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Abstract— Wikipedia’s category graph is a network of 
300,000 interconnected category labels, and can be a 
powerful resource for many classification tasks. However, 
its size and the lack of order can make it difficult to 
navigate. In this paper, we present a new algorithm to 
efficiently exploit this graph and accurately rank 
classification labels given user-specified keywords. We 
highlight multiple possible variations of this algorithm, and 
study the impact of these variations on the classification 
results in order to determine the optimal way to exploit the 
category graph. We implement our algorithm as the core of 
a query classification system and demonstrate its reliability 
using the KDD CUP 2005 and TREC 2007 competitions as 
benchmarks. 
 
Index Terms—Keyword search, Natural language 
processing, Knowledge based systems, Web sites, Semantic 
Web  

I. INTRODUCTION 

Query classification is the task of Natural Language 
Processing (NLP) whose goal is to identify the category 
label, in a predefined set, that best represents the domain 
of a question being asked. An accurate query 
classification system would be beneficial in many 
practical systems, including search engines and question-
answering systems. Query classification shares some 
similarities with other categorization tasks in NLP, and 
with document classification in particular. However, the 
challenge of query classification is accentuated by the 
fact that a typical query is only between one and four 
words long [1], [2], rather than the hundreds or thousands 
of words one can get from an average text document. 
Such a limited number of keywords makes it difficult to 
select the correct category label, and moreover it makes 
the selection very sensitive to “noise words”, or words 
unrelated to the query that the user entered for some 
reason such as because they didn’t remember a correct 
name or technical term to query for. A second challenge 
of query classification comes from the fact that, while 

document libraries and databases can be specialized to a 
single domain, the users of query systems expect to be 
able to ask queries about any domain at all [1].  

This paper continues our work on query classification 
using the Wikipedia category graph [3], [4]. It refines and 
expands on our previous work by studying multiple 
different design alternatives that similar classification 
systems could opt for, and considers the impact of each 
one. In contrast with our previous papers, the focus here 
is not on presenting a single classification system, but on 
implementing and comparing multiple systems that differ 
on critical points. 

The rest of the paper is organized as follows. Section 2 
presents overviews of the literature in the field of query 
classification with a special focus on the use of Wikipedia 
for that task. We present in detail our ranking and 
classification algorithm in Section 3, and take care to 
highlight the points where we considered different design 
options. Each of these options was implemented and 
tested, and in Section 4 we describe and analyze the 
experimental results we obtained with each variation of 
our system. Finally, we give some concluding remarks in 
Section 5  

II. BACKGROUND 

Query classification is the task of NLP that focuses on 
inferring the domain information surrounding user-
written queries, and on assigning to each query the best 
category label from a predefined set. Given the ubiquity 
of search engines and question-handling systems today, 
this challenge has been receiving a growing amount of 
attention. For example, it was the topic of the ACM’s 
annual KDD CUP competition in 2005 [5], where 37 
systems competed to classify a set of 800,000 real web 
queries into a set of 67 categories designed to cover most 
topics found on the internet. The winning system was 
designed to classify a query by comparing its word vector 
to that of each website in a set pre-classified in the 
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Google directory. The query was assigned the category of 
the most similar website, and the directory’s set of 
categories was mapped to the KDD CUP’s set [2]. This 
system was later improved by introducing a bridging 
classifier and an intermediate-level category taxonomy 
[6]. 

Most query classifiers in the literature, like the system 
described above, are based on the idea of mapping the 
queries into an external knowledge source (an objective 
third-party knowledge base) or internal knowledge source 
(user-specific information) to classify them. This simple 
idea leads to a great variety of classification systems. 
Using an internal knowledge source, Cao et al. [7] 
developed a query classifier that disambiguates the 
queries based on the context of the user’s recent online 
history. And on the other hand, many very different 
knowledge sources have been used in practice, including 
ontologies [8], websites [9], web query logs [10], and 
Wikipedia [4], [11], [12].  

Exploiting Wikipedia as a knowledge source has 
become commonplace in scientific research. Several 
hundreds of journal and conference papers have been 
published using this tool since its creation in 2001. 
However, while both query classification and NLP using 
Wikipedia are common challenges, to the best of our 
knowledge there have been only three query classification 
systems based on Wikipedia.  

The first of these three systems was proposed by Hu et 
al. [11]. Their system begins with a set of seed concepts 
to recognize, and it retrieves the Wikipedia articles and 
categories relevant to these concepts. It then builds a 
domain graph by following the links in these articles 
using a Markov random walk algorithm. Each step from 
one concept to the next on the graph is assigned a 
transition probability, and these probabilities are then 
used to compute the likelihood of each domain. Once the 
knowledge base has been build in this way, a new user 
query can be classified simply by using its keywords to 
retrieve a list of relevant Wikipedia domains, and sorting 
them by likelihood. Unfortunately, their system remained 
small-scale and limited to only three basic domains, 
namely “travel”, “personal name” and “job”. It is not a 
general-domain classifier such as the one we aim to 
create. 

The second query classification system was designed 
by one of our co-authors in [12]. It follows Wikipedia’s 
encyclopedia structure to classify queries step-by-step, 
using the query’s words to select titles, then selecting 
articles based on these titles, then categories from the 
articles. At each step, the weights of the selected elements 
are computed based on the relevant elements in the 
previous step: a title’s weight depends on the words that 
selected it, an article’s weight on the titles’, and a 
category’s weight on the articles’. Unlike [11], this 
system was a general classifier that could handle queries 
from any domain, and its performance would have ranked 
near the top of the KDD CUP 2005 competition. 

The last query classification system is our own 
previous work, described in [4]. It is also a general 

classifier, but its fundamental principles differ 
fundamentally from [12]. Instead of using titles and 
articles to pinpoint the categories in which to classify a 
query like was done in [12], the classifier of [4] used 
titles only to create a set of inexact initial categories for 
the query and then explored the category graph to 
discover the best goal categories from a set of 
predetermined valid classification goals. This classifier 
also differs from the one described in this work on a 
number of points, including the equations used to weight 
and rank categories and the mapping of the classification 
goals. But the most fundamental difference is the use in 
this paper of pre-computed base-goal category distances 
instead of an exploration algorithm. As we will show in 
this paper, all these modifications are justified both from 
a theoretical standpoint and practically by improvements 
in the experimental results. 

While using Wikipedia for query classification has not 
been a common task, there have been several document 
classification projects done using that resource which are 
worth mentioning. Schönhofen [13] successfully 
developed a complete document classifier using 
Wikipedia, by mapping the document’s vocabulary to 
titles, articles, and finally categories, and weighting the 
mapping at each step. In fact, we used some of the 
mapping techniques he developed in one of our previous 
works [12]. Alternatively, other authors use Wikipedia to 
enrich existing text classifiers by improving upon the 
simple bag-of-words approach. The authors of [14] use it 
to build a kernel to map the document’s words to the 
Wikipedia article space and classify there, while the 
authors of [15] and [16] use it for text enrichment, to 
expand the vocabulary of the text by adding relevant 
synonyms taken from Wikipedia titles. Interestingly, 
improvements are reported in the classification results of 
[13], [15] and [16], while only [14] reports worse results 
than the bag-of-words method. The conclusion seems to 
be that working in the word space is the better option; a 
conclusion that [14] also shares. Likewise, that is the 
approach we used in the system we present in this paper. 

