

Query Classification using
Wikipedia’s Category Graph

Milad AlemZadeh

Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, Waterloo, Ontario, Canada
Email: malemzad@uwaterloo.ca

Richard Khoury

Department of Software Engineering, Lakehead University, Thunder Bay, Ontario, Canada,
Email: richard.khoury@lakeheadu.ca

Fakhri Karray

Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, Waterloo, Ontario, Canada
Email: karray@uwaterloo.ca

Abstract— Wikipedia’s category graph is a network of
300,000 interconnected category labels, and can be a
powerful resource for many classification tasks. However,
its size and the lack of order can make it difficult to
navigate. In this paper, we present a new algorithm to
efficiently exploit this graph and accurately rank
classification labels given user-specified keywords. We
highlight multiple possible variations of this algorithm, and
study the impact of these variations on the classification
results in order to determine the optimal way to exploit the
category graph. We implement our algorithm as the core of
a query classification system and demonstrate its reliability
using the KDD CUP 2005 and TREC 2007 competitions as
benchmarks.

Index Terms—Keyword search, Natural language
processing, Knowledge based systems, Web sites, Semantic
Web

I. INTRODUCTION

Query classification is the task of Natural Language
Processing (NLP) whose goal is to identify the category
label, in a predefined set, that best represents the domain
of a question being asked. An accurate query
classification system would be beneficial in many
practical systems, including search engines and question-
answering systems. Query classification shares some
similarities with other categorization tasks in NLP, and
with document classification in particular. However, the
challenge of query classification is accentuated by the
fact that a typical query is only between one and four
words long [1], [2], rather than the hundreds or thousands
of words one can get from an average text document.
Such a limited number of keywords makes it difficult to
select the correct category label, and moreover it makes
the selection very sensitive to “noise words”, or words
unrelated to the query that the user entered for some
reason such as because they didn’t remember a correct
name or technical term to query for. A second challenge
of query classification comes from the fact that, while

document libraries and databases can be specialized to a
single domain, the users of query systems expect to be
able to ask queries about any domain at all [1].

This paper continues our work on query classification
using the Wikipedia category graph [3], [4]. It refines and
expands on our previous work by studying multiple
different design alternatives that similar classification
systems could opt for, and considers the impact of each
one. In contrast with our previous papers, the focus here
is not on presenting a single classification system, but on
implementing and comparing multiple systems that differ
on critical points.

The rest of the paper is organized as follows. Section 2
presents overviews of the literature in the field of query
classification with a special focus on the use of Wikipedia
for that task. We present in detail our ranking and
classification algorithm in Section 3, and take care to
highlight the points where we considered different design
options. Each of these options was implemented and
tested, and in Section 4 we describe and analyze the
experimental results we obtained with each variation of
our system. Finally, we give some concluding remarks in
Section 5

II. BACKGROUND

Query classification is the task of NLP that focuses on
inferring the domain information surrounding user-
written queries, and on assigning to each query the best
category label from a predefined set. Given the ubiquity
of search engines and question-handling systems today,
this challenge has been receiving a growing amount of
attention. For example, it was the topic of the ACM’s
annual KDD CUP competition in 2005 [5], where 37
systems competed to classify a set of 800,000 real web
queries into a set of 67 categories designed to cover most
topics found on the internet. The winning system was
designed to classify a query by comparing its word vector
to that of each website in a set pre-classified in the

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 207

© 2012 ACADEMY PUBLISHER
doi:10.4304/jetwi.4.3.207-220

Google directory. The query was assigned the category of
the most similar website, and the directory’s set of
categories was mapped to the KDD CUP’s set [2]. This
system was later improved by introducing a bridging
classifier and an intermediate-level category taxonomy
[6].

Most query classifiers in the literature, like the system
described above, are based on the idea of mapping the
queries into an external knowledge source (an objective
third-party knowledge base) or internal knowledge source
(user-specific information) to classify them. This simple
idea leads to a great variety of classification systems.
Using an internal knowledge source, Cao et al. [7]
developed a query classifier that disambiguates the
queries based on the context of the user’s recent online
history. And on the other hand, many very different
knowledge sources have been used in practice, including
ontologies [8], websites [9], web query logs [10], and
Wikipedia [4], [11], [12].

