
packages as shown in Figure 2:

(C1) Repository component that represents the
metadata. It has other packages as shown in
Figure 3

(C2) Performance component

(C3) Management and monitoring component

(C4) SOS development

(C5) Utilities component

These components are related to each other as follows:

(R1) The performance component depends on the
repository.

(R2) The management and monitoring component
uses both repository and performance
components.

(R3) The SOS development uses both repository and
utilities components.

Figure 2. Architecture of the CASE tool

Figure 3. WSs repository component

Repository component

The WSs repository package expresses the repository
related to the running WSs, the platform, the legacy, and
the composites. Therefore, it has four packages as shown
in Figure 3. The BPEL package depends on the WSs
description package, which, in its turn, depends on the
platform package.

Performance component

This component expresses the performance
parameters, the workloads and the configuration of: (i)
the WSs servers, (ii) the WSs containers, (iii) the SOAP
engine, and (iv) the composite software. It is worth noting
that the four subsystems are depending on each other
because the WSs containers and the SOAP engine are
depending on the WSs server, and the WSs servers
depend, in their turn, on the Web/Application servers
though they may be standalone servers. The
performances of the WSs as components and the
composites as software are depending not only on the

374 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

performance of the WSs themselves, but also on the
underlying platform.

Management and monitoring component

The management and monitoring expresses the
management use cases and the collaborations realizing
them. It contains four other interrelated packages:

P1. WSs server package dedicated to the management of
the WSs server

P2. WSs container package dedicated to the WSs
container

P3. SOAP engine package dedicated to the management
of the SOAP engine

P4. Composite dedicated to the performance of the
BPEL describing the composites

The WSs containers and the SOAP engine are
depending on the WSs servers, which, in their turn,
depend on the Web/Application servers.

SOS development

SOS development assists the developer of WSs and
composites. The composites are software represented
with BPEL, which itself uses WSs are partners. It mainly
allows:

 Developing, deploying, and maintaining WSs by
using any of the well-known approaches: top-down,
bottom-up, green-field, or meet-in-the-middle. It is
worth noting that the CASE tool will embed other
tools such as WSDL generators and wrappers.

 Developing, deploying, executing, and maintaining
BPEL that specifies composite software. The CASE
tool will embed a BPEL engine for this purpose.

Utilities component

The utilities component is made up of a set of
auxiliary tools such as WSDL generators, wrapper tools,
and engines (e.g., BPEL engine), and statistics tools.

V. CASE TOOL SPECIFICATION
The CASE tool is specified with:

 A set of Use Cases that provide value to different
types of actors

 The collaboration and sequence diagrams realizing
the use cases

A. The Actors

Different types of users may use the CASE tool as
shown in Figure 4. A user may be an administrator or a
developer. The developer may be a WS developer or a
BPEL developer.

Figure 4. Different types of actors

B. The Use Cases

The CASE tool realizes different use cases for the
different types of actors. There are two types of use cases:

1. SOS development use cases

2. Management and monitoring use cases

SOS development Use Cases

The CASE tool assists the developers of SOS to develop
the WSs and composites. For this purpose, the CASE tool
will embed wrappers, generators, and BPEL engines. The
tool enables:

1. WS development by using any of the aforementioned
development approaches. Figure 5 shows the
different use cases from the perspective of WS
development. It mainly consists in:

 Develop contract

 Generate WSDL document

 Wrap legacy

2. The composite development consists mainly in
developing BPEL as shown in Figure 6. The main
use cases are:

o Generate BP

o Create BPEL

o Execute BPEL

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012 375

© 2012 ACADEMY PUBLISHER

Figure 5. WSs development use cases

Figure 6. Composite development use cases

Management and monitoring Use Cases

The CASE tool is used to manage and monitor: (i) the
deployed WSs, (ii) the BPEL describing the composites,
(iii) the Web/Application servers, (iv) the WSs servers,
(v) the WS containers, and (vi) the SOAP engine as
shown in Figure 7. This makes the WSs stack flexible and
configurable, which allows any change in the WSs, their
platform workloads and configuration, and the BPEL
describing the composite. It concerns with:

a. The performance and the quality of the deployed WSs
as running applications: the required parameters may
be configuration, workload, quality assurance, or
statistics. The quality assurance parameters include
the quality of services, security, dependability, cost,
billing, and maintenance. The statistics are related to
performance such resources consuming (e.g., CPU
time, communication time, memory); and the use of
the WSs such as the number of clients using the
service by unit of time, the number of running copies
of the service and so on. The BPEL management
concerns with information such as: type of BPs
(internal, crossing), the workflow, and the
composition out of the WSs, flexibility, dependency,
performance, and number of occurrences.