III. ALGORITHM 

Wikipedia’s category graph is a massive set of almost 
300,000 category labels, describing every domain of 
knowledge and ranging from the very precise, such as 
“fictional secret agent and spies”, to the very general, 
such as “information”. The categories are connected by 
hypernym relationships, with a child category having an 
“is-a” relationship to its parents. However, the graph is 
not strictly hierarchic: there exist shortcuts in the 
connections (i.e. starting from one child category and 
going up two different paths of different lengths to reach 
the same parent category) as well as loops (i.e. starting 
from one child category and going up a path to reach the 
same child category again).  

The query classification algorithm we propose in this 
paper is designed to exploit this graph structure. As we 
will show in this section, it is a three-stage algorithm, 
with a lot of flexibility possible within each step. The first 
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stage is a pre-processing stage, during which the category 
graph is built and critical application-specific information 
is determined. This stage needs to be done only once to 
create the system, by contrast with the next two stages 
that are executed for each submitted query. In the second 
stage, a user’s query is mapped to a set of base categories, 
and these base categories are weighted and ranked. And 
finally, the algorithm explores the graph starting from the 
base categories and going towards the nearest goal 
categories in stage 3. The pseudocode of our new 
algorithm is shown in Figure 1.  

A. Stage 1: Pre-Processing the Category Graph 
We begin the first stage of our algorithm by extracting 

the list of categories in Wikipedia and the connections 
between categories from the database dump made freely 
available by the Wikimedia Foundation. For this project, 
we used the version available from September 2008.  

Furthermore, our graph includes one extra piece of 
information in addition to the categories, namely the 
article titles. In Wikipedia, each article is an encyclopedic 
entry on a given topic which is classified in a set of 
categories, and which is pointed to by a number of titles: 
a single main title, some redirect titles (for common 
alternative names, including foreign translations and 
typos) and some disambiguation titles (for ambiguous 

names that may refer to it). For example, the article for 
the United States is under the main title “United States”, 
as well as the redirect titles “USA”, “United States of 
America” and “United Staets” (common typo 
redirection), and the disambiguation title “America”. Our 
pre-processing deletes stopwords and punctuation from 
the titles, then maps them directly to the categories of the 
articles and discards the articles. After this processing, we 
find that our category graph features 5,453,808 titles and 
282,271 categories. 

The next step in the graph construction category is to 
define a set of goal categories that are acceptable 
classification labels. The exact number and nature of 
these goal categories will be application-specific. 
However, the set of Wikipedia category labels is large 
enough to cover numerous domains at many levels of 
precision, which means that it will be easy for system 
designers to identify a subset of relevant categories for 
their applications, or to map an existing category set to 
Wikipedia categories. 

The final pre-processing step is to define, compute and 
store the distance between the goal categories and every 
category in the graph. This distance between two 
categories is the number of intermediate categories that 
must be visited on the shortest path between them. We 
allow any path between two categories, regardless of 
whether it goes up to parent categories or down to 
children categories or zigzags through the graph. This 
stands in contrast with our previous work [4], where we 
only allowed paths going from child to parent category. 
The reason for adopting this more permissive approach is 
to make our classifier more general: the parent-only 
approach may work well in the case of [4] where all the 
goal categories selected were higher in the hierarchy than 
the average base category, but it would fail miserably in 
the opposite scenario when the base categories are parents 
of the goal categories. When searching for the shortest 
paths, we can avoid the graph problems we mentioned 
previously, of multiple paths and loops between 
categories, by only saving the first encounter of a 
category and by terminating paths that are revisiting 
categories. Finally, we can note that, while exploring the 
graph to find the shortest distance from every goal 
category and all other categories may seem like a 
daunting task, for a set of about 100 goal queries such as 
we used in our experiments it can be done in only a few 
minutes on a regular computer. 

B. Stage 2: Discovering the Base Categories 
The second stage of our algorithm as shown in Figure 1 

is to map the user’s query to an initial set of weighted 
base categories. This is accomplished by stripping the 
query of stopwords to keep only relevant keywords, and 
then generating the exhaustive list of titles that feature at 
least one of these keywords. Next, the algorithm 
considers each title t and determines the weight Wt of the 
keywords it contains. This weight is computed based on 
two parameters: the number of keywords featured in the 
title (Nk), and the proportional importance of keywords in 
the title (Pk). The form of the weight equation is given in 

Input: Wikipedia database dump 

1.  CG ← the Category Graph 
extracted from Wikipedia 

2.  Associate to each category in CG 
the list of all titles pointing 
to it 

3.  GC ← the set of Goal Categories 
identified in CG 

4.  Dist(GC,CG) ← the shortest-path 
distance between every GC and all 
categories in CG 

Input:  User query, CG 
5.  KL ← Keyword List of all 

keywords in the user query 
6.  TL ← Title List of all titles in 

CG featuring at least one word in 
KL 

7.  KTW ← Keyword-Title Weight, a 
list containing the weight of a 
keyword from KL featured in a 
title from TL 

8.  BC ← Base Categories, all 
categories in CG pointed to by TL 

9.  CD ← Category Density for all BC 
computed from the KTW 

10. BC ← top BC ranked by CD 
Input: GC, DIST(GC,BC), CD  
11. GS ← Goal Score of each GC, 

computed based on their distance 
to each BC and on CD 

12. Return: top 3 GC ranked by GS 
Figure 1.  Structure of the three steps of our classification algorithm: the 
pre-processing step (top), the base category evaluation (middle), and the 
exploration for the goal categories (bottom).  
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equation (1). 

kkt PNW =  (1) 

The number of keywords featured in the title is a 
simple and unambiguous measure. The proportional 
importance is open to interpretation however. In this 
research, we considered three different measures of 
importance. The first is simply the proportion of 
keywords in the title (Nk / Nt, where Nt is the total number 
of words in title t). The second is the proportion of 
characters in the title that belong to keywords (Ck / Ct, 
where Ck is the number of characters of the keywords 
featured in the title and Ct is the total number of 
characters in title t). This metric assumes that longer 
keywords are more important; in the context of queries, 
which are only a few words long [1], [2], it may be true 
that more emphasis was meant by the user on the longest, 
most evident word in the query. The final measure of 
proportional importance is based on the word’s inverted 
frequencies. It is computed as the sum of inverted 
frequencies of the keywords in the title to the sum of 
frequencies of all title words (ΣFk / ΣFt), where the 
inverted frequency of a word w is computed as: 

)/ln( ww TTF =  (2) 

In equation (2), T is the total number of titles in our 
category graph and Tw is the number of titles featuring 
word w. It is, in essence, the IDF part of the classic term 
frequency-inverse document frequency (TFIDF) 
equation: )/ln()/( ww TTNN , where Nw is the number 
of instances of word w in a specific title (or more 
generally, a document) and N is the total number of words 
in that title. The TF part )/( NN w  is ignored because it 
does not give a reliable result when dealing with short 
titles that only feature each word once or twice. We have 
used this metric successfully in the past in another 
classifier we designed [12]. 