Exploiting Wikipedia as a knowledge source has
become commonplace in scientific research. Several
hundreds of journal and conference papers have been
published using this tool since its creation in 2001.
However, while both query classification and NLP using
Wikipedia are common challenges, to the best of our
knowledge there have been only three query classification
systems based on Wikipedia.

The first of these three systems was proposed by Hu et
al. [11]. Their system begins with a set of seed concepts
to recognize, and it retrieves the Wikipedia articles and
categories relevant to these concepts. It then builds a
domain graph by following the links in these articles
using a Markov random walk algorithm. Each step from
one concept to the next on the graph is assigned a
transition probability, and these probabilities are then
used to compute the likelihood of each domain. Once the
knowledge base has been build in this way, a new user
query can be classified simply by using its keywords to
retrieve a list of relevant Wikipedia domains, and sorting
them by likelihood. Unfortunately, their system remained
small-scale and limited to only three basic domains,
namely “travel”, “personal name” and “job”. It is not a
general-domain classifier such as the one we aim to
create.

The second query classification system was designed
by one of our co-authors in [12]. It follows Wikipedia’s
encyclopedia structure to classify queries step-by-step,
using the query’s words to select titles, then selecting
articles based on these titles, then categories from the
articles. At each step, the weights of the selected elements
are computed based on the relevant elements in the
previous step: a title’s weight depends on the words that
selected it, an article’s weight on the titles’, and a
category’s weight on the articles’. Unlike [11], this
system was a general classifier that could handle queries
from any domain, and its performance would have ranked
near the top of the KDD CUP 2005 competition.

The last query classification system is our own
previous work, described in [4]. It is also a general

classifier, but its fundamental principles differ
fundamentally from [12]. Instead of using titles and
articles to pinpoint the categories in which to classify a
query like was done in [12], the classifier of [4] used
titles only to create a set of inexact initial categories for
the query and then explored the category graph to
discover the best goal categories from a set of
predetermined valid classification goals. This classifier
also differs from the one described in this work on a
number of points, including the equations used to weight
and rank categories and the mapping of the classification
goals. But the most fundamental difference is the use in
this paper of pre-computed base-goal category distances
instead of an exploration algorithm. As we will show in
this paper, all these modifications are justified both from
a theoretical standpoint and practically by improvements
in the experimental results.

While using Wikipedia for query classification has not
been a common task, there have been several document
classification projects done using that resource which are
worth mentioning. Schönhofen [13] successfully
developed a complete document classifier using
Wikipedia, by mapping the document’s vocabulary to
titles, articles, and finally categories, and weighting the
mapping at each step. In fact, we used some of the
mapping techniques he developed in one of our previous
works [12]. Alternatively, other authors use Wikipedia to
enrich existing text classifiers by improving upon the
simple bag-of-words approach. The authors of [14] use it
to build a kernel to map the document’s words to the
Wikipedia article space and classify there, while the
authors of [15] and [16] use it for text enrichment, to
expand the vocabulary of the text by adding relevant
synonyms taken from Wikipedia titles. Interestingly,
improvements are reported in the classification results of
[13], [15] and [16], while only [14] reports worse results
than the bag-of-words method. The conclusion seems to
be that working in the word space is the better option; a
conclusion that [14] also shares. Likewise, that is the
approach we used in the system we present in this paper.

III. ALGORITHM

Wikipedia’s category graph is a massive set of almost
300,000 category labels, describing every domain of
knowledge and ranging from the very precise, such as
“fictional secret agent and spies”, to the very general,
such as “information”. The categories are connected by
hypernym relationships, with a child category having an
“is-a” relationship to its parents. However, the graph is
not strictly hierarchic: there exist shortcuts in the
connections (i.e. starting from one child category and
going up two different paths of different lengths to reach
the same parent category) as well as loops (i.e. starting
from one child category and going up a path to reach the
same child category again).