b. The manager of Web/Application servers handles
information such as performance of the server,
number of services running simultaneously, load
balancing, and workload.

c. The manager of WS servers handles information such
as performance of the server, number of services
running simultaneously, load balancing, and
workload.

d. The manager of WS containers handles information
such as performance, service lifecycle, and number of
generated WSDL documents.

e. The manager of the SOAP engine handles information
such as performance, number of messages
communicated, and number of proxies generated.

The management parameters are saved in the
performance package shown in the architecture of Figure
2.

Therefore, the CASE tool enables the administrator to
do the following tasks as shown in Figure 7:

 Manage the privileges for different types of
developers by creating, removing developers,
assigning roles and privileges to developers.

 Manage the composites by adding or removing
composites, assigning engines and servers to
composites.

 Manage the WS by removing or updating WS,
assigning servers to WS.

 Manage the different servers and engines by adding,
removing engines and servers.

376 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

 Monitor the performance of the WS and the BPEL
by tuning the servers, load balancing the services,
and controlling the response time, and other BPEL
and WS attributes as software.

Figure 7. Management use cases

VI. IMPLEMENTATION
The CASE tool is implemented as a web application;

using Microsoft Visual C# / ASP.NET and the CASE tool
database was created using Microsoft SQL Server. The
user may login either as administrator or developer based
on privileges authorized. Figure 8 shows the
administrator view interface, the admin may select a WS
to view more details such as binding part, version and
failure impact.

Figure 8. Administrator view/View services interface

Figure 9 shows the developer view services interface,

in this view the developer can get a list of registered WSs
that may be used in software compositions.

Figure 9. Developer view

VII. RELATED WORK
Although WSs are critical assets for any enterprise

willing to redesign its IT infrastructure with SOA, only
the development part is considered in some development
environments such as IBM Websphere. Few work
concern with WSs management. In their work on the
extended SOA [9], [10], the authors have added a layer to
SOA dealing with management perspectives. In [9], the

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012 377

© 2012 ACADEMY PUBLISHER

authors have summarized many the efforts of [3], [4], [5],
[6], [7], [11] in dealing with service management and
monitoring. These efforts have set the principles for the
monitoring and management.

 The approach presented here is an extension of the
aforementioned work. It mainly aims at specifying the
CASE tool including its architecture design with well-
known modeling language that is UML.

This paper presents an architecture, a specification,
and an implementation of a CASE tool (with UML
notations) for not only WSs stack management and
monitoring, but also for SOSE. The architecture of the
CASE tool is meant to be flexible and scalable through
different abstractions.

VIII. CONCLUSION
This work has presented a specification, an

architecture, and an implementation of a CASE tool that
assists a comprehensive approach to develop and manage
WSs and software as composition of WSs with respect to
SOA.

The CASE tool is devised to embed tools such as
WSDL generator and wrapper, and BPEL engine in order
to any of the well-known approaches that are: top-down,
bottom-up, and their extensions green-field and meet-in-
the-middlle.

The specification has taken into account different
perspectives of the WSs stack and its usage in terms of
composites.

The architecture design has considered some design
decisions, namely abstraction, flexibility, and agility to
come up with five inter-related components.

Both CASE tool architecture and specification are
expressed with UML notations in order to be readily and
promptly implemented.

The repository representing the WSs has been
specified in term of class diagrams modeling its
properties with two perspectives that are management and
monitoring and SOS development.

The CASE tool is expected to assist developers and
managers of services and composition with different
perspectives.

This CASE tool is readily extensible to capture an
exhaustive list of monitoring and management
parameters.