We can see from equation (1) that every keyword 
appearing in a title will receive the same weight Wt. 
Moreover, when a title is composed exclusively of query 
keywords, their weight will be the number of keywords 
contained in the title. The maximum weight a keyword 
can have is thus equal to the number of keywords in the 
query; it occurs in the case where a title is composed of 
all query keywords and nothing else. 

Next, our algorithm builds a set of base categories by 
listing exhaustively all categories pointed to by the list of 
titles. This set of base categories can be seen as an initial 
coarse classification for the query. These base categories 
are each assigned a density value. A category’s density 
value is computed by determining the maximum weight 
each query keyword takes in the list of titles that point to 
that category, then summing the weights of all keywords, 
as shown in equation (3). In that equation, Di is the 
density of category i, and Wt

k,i refers to the weight Wt of a 
title t that contains keyword k and points to category i. 
Following our discussion on equation (1), we can see that 
the maximum density a category can have is the square of 

the number of query keywords. It happens in the case 
where each keyword has its maximum value in that 
category, meaning that one of the titles pointing to the 
category is composed of exactly the query words. 

∑=
k

ik
tti WD )(max ,  (3) 

At the end of this stage of the algorithm, we have a 
weighted list of base categories, featuring some 
categories pointed to by high-weight words and summing 
to a high density score, and a lot of categories pointed to 
by only lower-weight words and having a lower score. In 
our experiments, we found that the set contains over 
3,000 base categories on average. We limit the size of this 
list by keeping only the set of highest-density categories, 
as categories with a density too low are deemed to be too 
unrelated to the original query to be of use. This can be 
done either on a density basis (i.e. keeping categories 
whose density is more than a certain proportion of the 
highest density obtained for this query, regardless of the 
number of categories this represents, as we did in [4]) or 
on a set-size basis (i.e. keeping a fixed number of 
categories regardless of their density, the approach we 
will prioritize in this paper). When using the set-size 
approach, a question arises on how to deal with ties when 
the number of tied categories exceeds the size of the set to 
return. In our system, we break ties by keeping a count of 
the number of titles that feature keywords and that point 
to each category, and giving priority to the categories 
pointed to by more titles.  

C. Stage 3: Ranking the Goal Categories 
Once the list of base categories is available, the third 

and final stage of the algorithm is to determine which 
ones of the goal categories identified in the first stage are 
the best classification labels for the query. As we outlined 
in the pseudocode of Figure 1, our system does this by 
ranking the goal categories based on their shortest-path 
distance to the selected base categories. There are of 
course other options that have been considered in the 
literature. For example, Coursey and Mihalcea [17] 
proposed an alternative metric based on graph centrality, 
while Syed et al. [18] developed a spreading activation 
scheme to discover related concepts in a set of 
documents. Some of these ideas could be adapted into our 
method in future research. 

However, even after settling on the shortest-path 
distance metric, there are many ways we could take into 
account the base categories’ densities into the goal 
categories’ ranking. The simplest option is to use it at a 
threshold value – to cut off base categories that have a 
density lower than a certain value, and then rank the goal 
categories according to which are closest to any 
remaining base category regardless of density. That is the 
approach we used in [4]. On the other hand, taking the 
density into account creates different conditions for the 
system. Since some base categories are now more 
important than others, it becomes acceptable, for 
example, to rank a goal that is further away from several 
high-density base categories higher than a goal that is 
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closer to a low-density base category. We thus define a 
ranking score for the goal categories, as the sum for all 
base categories of a ratio of their density to the distance 
separating the goal and base. There are several ways to 
compute this ratio; five options that we considered in this 
study are: 

)0001.0),((/ += ∑ jidistDS
i ij  (4) 

)0001.0)²,((/ += ∑ jidistDS
i ij  (5) 

∑ −=
i

jidist
ij eDS ),(  (6) 

∑ −=
i

jidist
ij eDS ),(2  (7) 

∑ −=
i

jidist
ij eDS )²,(  (8) 

In each of these equations, the score Sj of goal category 
j is computed as the sum, for all base categories i, of the 
density Di of that category, which was computed in 
equation (3), divided by a function of the distance 
between categories i and j. This function is a simple 
division in equations (4) and (5), but the exponential in 
equations (6-8) put progressively more importance on the 
distance compared to the density. The addition of 0.0001 
in equations (4) and (5) is simply to avoid a division by 
zero in the case where a selected base category is also a 
goal category. 

Finally, the goal categories with the highest score are 
returned as classification results. In our current version of 
the system, we return the top three categories, to allow for 
queries to belong to several different categories. We 
believe that this corresponds to a human level of 
categorization; for example, in the KDD CUP 2005 
competition [5], human labelers used on average 3.3 
categories per query. However, this parameter is flexible, 
and we ran experiments keeping anywhere from one to 
five goal categories. 

IV. EXPERIMENTAL RESULTS 

The various alternatives and options for our classifier 
described in the previous section were all implemented 
and tested, in order to study the behavior of the system 
and determine the optimal combination. That optimal 
combination was then subjected to a final set of tests with 
new data. 

In order to compare and study the variations of our 
system, we submitted them all to the same challenge as 
the KDD CUP 2005 competition [5]. The 37 solutions 
entered in that competition were evaluated by classifying 
a set of 800 queries into up to five categories from a 
predefined set of 67 target categories cj and comparing 
the results to the classification done by three human 
labelers. The solutions were ranked based on overall 
precision and overall F1 value, as computed by Equations 
(9-14). The competition’s Performance Award was given 
to the system with the top overall F1 value, and the 

Precision Award was given to the system with the top 
overall precision value within the top 10 systems 
evaluated on overall F1 value. Overall Recall was not 
used in the competition, but is included here because it is 
useful in our experiments.  

∑
∑

=
j j

j j

c

c

 as labeled queries

 as labeledcorrectly  queries
Precision  (9) 

∑
∑

=
j j

j j

c

c

  tobelonging queries

 as labeledcorrectly  queries
Recall  (10) 

RecallPrecision
RecallPrecision21F

+
××=  (11) 

∑
=

=
3

1
labeler against Precision 

3
1Precision Overall

L
L (12) 

∑
=

=
3

1
labeler against  Recall

3
1Recall Overall

L
L (13) 

∑
=

=
3

1
labeler against  F1

3
1F1 Overall

L
L  (14) 

In order for our system to compare to the KDD CUP 
competition results, we need to use the same set of 
category labels. As we mentioned in Section 3, the size 
and level of detail of Wikipedia’s category graph makes it 
possible to identify categories to map most sets of labels 
to. In our case, we identified 99 goal categories in 
Wikipedia corresponding to the 67 KDD CUP category 
set. These correspondences are presented in Appendix A.  