The query classification algorithm we propose in this
paper is designed to exploit this graph structure. As we
will show in this section, it is a three-stage algorithm,
with a lot of flexibility possible within each step. The first

208 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

stage is a pre-processing stage, during which the category
graph is built and critical application-specific information
is determined. This stage needs to be done only once to
create the system, by contrast with the next two stages
that are executed for each submitted query. In the second
stage, a user’s query is mapped to a set of base categories,
and these base categories are weighted and ranked. And
finally, the algorithm explores the graph starting from the
base categories and going towards the nearest goal
categories in stage 3. The pseudocode of our new
algorithm is shown in Figure 1.

A. Stage 1: Pre-Processing the Category Graph
We begin the first stage of our algorithm by extracting

the list of categories in Wikipedia and the connections
between categories from the database dump made freely
available by the Wikimedia Foundation. For this project,
we used the version available from September 2008.

Furthermore, our graph includes one extra piece of
information in addition to the categories, namely the
article titles. In Wikipedia, each article is an encyclopedic
entry on a given topic which is classified in a set of
categories, and which is pointed to by a number of titles:
a single main title, some redirect titles (for common
alternative names, including foreign translations and
typos) and some disambiguation titles (for ambiguous

names that may refer to it). For example, the article for
the United States is under the main title “United States”,
as well as the redirect titles “USA”, “United States of
America” and “United Staets” (common typo
redirection), and the disambiguation title “America”. Our
pre-processing deletes stopwords and punctuation from
the titles, then maps them directly to the categories of the
articles and discards the articles. After this processing, we
find that our category graph features 5,453,808 titles and
282,271 categories.

The next step in the graph construction category is to
define a set of goal categories that are acceptable
classification labels. The exact number and nature of
these goal categories will be application-specific.
However, the set of Wikipedia category labels is large
enough to cover numerous domains at many levels of
precision, which means that it will be easy for system
designers to identify a subset of relevant categories for
their applications, or to map an existing category set to
Wikipedia categories.

The final pre-processing step is to define, compute and
store the distance between the goal categories and every
category in the graph. This distance between two
categories is the number of intermediate categories that
must be visited on the shortest path between them. We
allow any path between two categories, regardless of
whether it goes up to parent categories or down to
children categories or zigzags through the graph. This
stands in contrast with our previous work [4], where we
only allowed paths going from child to parent category.
The reason for adopting this more permissive approach is
to make our classifier more general: the parent-only
approach may work well in the case of [4] where all the
goal categories selected were higher in the hierarchy than
the average base category, but it would fail miserably in
the opposite scenario when the base categories are parents
of the goal categories. When searching for the shortest
paths, we can avoid the graph problems we mentioned
previously, of multiple paths and loops between
categories, by only saving the first encounter of a
category and by terminating paths that are revisiting
categories. Finally, we can note that, while exploring the
graph to find the shortest distance from every goal
category and all other categories may seem like a
daunting task, for a set of about 100 goal queries such as
we used in our experiments it can be done in only a few
minutes on a regular computer.

B. Stage 2: Discovering the Base Categories
The second stage of our algorithm as shown in Figure 1

is to map the user’s query to an initial set of weighted
base categories. This is accomplished by stripping the
query of stopwords to keep only relevant keywords, and
then generating the exhaustive list of titles that feature at
least one of these keywords. Next, the algorithm
considers each title t and determines the weight Wt of the
keywords it contains. This weight is computed based on
two parameters: the number of keywords featured in the
title (Nk), and the proportional importance of keywords in
the title (Pk). The form of the weight equation is given in