The implementation of the CASE tool needs to
integrate existing, generation/wrapper tools and engines.

REFERENCES
[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,

“Service-Oriented Computing: A Research Roadmap”,
International Journal of Cooperative Repositories, Vol. 17, No. 2,
pp. 223–255, 2008.

[2] P. Bianco, R. Kotermanski, and P. Merson, “Evaluating a service-
oriented architecture”, Institute, Technical Report CMU/SEI-
2007-TR-015, Sep. 2007.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web services
concepts, architectures and applications. Berlin: Springer, 2004.

[4] A. Arora, et al. “Web services for management
(WSManagement)”, Technical report, Advanced Micro Devices,
Dell, Intel, Microsoft Corporation and Sun Microsystems, October
2004.

[5] L. Baresi, and S. Guinea, “Towards dynamic monitoring of
WSBPEL processes”, Proceedings of the Third International
Conference on Service Oriented Computing, pp. 269–282.
Springer, Amsterdam, 2005.

[6] F. Casati, E. Shan, U. Dayal, and M. C. Shan, “Business-oriented
management of web services”, Communications of the ACM, Vol.
46 No. 10, pp. 55-60, 2003.

[7] E. M. Maximilien, and M .P. Singh, “Toward autonomic Web
services trust and selection”, Proceedings of the 2nd international
conference on Service oriented computing, pp. 212–221. ACM
Press, New York 2004.

[8] M. P. Papazoglou and W. J. Heuvel, “Web service management: a
survey“, IEEE Internet computing, pp. 58-64, Nov-Dec. 2005.

[9] M. P. Papazoglou and W. J. Heuvel, “Service oriented
architectures: approaches, technologies and research issues,” The

VLDB Journal, Vol. 16, No. 3, pp. 389-415, Jul. 2007.
[10] D. Georgakopoulos and M. P. Papazoglou (Editors), Service-

Oriented Computing, The MIT press, London, England, 2009.
[11] H. Skogsrud, B. Benatallah, F. Casati, “Trust-serv: model-driven

lifecycle management of trust negotiation policies for Web
services”, Proceedings of the 13th international conference on
World Wide Web, pp. 53–62. ACM Press, New York, 2004.

[12] Q. Gu, and P. Lago, “Service identification methods: a systematic
literature review”, ServiceWave 2010: 37-50

[13] Q. Gu, and P. Lago, “Guiding the selection of service-oriented
software engineering methodologies”, Service-Oriented
Computing and Applications, DOI 10.1007/s11761-011-0080-0,
2011, Vol. 5, No. 4, pp. 203-223

[14] IBM, “Rational Rose”, Internet: [Accessed 1-Jun-2012]
www.ibm.com/software/awdtools/developer/rose/

[15] P. Brittenham, “Web services development concepts”, IBM
Software Group, 2001.

[16] H. Chen, and He, Keqing “A Method for service-Oriented
Personalized Requirements Analysis”, Journal of Software
Engineering and Applications, Vol. 1, pp. 59-68, 2010.

[17] N. Dubey, “A Paper Presentation on Software Development
Automation by Computer Aided Software Engineering (CASE)”,
IJCSI International Journal of Computer Science Issues, Vol. 8,
No. 1., 2011.

Youcef Baghdadi received his PhD in 1997 in Computer
Science from University of Toulouse I, France. He is now an
associate professor with the Department of Computer Science at
SQU. His research aims at bridging the gap between IT and
business in the areas of SOA, WSs, SOC, and SOSE.

Bashar Alani is currently pursuing master degree in computer
science at Sultan Qaboos University under the supervision of
Dr. Baghdadi, his interests include software engineering, Web
services, and SOA.

Zuhoor Al-Khanjari received her PhD in Software
Engineering, 1999 from University of Liverpool, UK in
Computer Science. She is now an associate professor and
chairperson of the Department of Computer Science at SQU.
Her research areas include Software Engineering and e-
Learning.

378 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

http://www.informatik.uni-trier.de/~ley/db/conf/servicewave/servicewave2010.html#GuL10
http://www.ibm.com/software/awdtools/developer/rose/