A. Proportional Importance of Keywords 
The first aspect of the system we studied is the 

different formulae for the proportional importance of 
query keywords in a title. As we explained in Section 
IIIB, the choice of formula has a direct impact on the 
system, as it determines which titles are more relevant 
given the user’s query. This in turn determines the 
relevance of the base categories that lead to the goal 
categories. A bad choice at this stage can have an impact 
on the rest of the system.  

The weight of a title, and of the query keywords it 
contains, is function of the two parameters presented in 
equation (1), namely the number of keywords present in 
the title and the importance of those keywords in that 
title. Section IIIB gives three possible mathematical 
definitions of keyword importance in a title. They are a 
straightforward proportion of keywords in the title, the 
proportion of characters in the title that belong to 
keywords, and the proportion of IDF of keywords to the 
total IDF of the title, as computed with equation (2). We 
implemented all three equations and tested the system 
independently using each. In all implementations, we 
limited the list of base categories to 25, weighted the goal 
categories using equation (5), and varied the number of 
returned goal categories from 1 to 5.  

The results of these experiments are presented in 
Figure 2. The three different experiments are shown with 
different grey shades and markers: dark squares for the 
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formula using the proportion of characters, medium 
triangles for the formula using the proportion of words, 
and light circles for the formula using the proportion of 
IDF. Three results are also shown for each experiment: 
the overall precision computed using equation (12) in a 
dashed line, the overall recall of equation (13) in a dotted 
line, and the overall F1 of equation (14) in a solid line.  

A few observations can be made from Figure 2. The 
first is that the overall result curves of all three variations 
have the same shape. This means that the system behaves 
in a very consistent way regardless of the exact formula 
used. There is no point where one of the results given one 
equation shoots off in a wildly different range of values 
from the other two equations. Moreover, while the exact 
difference in the results between the three equations 
varies, there is no point where they switch and one 
equation goes from giving worse results than another to 
giving better results. We can also see that the precision 
decreases and the recall increases as we increase the 
number of acceptable goal categories. This result was to 
be expected: increasing the number of categories returned 
in the results means that each query is classified in more 
categories, leading to more correct classification (that 

increase recall) and more incorrect classifications (that 
decrease precision). Finally, we can note that the best 
equation for the proportional importance of keywords in 
titles is consistently the proportion of keywords (Nk / Nt), 
followed closely by the proportion of characters (Ck / Ct), 
while the proportion of IDF (ΣFk / ΣFt) trails in third 
position. 

It is surprising that the IDF measure gives the worst 
results of the three, when it worked well in other projects 
[12]. However, the IDF measure is based on a simple 
assumption, that a word with low semantic importance is 
one that is used commonly in most documents of the 
corpus. In our current system however, the “documents” 
are article titles, which are by design short, limited to 
important keywords, and stripped of semantically 
irrelevant words. These are clearly in contradiction with 
the assumptions that underlie the IDF measure. We can 
see this clearly when we compare the statistics of the 
keywords given in the example in [12] with the same 
keywords in our system, as we do in Table I. The system 
in [12] computed its statistics from the entire Wikipedia 
corpus, including article text, and thus computed reliable 
statistics; in the example in Table I the rarely-used 
company name WWE is found much more significant 
than the common corporate nouns chief, executive, 
chairman and headquartered. On the other hand, in our 
system WWE is used in almost as many titles as 
executive and has a comparable Fw score, which is 
dwarfed by the Fw score of chairman and headquartered, 
two common words that are very rarely used in article 
titles. 

Finally, we can wonder if the two parts of equation (1) 
are really necessary, especially since the best equation we 
found for proportional importance repeats the Nk term. To 
explore that question, we ran the same test again using 
each part of the equation separately. Figure 3 plots the 

Figure 2.  Overall precision (dashed line), recall (dotted line) and F1
(solid line) using Nk*(Ck/Ct) (dark squares), Nk*(Nk/Nt) (medium 
triangles), and Nk*(ΣFk/ΣFt) (light circles).  

TABLE I 
COMPARISON OF IDF OF SAMPLE KEYWORDS 

Keyword Tw
* Fw

* Tw Fw 
WWE 2,705 7.8 657 9.0 
Chief 83,977 5.6 1,695 8.1 
Executive 82,976 5.8 867 8.7 
Chairman 40,241 7.2 233 10.1 
Headquartered 38,749 7.1 10 13.2 

*Columns 2 and 3 are taken from [12]. 

Figure 3.  Overall F1 using Nk*(Nk/Nt) (solid medium triangles), Nk/Nt

(dashed dark rectangles), and Nk (light dotted circles). 
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overall F1 using Nk alone in light dotted line with circle 
markers, using Nk / Nt in black dashed line with square 
markers, and reproduces the overall F1 of Nk * (Nk / Nt) 
from Figure 3 in its medium solid line with triangle 
markers for comparison. This figure shows clearly that 
using the complete equation gives better results than 
using either one of its components.  

B. Size of the Base Category Set 
The second aspect of the system we studied comes at 

the end of the second stage of the algorithm, when the list 
of base categories is trimmed down to keep only the most 
relevant ones. This list will initially contain all categories 
connected to any title that contains at least one of the 
keywords the user specified. As we mentioned before, the 
average number of base categories generated by a query 
is 3,400 and the maximum is 45,000. These base 
categories are then used to compute the score of the goal 
categories, using one of the summations of equations (4-
8). This test aims to see if the quality of the results can be 
improved by limiting the size of the set of base categories 
used in this summation, and if so what is the approximate 
ideal size. 

For this test, we used Wt = Nk * (Nk / Nt) for equation 
(1), the best formula found in the previous test. We again 
weighted the goal categories using equation (5) and 
varied the number of returned goal categories from 1 to 5. 
Figure 4 shows the F1 value of the system under these 
conditions when trimming the list of base categories to 
500 (black solid line with diamonds), 100 (light solid line 
with circles), 50 (medium solid line with triangles), 25 
(light dotted line with squares), 10 (black dashed line 
with squares) and 1 (black dotted line with circles).  

Figure 4 shows clearly that the quality of the results 

drops if the set of base categories is too large (500) or too 
small (1). The difference in the results between the other 
four cases is less marked, and in fact the results with 10 
and 100 base categories overlap. More notably, the results 
with 10 base categories start weaker than the case with 
100, spike around 3 goal categories to outperform it, then 
drop again and tie it at 5 goal categories. This instability 
seems to indicate that 10 base categories are not enough. 
The tests with 25 and 50 base categories are the two that 
yield the best results; it thus seems then that the optimal 
size of the base category set is in that range. The 25 base 
category case outperforms the 50 case, and is the one we 
will prefer.  

It is interesting to consider that in our previous study 
[4], we used the other alternative we proposed, namely to 
trim the set based on the density values. The cutoff we 
used was half the density value of the base category in the 
set with the highest density; any category with less than 
that density value was eliminated. This gave us a set of 28 
base categories on average, a result which is consistent 
with the optimum we discovered in the present study. 