Input: Wikipedia database dump

1. CG ← the Category Graph
extracted from Wikipedia

2. Associate to each category in CG
the list of all titles pointing
to it

3. GC ← the set of Goal Categories
identified in CG

4. Dist(GC,CG) ← the shortest-path
distance between every GC and all
categories in CG

Input: User query, CG
5. KL ← Keyword List of all

keywords in the user query
6. TL ← Title List of all titles in

CG featuring at least one word in
KL

7. KTW ← Keyword-Title Weight, a
list containing the weight of a
keyword from KL featured in a
title from TL

8. BC ← Base Categories, all
categories in CG pointed to by TL

9. CD ← Category Density for all BC
computed from the KTW

10. BC ← top BC ranked by CD
Input: GC, DIST(GC,BC), CD
11. GS ← Goal Score of each GC,

computed based on their distance
to each BC and on CD

12. Return: top 3 GC ranked by GS
Figure 1. Structure of the three steps of our classification algorithm: the
pre-processing step (top), the base category evaluation (middle), and the
exploration for the goal categories (bottom).

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 209

© 2012 ACADEMY PUBLISHER

equation (1).

kkt PNW = (1)

The number of keywords featured in the title is a
simple and unambiguous measure. The proportional
importance is open to interpretation however. In this
research, we considered three different measures of
importance. The first is simply the proportion of
keywords in the title (Nk / Nt, where Nt is the total number
of words in title t). The second is the proportion of
characters in the title that belong to keywords (Ck / Ct,
where Ck is the number of characters of the keywords
featured in the title and Ct is the total number of
characters in title t). This metric assumes that longer
keywords are more important; in the context of queries,
which are only a few words long [1], [2], it may be true
that more emphasis was meant by the user on the longest,
most evident word in the query. The final measure of
proportional importance is based on the word’s inverted
frequencies. It is computed as the sum of inverted
frequencies of the keywords in the title to the sum of
frequencies of all title words (ΣFk / ΣFt), where the
inverted frequency of a word w is computed as:

)/ln(ww TTF = (2)

In equation (2), T is the total number of titles in our
category graph and Tw is the number of titles featuring
word w. It is, in essence, the IDF part of the classic term
frequency-inverse document frequency (TFIDF)
equation:)/ln()/(ww TTNN , where Nw is the number
of instances of word w in a specific title (or more
generally, a document) and N is the total number of words
in that title. The TF part)/(NN w is ignored because it
does not give a reliable result when dealing with short
titles that only feature each word once or twice. We have
used this metric successfully in the past in another
classifier we designed [12].

We can see from equation (1) that every keyword
appearing in a title will receive the same weight Wt.
Moreover, when a title is composed exclusively of query
keywords, their weight will be the number of keywords
contained in the title. The maximum weight a keyword
can have is thus equal to the number of keywords in the
query; it occurs in the case where a title is composed of
all query keywords and nothing else.

Next, our algorithm builds a set of base categories by
listing exhaustively all categories pointed to by the list of
titles. This set of base categories can be seen as an initial
coarse classification for the query. These base categories
are each assigned a density value. A category’s density
value is computed by determining the maximum weight
each query keyword takes in the list of titles that point to
that category, then summing the weights of all keywords,
as shown in equation (3). In that equation, Di is the
density of category i, and Wt

k,i refers to the weight Wt of a
title t that contains keyword k and points to category i.
Following our discussion on equation (1), we can see that
the maximum density a category can have is the square of

the number of query keywords. It happens in the case
where each keyword has its maximum value in that
category, meaning that one of the titles pointing to the
category is composed of exactly the query words.

∑=
k

ik
tti WD)(max , (3)

At the end of this stage of the algorithm, we have a
weighted list of base categories, featuring some
categories pointed to by high-weight words and summing
to a high density score, and a lot of categories pointed to
by only lower-weight words and having a lower score. In
our experiments, we found that the set contains over
3,000 base categories on average. We limit the size of this
list by keeping only the set of highest-density categories,
as categories with a density too low are deemed to be too
unrelated to the original query to be of use. This can be
done either on a density basis (i.e. keeping categories
whose density is more than a certain proportion of the
highest density obtained for this query, regardless of the
number of categories this represents, as we did in [4]) or
on a set-size basis (i.e. keeping a fixed number of
categories regardless of their density, the approach we
will prioritize in this paper). When using the set-size
approach, a question arises on how to deal with ties when
the number of tied categories exceeds the size of the set to
return. In our system, we break ties by keeping a count of
the number of titles that feature keywords and that point
to each category, and giving priority to the categories
pointed to by more titles.