C. Goal Category Score and Ranking 
Another aspect of the system we wanted to study is the 

choice of equations we can use to account for the base 
categories’ density and distance when ranking the goal 
categories. The option we used in the previous 
subsection, to find the nearest goals to any of the retained 
base categories regardless of their densities, is entirely 
valid. The alternative we consider here is to rank the goal 
categories in function of their distance to each base 
category and of the density of that base. We proposed 
five possible equations in Section IIIC to mathematically 
combine density and distance to rank the goal categories. 
Equation (4) considers both distance and density evenly, 
and the others put progressively more importance on the 
distance up to equation (8).  

To illustrate the different impact of equations (4-8), 
consider three fictional base categories, one which has a 
density of 4 and is at a distance of 4 from a goal category, 
a second with a density of 4 and a distance of 3 from the 
same goal category, and the third with a density of 3 and 
a distance of 3 from the goal. The contribution of each of 
these bases to the goal category in each of the 
summations is given in Table II. As we can see in this 
table, the contribution of each base decreases as we move 
down from equation (4) to equation (8), but it decreases a 
lot more and a lot faster for the base at a distance of 4. 
The contribution to the summation of the category at a 
distance of 4 is almost equal to that of the categories at a 
distance of 3 when using equation (4), but is three orders 

Figure 4.  Overall F1 using from 1 to  500 base categories. 
  

TABLE II 
IMPACT OF THE GOAL CATEGORY EQUATIONS 

Equation Density 4  
Distance 4 

Density 4  
Distance 3 

Density 3 
Distance 3 

(4) 1.00 1.33 1.00 
(5) 0.25 0.44 0.33 
(6) 0.07 0.20 0.15 
(7) 0.001 0.01 0.007 
(8) 4.5x10-7 0.0005 0.0004 
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of magnitude smaller when using equation (8). That is the 
result of putting more and more emphasis on distance 
rather than density: the impact of a farther-away higher-
density category becomes negligible compared to a closer 
lower-density category. Meanwhile, comparing the 
contribution of the two categories of different densities at 
the same distance shows that, while they are in the same 
order of magnitude, the higher-density one is always 
more important than the lower-density one, as we would 
want.  

We ran tests of our system using each of these five 
equations. In these tests, we again set Wt = Nk * (Nk / Nt) 
for equation (1), kept the 25 highest-density base 
categories, and varied from retuning 1 to 5 categories. 
The overall F1 of the variations of the system is presented 
in Figure 5. In this figure, the classification results 
obtained using equation (4) are shown with a black 
dashed line with circle markers, equation (5) uses a grey 
solid line with square markers, equation (6) uses a dashed 
black line with triangle markers, equation (7) uses a light 
grey line with circle markers and equation (8) uses a grey 
line with triangle markers. For comparison, we also ran 
the classification using the exploration algorithm from 
our previous work [4], and included those results as a 
black dotted line with square markers. 

We can see from Figure 5 that putting too much 
importance on distance rather than density can have a 
detrimental impact on the quality of the results: the results 
using equations (7) and (8) are the worst of the five 
equations. Even the results from equation (6) are of 
debatable quality: although it is in the same range as the 
results of equations (4) and (5), it shows a clear 
downward trend as we increase the number of goal 
categories considered, going from the best result for 2 
goals to second-best with 3 goals to a narrow third place 
with 4 goals and finally to a more distant third place with 
5 goals. Finally, we can see that the results using the 
exploration algorithm of [4] are clearly the worst ones, 
despite the system being updated to use the better 
category density equations and goal category mappings 

discovered in this study. The main difference between the 
two systems is thus the use of our old exploration 
algorithm to discover the goal categories nearest to any of 
the 25 base categories. This is also the source of the 
poorer results: the exploration algorithm is very sensitive 
to noise and outlier base categories that are near a goal 
category, and will return that goal category as a result. On 
the other hand, all five equations have in common that 
they sum the value of all base categories for each goal 
category, and therefore build-in noise tolerance. An 
outlier base category will seldom give enough of a score 
boost to one goal to eclipse the combined effect of the 24 
other base categories on other goals.  

Out of curiosity, we ran the same test a second time, 
but this time keeping the 100 highest-density base 
categories. These results are presented in Figure 6, using 
the same line conventions as Figure 5. It is interesting to 
see that this time it is equation (6) that yields the best 
results with a solid lead, not equation (5). This indicates a 
more fundamental relationship in our system: the best 
summation for the goal categories is not an absolute but 
depends on the number of base categories retained. With 
a smaller set of 25 base categories, the system works best 
when it considers a larger picture including the impact of 
more distant categories. But with a larger set of 100 base 
categories, the abundance of more distant categories 
seems to generate noise, and the system works best by 
limiting their impact and by focusing on closer base 
categories. 

D. Number of Goal Categories Returned 
The final parameter in our system is the number of goal 

categories to return. We have already explained in 
Section IIIC that our preference to return three goal 
categories is based on a study of human classification – 
namely, in the KDD CUP 2005 competition [5], human 
labelers used on average 3.3 categories per query. 
Moreover, looking at the F1 figures we presented in the 
previous subsections, we can see that the curve seems to 
be exponential, with each extra category returned giving a 
lesser increase in F1 value. Returning a fifth goal 

Figure 6.  Goal score formulae using 100 base categories. 
 

Figure 5.  Goal score formulae using 25 base categories. 
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category gives the least improvement compared to 
returning only four goal categories, and in fact in some 
cases it causes a drop in F1. Returning three categories 
seems to be at the limit between the initial faster rate of 
increase of the curve and the later plateau.  

Another way to look at the question is to consider the 
average score of goal categories at each rank, after 
summing the densities of the base categories for each and 
ranking them. If on average the top-ranked categories 
have a large difference to the rest of the graph, it will 
show that there exist a robust division between the likely-
correct goal categories to return and the other goal 
categories. The opposite observation, on the other hand, 
would reveal that the rankings could be unstable and 
sensitive to noise, and that there is no solid score 
distinction between the goals our system returns and the 
others.  

For this part of the study, we used the summation of 
equation (5). We can recall from our discussion in 
Section III that the maximum word weight is Nk and the 
maximum category density is Nk². Queries in the KDD 
CUP data set are at most 10 words long, giving a 
maximum base category density of 100. This in turn gives 
a maximum goal category score of 1,002,400 using 
equation (5) and 25 base categories in the case where the 
distance between the goal category and each of the base 
categories is one except for a single base category at a 
distance of zero; in other words, the goal is one of the 
base categories found and all other base categories are 
immediately connected to it. More realistically, we find in 
our experiments that the average base category density 
computed by equation (3) is 1.48, and the average 
distance between a base and goal category is 5.6 steps, so 
an average goal category score using equation (5) would 
be 1.18.  

Figure 7 shows the average score of the goal category 
at each rank over all KDD CUP queries used in our 
experiment from the previous section, obtained using the 
method described above. This graph shows that the top 
category has on average a score of 3,272, several orders 
of magnitude above the average but still below our 
theoretical maximum. In fact, even the maximum score 
we observed in our experiments is only 67,506, very far 
below the theoretical maximum. This is due to the fact 
that most base categories are more than a single step 
removed from the goal category.  

The graph also shows the massive difference between 
the first three ranks of goal categories and the other 96. 
The average score goes from 3,272, to 657 at rank 2 and 
127 at rank 3, down to 20 and 16 at ranks 4 and 5 
respectively, then cover the interval from 2 to 0.7 
between ranks 6 and 99.  This demonstrates a number of 
facts. First of all, both the values of the first five goal 
ranks and the differences between their scores when 
compared to the other 94 shows that these first ranks are 
resilient to noise and variations. It also justifies our 
decision to study the performance of our system using the 
top 1 to 5 goal categories, and it gives further 
experimental support to our decision to limit the number 

of goal categories returned by the classifier to three. 
It is interesting to note that the average score of the 

categories over the entire distribution is 42.53, very far 
off from our theoretical average of 1.18. However, if we 
ignore the first three ranks, whose values are very high 
outliners in this distribution, the average score becomes 
1.62. Moreover, the average score over ranks 6 to 99 is 
1.28. Both of these values are in line with the average we 
expected to find. 

E. The Optimal System 
After having performed these experiments, we are 

ready to put forward the optimal classifier, or the one that 
combines the best features from the options we have 
studied. This classifier uses Wt = Nk * (Nk / Nt) for 
equation (1), selects the top 25 base categories, ranks the 
goal categories using the summation formula of equation 
(5), and returns the top-three categories ranked. The 
results we obtain with that system are presented in Table 
III, with other KDD CUP competition finalists reported in 
[5] for comparison. Note that participants had the option 
to enter their system for precision ranking but not F1 
ranking or vice-versa rather than both precision and F1 
ranking, and several participants chose to use that option. 
Consequently, there are some N/A values in the results in 
Table III. As can be seen from Table III, our system 
performs well above the competition average, and in fact 
ranks in the top-10 of the competition in F1 and in the 
top-5 in precision. For comparison, system #22, which 

Figure 7.  Average goal category score per rank over all KDD CUP 
queries. 

TABLE III 
CLASSIFICATION RESULTS  

System F1 
Rank 

Overall 
F1 

Precision 
Rank 

Overall 
Precision 

KDDCUP #22 1 0.4444 N/A 0.4141 
KDDCUP #37 N/A 0.4261 1 0.4237 
KDDCUP #21 6 0.3401 2* 0.3409 
Our system 7 0.3366 2 0.3643 
KDDCUP #14 7* 0.3129 N/A 0.3173 
Our previous work 10 0.2827 7 0.3065 
KDDCUP Mean  0.2353  0.2545 
KDDCUP Median  0.2327  0.2446 
* indicates competition systems that would have been outranked by 

ours.  
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won the first place in the competition, achieved the best 
results by querying multiple web search engines and 
aggregating their results [2]. Our method may not 
perform as well right now, but it offers the potential for 
algorithmic and knowledge-base improvements that goes 
well beyond those of a simple aggregate function, and is 
not dependent on third-party commercial technology. 

We also updated the the classifier we built in our 
previous work of [4] to use Wt = Nk * (Nk / Nt), the top-25 
base category cutoff and the goal category mapping of 
Appendix A. Its original iterative graph exploration 
method was also slightly modified to explore all paths 
rather than parents-only, to break ties using equation (5) 
rather than a random draw, and to return the top-three 
goal categories rather than the top-five. These 
modifications are all meant to update the system of [4] 
with the best features obtained in this research, to create a 
fair comparison. The results we obtained are included in 
Table III. While it does perform better than the average 
KDDCUP system, we find that our previous classifier still 
falls short of the one we studied in this paper. 

We also found in our results that 47 of the 800 test 
queries were not classified at all, because the algorithm 
failed to select any base categories at all. This situation 
occurs when no Wikipedia titles featuring query words 
can be found. These queries are all single words, and that 
word is either an uncommon abbreviation (the query 
“AATFCU” for example), misspelled in an unusual way 
(“egyptains”), an erroneous compounding of two words 
(“contactlens”), a rare website URL, or even a 
combination of the above (such as the misspelled URL 
“studioeonline.com” instead of “studioweonline.com”). 
These are all situations that occur with real user search 
queries, and are therefore present in the KDDCUP data 
set. It is worth noting that Wikipedia titles include 
common cases of all these errors, so that only the 5.9% 
most unusual cases lead to failure in our system.  

It could be interesting to study a specific example, to 
see the system’s behavior step by step. We chose for this 
purpose to study a query for “internet explorer” in the 
KDDCUP set. This query was manually classified by the 
competition’s three labelers, into the KDDCUP categories 
“Computers\Software; Computers\Internet & Intranet; 
Computers\Security; Computers\Multimedia; 
Information\Companies & Industries” by the first labeler, 

into “Computers\Internet & Intranet; 
Computers\Software” by the second labeler, and into 
“Computers\Software; Computers\Internet & Intranet; 
Information\Companies & Industries” by the third labeler. 

The algorithm begins by identifying a set of relevant 
base categories using the procedure explained in Section 
IIIB and then weighting them using equation (3). For this 
query, our algorithm identifies 1,810 base categories, and 
keeps the 25 highest-density ones, breaking the tie for 
number 25 by considering the number of titles pointing to 
the categories as we explained in Section IIIB.  

For any two-word query, the maximum title weight 
value that can be computed by equation (1) is 2, and the 
maximum base category density value that can be 
returned by equation (3) is 4. And in fact, we find that 8 
categories receive this maximum density, including some 
examples we listed in Table IV. We can see from these 
examples that the top-ranked base categories are indeed 
very relevant to the query. Examining the entire set of 
base categories reveals that the density values drop to half 
the maximum by rank 33, and to a quarter of it by rank 
37. The density value continues to drop as we go down 
the list: the average density of a base category in this 
example is 0.4 which corresponds to rank 660, by the 
middle of the list at rank 905 the density is 0.33, and the 
final category in the list has a density of only 0.05. It can 
also be seen from the samples in Table IV that the 
relevance of the categories to the query does seem to 
decrease along with the density value. Looking at the 
complete list of 1,810 base categories, we find that the 
first non-software-related category is “Exploration” at 
rank 41 with a density of 1. But software-related 
categories continue to dominate the list, mixed with a 
growing number of non-software categories, until rank 
354 (density of 0.5 and 1 title pointing to the category) 
where non-computer categories begin to dominate. 
Incidentally, the last software-related category in the list 
is “United States internet case law”, at rank 1791 with a 
density of 0.11. 