C. Stage 3: Ranking the Goal Categories
Once the list of base categories is available, the third

and final stage of the algorithm is to determine which
ones of the goal categories identified in the first stage are
the best classification labels for the query. As we outlined
in the pseudocode of Figure 1, our system does this by
ranking the goal categories based on their shortest-path
distance to the selected base categories. There are of
course other options that have been considered in the
literature. For example, Coursey and Mihalcea [17]
proposed an alternative metric based on graph centrality,
while Syed et al. [18] developed a spreading activation
scheme to discover related concepts in a set of
documents. Some of these ideas could be adapted into our
method in future research.

However, even after settling on the shortest-path
distance metric, there are many ways we could take into
account the base categories’ densities into the goal
categories’ ranking. The simplest option is to use it at a
threshold value – to cut off base categories that have a
density lower than a certain value, and then rank the goal
categories according to which are closest to any
remaining base category regardless of density. That is the
approach we used in [4]. On the other hand, taking the
density into account creates different conditions for the
system. Since some base categories are now more
important than others, it becomes acceptable, for
example, to rank a goal that is further away from several
high-density base categories higher than a goal that is

210 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

closer to a low-density base category. We thus define a
ranking score for the goal categories, as the sum for all
base categories of a ratio of their density to the distance
separating the goal and base. There are several ways to
compute this ratio; five options that we considered in this
study are:

)0001.0),((/ += ∑ jidistDS
i ij (4)

)0001.0)²,((/ += ∑ jidistDS
i ij (5)

∑ −=
i

jidist
ij eDS),((6)

∑ −=
i

jidist
ij eDS),(2 (7)

∑ −=
i

jidist
ij eDS)²,((8)

In each of these equations, the score Sj of goal category
j is computed as the sum, for all base categories i, of the
density Di of that category, which was computed in
equation (3), divided by a function of the distance
between categories i and j. This function is a simple
division in equations (4) and (5), but the exponential in
equations (6-8) put progressively more importance on the
distance compared to the density. The addition of 0.0001
in equations (4) and (5) is simply to avoid a division by
zero in the case where a selected base category is also a
goal category.

Finally, the goal categories with the highest score are
returned as classification results. In our current version of
the system, we return the top three categories, to allow for
queries to belong to several different categories. We
believe that this corresponds to a human level of
categorization; for example, in the KDD CUP 2005
competition [5], human labelers used on average 3.3
categories per query. However, this parameter is flexible,
and we ran experiments keeping anywhere from one to
five goal categories.

IV. EXPERIMENTAL RESULTS

The various alternatives and options for our classifier
described in the previous section were all implemented
and tested, in order to study the behavior of the system
and determine the optimal combination. That optimal
combination was then subjected to a final set of tests with
new data.

In order to compare and study the variations of our
system, we submitted them all to the same challenge as
the KDD CUP 2005 competition [5]. The 37 solutions
entered in that competition were evaluated by classifying
a set of 800 queries into up to five categories from a
predefined set of 67 target categories cj and comparing
the results to the classification done by three human
labelers. The solutions were ranked based on overall
precision and overall F1 value, as computed by Equations
(9-14). The competition’s Performance Award was given
to the system with the top overall F1 value, and the

Precision Award was given to the system with the top
overall precision value within the top 10 systems
evaluated on overall F1 value. Overall Recall was not
used in the competition, but is included here because it is
useful in our experiments.