The next step of our algorithm is to rank the 99 goal 
categories using the sum of density values in equation (5). 
Sample rankings are given in Table V. This table uses the 
Wikipedia goal category labels; the matching KDDCUP 
categories can be found in Appendix A. We can see from 
these results that the scores drop by half from the first 

TABLE IV 
SAMPLE BASE CATEGORIES 

Category Rank Density Titles 
Internet Explorer 1 4 36 
Internet history 2 4 32 
Windows web browsers 3 4 20 
Microsoft criticisms and 
controversies 

8 4 4 

HTTP 25 2.67 5 
Mobile phone web browsers 26 2.67 4 
Cascading Style Sheets 33 2 5 
Internet 37 1 17 
PlayStation Games 660 0.4 2 
Islands of Finland 905 0.33 1 
History of animation 1811 0.05 1 

TABLE V 
SAMPLE GOAL CATEGORIES 

Goal Category Rank Score 
Internet 1 11.51 
Software 2 10.09 
Computing 3 8.03 
Internet culture 4 5.63 
Websites 5 4.97 
Technology 16 3.54 
Magazines 18 3.39 
Industries 30 2.86 
Law 49 2.54 
Renting 99 1.30 

Refer to Appendix A for the list of KDDCUP categories 
corresponding to these goal categories. 
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result to the fourth one. This is much less drastic than the 
drop we observed on average in Figure 7, but is 
nonetheless consistent as it shows a quick drop from a 
peak over the first three ranks and a long and more stable 
tail over ranks 4 to 99.  

It is also encouraging to see that the best two goal 
categories selected by our system correspond to 
“Computers\Internet & Intranet” and 
“Computers\Software”, the only two categories to be 
picked by all three KDDCUP labelers. The fourth goal 
corresponds to “Online Community/Other” and is the first 
goal that is not in the KDDCUP “Computer/” category, 
although it is still strongly relevant to the query. Further 
down, the first goal that corresponds neither to a 
“Computers/” nor “Online Community/” category is 
Technology (“Information\Science & Technology”) at 
rank 16, which is still somewhat related to the query, and 
the first truly irrelevant result is Magazines 
(“Living\Book & Magazine”) at rank 18 with a little over 
a quarter of the top category’s score. Of the categories 
picked by labelers, the one that ranked worst in our 
system was “Information\Companies & Industries” at 
rank 30. All the other categories they identified are found 
in the top-10 results of our system. 

F. New Data and Final Tests 
In order to show that our results in Table III are general 

and not due to picking the best system for a specific data 
set, we ran two more tests of our system with two new 
data sets.  

The first data set is a set of 111 KDD CUP 2005 
queries classified by a competition judge. This set was 
not part of the 800 test queries we used previously; it was 
a set of queries made available by the competition 
organizers to participants prior to the competition, to 
develop and test their systems. Naturally, the queries in 
this set will be similar to the other KDD CUP queries, 
and so we expect similar results. 

The second data set is a set of queries taken from the 
TREC 2007 Question-Answering (QA) track [19]. That 
data set is composed of 445 questions on 70 different 
topics; we randomly selected three questions per topic to 
use for our test. It is also worth noting that the questions 
in TREC 2007 were designed to be asked sequentially, 
meaning that a system could rely on information from the 
previous questions, while our system is designed to 
classify each query by itself with no query history. 
Consequently, questions that were too vague to be 
understood without previous information were 
disambiguated by adding the topic label. For example, the 
question ‘Who is the CEO?’ in the series of questions on 
the company 3M was rephrased as ‘Who is the CEO of 

3M?’ Finally, two of the co-authors independently 
labeled the questions to KDD CUP categories in order to 
have a standard to compare our system’s results to in 
Equations (9) and (10). The TREC data set was selected 
in order to subject our system to very different testing 
conditions: instead of the short keyword-only KDD CUP 
web queries, TREC has long and grammatically-correct 
English questions.  

The results from both tests are presented in Table VI, 
along with our system’s development results already 
presented in Table III for comparison. These results show 
that our classifier works better with the test data than with 
the training data it was developed and optimized on. This 
counter-intuitive result requires explanation.  

The greatest difference in our results is on recall, which 
increases by over 20% from the training KDDCUP test to 
the TREC test. Recall, as presented in equation (10), is 
the ratio of correct category labels identified by our 
system for a query to the total number of category labels 
the query really has. Since our classifier returns a fixed 
number of three categories per query, it stands to reason 
that it cannot achieve perfect recall for a query set that 
assigns more than three categories, and that it can get 
better recall on a query set that assigns fewer categories 
per query. To examine this hypothesis, we compared the 
results of five of our labelers individually: the three 
labelers of the KDDCUP competition and the two 
labelers of the TREC competition (the 111 KDDCUP 
demo queries, having been labeled by only one person, 
were not useful for this test). Specifically, we looked at 
the average number of categories per query each labeler 
used and the recall value our system achieved using that 
query set. The results, presented in Table VII, show that 
our intuition is correct: query sets with less categories per 
query lead to higher recall, with the most drastic example 
being the increase of 1.5 categories per query between 
KDDCUP labelers 2 and 3 that yielded a 10% decrease in 
recall. However, it also appears from that table that the 
relationship does not hold across different query sets: 
KDDCUP labeler 2 assigns less labels per query that 
TREC labeler 2 but still has a much lower recall. 

Next, we can contrast the two KDDCUP tests: they 
both had nearly identical recall but the new data gave a 
6% increase in precision. This is interesting because the 
queries are from the same data sets, they are web 
keyword searches of the same average length, and the 
correct categorization statistics are nearly identical to 
those of Labeler 3 so we would actually expect the recall 
to be lower than it ended up being. An increase in both 
precision and recall can have the same origin in equations 

TABLE VI 
TEST CLASSIFICATION RESULTS  

Query set Overall 
F1 

Overall 
Precision 

Overall 
Recall 

KDDCUP 111 0.3636 0.4254 0.3175 
TREC 0.4639 0.4223 0.5267 
KDDCUP 800 0.3366 0.3643 0.3195 

TABLE VII 
CATEGORIZATION AND RECALL 

Query set Average number 
of categories 

Recall 

TREC Labeler 1 1.93 ± 0.81 0.5443 
TREC Labeler 2 2.91 ± 0.92 0.5090 
KDDCUP Labeler 2 2.39 ± 0.93 0.3763 
KDDCUP Labeler 1 3.67 ± 1.13 0.3076 
KDDCUP Labeler 3 3.85 ± 1.09 0.2747 
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(9) and (10): a greater proportion of correct categories 
identified by our classifier. But everything else being 
equal, this would only happen if the queries themselves 
were easier for our system to understand. To verify this 
hypothesis, we checked both query sets for words that are 
unknown in our system. As we explained previously, a lot 
of these words may be rare but simple typos (“egyptains”) 
or missing spaces between two words (“contactlens”), 
and while they are unknown and ignored in our system 
their meaning is immediately obvious to the human 
labelers. The labelers thus have more information to 
classify the queries, which makes it inherently more 
difficult for our system to generate the same 
classification. Upon evaluation of our data, we find that 
the KDDCUP set of 800 queries features about twice the 
frequency of unknown words of the set of 111 queries. 
Indeed, 10.4% of queries in the 800-query set have 
unknown words and 4.4% of words overall are unknown, 
while only 5.4% of queries in the 111-query set have 
unknown words and only 2.5% of words in that set are 
unknown. This is an important difference between the 
two query sets, and we believe it explains why the 111 
queries are more often classified correctly. It incidentally 
also indicates that an automated corrector should be 
incorporated in the system in the future. 

The better performance of our system on the TREC 
query set can be explained in the same way. Thanks to the 
fact that set is composed of correct English questions, it 
features even fewer unknown words: a mere 0.4% of 
words in 1.9% of queries. Moreover, for the same reason, 
the queries are much longer: on average 5.3 words in 
length after stopword removal, compared to 2.4 words for 
the KDDCUP queries. This means that even if there is an 
unknown word in a query, there are still a lot of other 
words in the TREC queries for our system to make a 
reasonably good classification. 

Differences in the queries aside, it does not appear to 
be major distinctions, much less setbacks, when using our 
classifier on new and unseen data sets. It seems robust 
enough to handle new queries in a different spread of 
domains, and to handle both web-style keyword searches 
and English questions without loss of precision or recall. 

Finally, it could be interesting to determine how our 
classifier’s performance compares to that of a human 
doing the same labeling task. Query classification is a 
subjective task: since queries are short and often 
ambiguous, their exact meaning and classification is often 
dependent on human interpretation [20]. It is clear from 
Table VII that this is the case for our query sets, that 
human labelers do not agree with each other on the 
classification of these queries. We can evaluate the 
human labelers by computing the F1 of each one’s 
classification compared to the others in the same data set. 
In the case of the KDDCUP data, the average F1 of 
human labelers is known to be between 0.4771 and 
0.5377 [5], while for our labeled TREC data we can 
compute the F1 between the two human labelers to be 
0.5605. This means our system has between 63% and 
71% of a human’s performance when labeling the 

KDDCUP queries, and 83% of a human’s performance 
when labeling the TREC queries. It thus appears that by 
this benchmark, our classifier again performs better on 
the TREC data set than on the KDDCUP one. This gives 
further weight to our conclusion that our system is robust 
enough to handle very diverse queries. 

V. CONCLUSION 

In this paper, we presented a ranking and classification 
algorithm to exploit the Wikipedia category graph to find 
the best set of goal categories given user-specified 
keywords. To demonstrate its efficiency, we implemented 
a query classification system using our algorithm. We 
performed a thorough study of the algorithm in this paper, 
focusing on each design decision individually and 
considering the practical impact of different alternatives. 
We showed that our system’s classification results 
compare favorably to those of the KDD CUP 2005 
competition: it would have ranked 2nd on precision with 
a performance 10% better than the competition mean, and 
7th in the competition on F1. We further detailed the 
results of an example query in key steps of the algorithm, 
to demonstrate that each partial result is correct. And 
finally we presented two blind tests on different data sets 
that were not used to develop the system, to validate our 
results.  

We believe this work will be of interest to anyone 
developing query classification systems, text 
classification systems, or most other kinds of 
classification software. By using Wikipedia, a 
classification system gains the ability to classify queries 
into a set of almost 300,000 categories covering most of 
human knowledge and which can easily be mapped to a 
simpler application-specific set of categories when 
needed, as we did in this study. And while we considered 
and tested multiple alternatives at every design stage of 
our system, it is possible to conceive of further 
alternatives that could be implemented on the same 
framework and compared to our results. Future work can 
focus on exploring these alternatives and further 
improving the quality of the classification. In that respect, 
as we indicated in Section IV.F, one of the first directions 
to work in will be to integrate an automated corrector into 
the system, to address the problem of unknown words.  

APPENDIX A 

This appendix lists how we mapped the 67 KDD CUP 
categories to 99 corresponding Wikipedia categories in 
the September 2008 version of the encyclopedia. 

KDD CUP Category Wikipedia Category 
Computers\Hardware Computer hardware 

Computers\Internet & Intranet Internet 
Computer networks 

Computers\Mobile 
Computing Mobile computers 

Computers\Multimedia Multimedia 
Computers\Networks & 
Telecommunication 

Networks 
Telecommunications 
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Computers\Security Computer security 
Computers\Software Software 
Computers\Other Computing 
Entertainment\Celebrities Celebrities 

Entertainment\Games & Toys 
Games 
Toys 

Entertainment\Humor & Fun Humor 
Entertainment\Movies Film 
Entertainment\Music Music 
Entertainment\Pictures & 
Photos Photographs 

Entertainment\Radio Radio 
Entertainment\TV Television 
Entertainment\Other Entertainment 
Information\Arts & 
Humanities 

Arts 
Humanities 

Information\Companies & 
Industries 

Companies 
Industries 

Information\Science & 
Technology 

Science 
Technology 

Information\Education Education 

Information\Law & Politics 
Law 
Politics 

Information\Local & 
Regional  

Regions 
Municipalities 
Local government 

Information\References & 
Libraries 

Reference 
Libraries 

Information\Other Information 

Living\Book & Magazine 
Books 
Magazines 

Living\Car & Garage 
Automobiles 
Garages 

Living\Career & Jobs Employment 
Living\Dating & 
Relationships 

Dating 
Intimate relationships 

Living\Family & Kids 
Family 
Children 

Living\Fashion & Apparel Fashion 
Clothing 

Living\Finance & Investment Finance 
Investment 

Living\Food & Cooking 
Food and drink 
Cooking 

Living\Furnishing & 
Houseware 

Decorative arts 
Furnishings 
Home appliances 

Living\Gifts & Collectables 
Giving 
Collecting 

Living\Health & Fitness 
Health 
Exercise 

Living\Landscaping & 
Gardening 

Landscape 
Gardening 

Living\Pets & Animals 
Pets 
Animals 

Living\Real Estate Real estate 

Living\Religion & Belief Religion 
Belief 

Living\Tools & Hardware 
Tools 
Hardware (mechanical) 

Living\Travel & Vacation 
Travel 
Holidays 

Living\Other Personal life 
Online Community\Chat & 
Instant Messaging 

On-line chat 
Instant messaging 

Online Community\Forums & 
Groups Internet forums 

Online 
Community\Homepages Websites 

Online Community\People 
Search Internet personalities 

Online Community\Personal 
Services Online social networking 

Online Community\Other Virtual communities 
Internet culture 

Shopping\Auctions & Bids Auctions and trading 

Shopping\Stores & Products 
Retail 
Product management 

Shopping\Buying Guides & 
Researching 

Consumer behaviour 
Consumer protection 

Shopping\Lease & Rent Renting 
Shopping\Bargains & 
Discounts 

Sales promotion 
Bargaining theory 

Shopping\Other Distribution, retailing, and 
wholesaling 

Sports\American Football American football 
Sports\Auto Racing Auto racing 
Sports\Baseball Baseball 
Sports\Basketball Basketball 
Sports\Hockey Hockey 
Sports\News & Scores Sports media 

Sports\Schedules & Tickets 
Sport events 
Seasons 

Sports\Soccer Football (soccer) 
Sports\Tennis Tennis 
Sports\Olympic Games Olympics 
Sports\Outdoor Recreations Outdoor recreation 
Sports\Other Sports 
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