∑
∑

=
j j

j j

c

c

 as labeled queries

 as labeledcorrectly queries
Precision (9)

∑
∑

=
j j

j j

c

c

 tobelonging queries

 as labeledcorrectly queries
Recall (10)

RecallPrecision
RecallPrecision21F

+
××= (11)

∑
=

=
3

1
labeler against Precision

3
1Precision Overall

L
L (12)

∑
=

=
3

1
labeler against Recall

3
1Recall Overall

L
L (13)

∑
=

=
3

1
labeler against F1

3
1F1 Overall

L
L (14)

In order for our system to compare to the KDD CUP
competition results, we need to use the same set of
category labels. As we mentioned in Section 3, the size
and level of detail of Wikipedia’s category graph makes it
possible to identify categories to map most sets of labels
to. In our case, we identified 99 goal categories in
Wikipedia corresponding to the 67 KDD CUP category
set. These correspondences are presented in Appendix A.

A. Proportional Importance of Keywords
The first aspect of the system we studied is the

different formulae for the proportional importance of
query keywords in a title. As we explained in Section
IIIB, the choice of formula has a direct impact on the
system, as it determines which titles are more relevant
given the user’s query. This in turn determines the
relevance of the base categories that lead to the goal
categories. A bad choice at this stage can have an impact
on the rest of the system.

The weight of a title, and of the query keywords it
contains, is function of the two parameters presented in
equation (1), namely the number of keywords present in
the title and the importance of those keywords in that
title. Section IIIB gives three possible mathematical
definitions of keyword importance in a title. They are a
straightforward proportion of keywords in the title, the
proportion of characters in the title that belong to
keywords, and the proportion of IDF of keywords to the
total IDF of the title, as computed with equation (2). We
implemented all three equations and tested the system
independently using each. In all implementations, we
limited the list of base categories to 25, weighted the goal
categories using equation (5), and varied the number of
returned goal categories from 1 to 5.

The results of these experiments are presented in
Figure 2. The three different experiments are shown with
different grey shades and markers: dark squares for the

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 211

© 2012 ACADEMY PUBLISHER

formula using the proportion of characters, medium
triangles for the formula using the proportion of words,
and light circles for the formula using the proportion of
IDF. Three results are also shown for each experiment:
the overall precision computed using equation (12) in a
dashed line, the overall recall of equation (13) in a dotted
line, and the overall F1 of equation (14) in a solid line.

A few observations can be made from Figure 2. The
first is that the overall result curves of all three variations
have the same shape. This means that the system behaves
in a very consistent way regardless of the exact formula
used. There is no point where one of the results given one
equation shoots off in a wildly different range of values
from the other two equations. Moreover, while the exact
difference in the results between the three equations
varies, there is no point where they switch and one
equation goes from giving worse results than another to
giving better results. We can also see that the precision
decreases and the recall increases as we increase the
number of acceptable goal categories. This result was to
be expected: increasing the number of categories returned
in the results means that each query is classified in more
categories, leading to more correct classification (that

increase recall) and more incorrect classifications (that
decrease precision). Finally, we can note that the best
equation for the proportional importance of keywords in
titles is consistently the proportion of keywords (Nk / Nt),
followed closely by the proportion of characters (Ck / Ct),
while the proportion of IDF (ΣFk / ΣFt) trails in third
position.

It is surprising that the IDF measure gives the worst
results of the three, when it worked well in other projects
[12]. However, the IDF measure is based on a simple
assumption, that a word with low semantic importance is
one that is used commonly in most documents of the
corpus. In our current system however, the “documents”
are article titles, which are by design short, limited to
important keywords, and stripped of semantically
irrelevant words. These are clearly in contradiction with
the assumptions that underlie the IDF measure. We can
see this clearly when we compare the statistics of the
keywords given in the example in [12] with the same
keywords in our system, as we do in Table I. The system
in [12] computed its statistics from the entire Wikipedia
corpus, including article text, and thus computed reliable
statistics; in the example in Table I the rarely-used
company name WWE is found much more significant
than the common corporate nouns chief, executive,
chairman and headquartered. On the other hand, in our
system WWE is used in almost as many titles as
executive and has a comparable Fw score, which is
dwarfed by the Fw score of chairman and headquartered,
two common words that are very rarely used in article
titles.

Finally, we can wonder if the two parts of equation (1)
are really necessary, especially since the best equation we
found for proportional importance repeats the Nk term. To
explore that question, we ran the same test again using
each part of the equation separately. Figure 3 plots the

Figure 2. Overall precision (dashed line), recall (dotted line) and F1
(solid line) using Nk*(Ck/Ct) (dark squares), Nk*(Nk/Nt) (medium
triangles), and Nk*(ΣFk/ΣFt) (light circles).

TABLE I
COMPARISON OF IDF OF SAMPLE KEYWORDS

Keyword Tw
* Fw

* Tw Fw
WWE 2,705 7.8 657 9.0
Chief 83,977 5.6 1,695 8.1
Executive 82,976 5.8 867 8.7
Chairman 40,241 7.2 233 10.1
Headquartered 38,749 7.1 10 13.2

*Columns 2 and 3 are taken from [12].

Figure 3. Overall F1 using Nk*(Nk/Nt) (solid medium triangles), Nk/Nt

(dashed dark rectangles), and Nk (light dotted circles).

212 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

overall F1 using Nk alone in light dotted line with circle
markers, using Nk / Nt in black dashed line with square
markers, and reproduces the overall F1 of Nk * (Nk / Nt)
from Figure 3 in its medium solid line with triangle
markers for comparison. This figure shows clearly that
using the complete equation gives better results than
using either one of its components.

B. Size of the Base Category Set
The second aspect of the system we studied comes at

the end of the second stage of the algorithm, when the list
of base categories is trimmed down to keep only the most
relevant ones. This list will initially contain all categories
connected to any title that contains at least one of the
keywords the user specified. As we mentioned before, the
average number of base categories generated by a query
is 3,400 and the maximum is 45,000. These base
categories are then used to compute the score of the goal
categories, using one of the summations of equations (4-
8). This test aims to see if the quality of the results can be
improved by limiting the size of the set of base categories
used in this summation, and if so what is the approximate
ideal size.

For this test, we used Wt = Nk * (Nk / Nt) for equation
(1), the best formula found in the previous test. We again
weighted the goal categories using equation (5) and
varied the number of returned goal categories from 1 to 5.
Figure 4 shows the F1 value of the system under these
conditions when trimming the list of base categories to
500 (black solid line with diamonds), 100 (light solid line
with circles), 50 (medium solid line with triangles), 25
(light dotted line with squares), 10 (black dashed line
with squares) and 1 (black dotted line with circles).

Figure 4 shows clearly that the quality of the results

drops if the set of base categories is too large (500) or too
small (1). The difference in the results between the other
four cases is less marked, and in fact the results with 10
and 100 base categories overlap. More notably, the results
with 10 base categories start weaker than the case with
100, spike around 3 goal categories to outperform it, then
drop again and tie it at 5 goal categories. This instability
seems to indicate that 10 base categories are not enough.
The tests with 25 and 50 base categories are the two that
yield the best results; it thus seems then that the optimal
size of the base category set is in that range. The 25 base
category case outperforms the 50 case, and is the one we
will prefer.

It is interesting to consider that in our previous study
[4], we used the other alternative we proposed, namely to
trim the set based on the density values. The cutoff we
used was half the density value of the base category in the
set with the highest density; any category with less than
that density value was eliminated. This gave us a set of 28
base categories on average, a result which is consistent
with the optimum we discovered in the present study.

C. Goal Category Score and Ranking
Another aspect of the system we wanted to study is the

choice of equations we can use to account for the base
categories’ density and distance when ranking the goal
categories. The option we used in the previous
subsection, to find the nearest goals to any of the retained
base categories regardless of their densities, is entirely
valid. The alternative we consider here is to rank the goal
categories in function of their distance to each base
category and of the density of that base. We proposed
five possible equations in Section IIIC to mathematically
combine density and distance to rank the goal categories.
Equation (4) considers both distance and density evenly,
and the others put progressively more importance on the
distance up to equation (8).

To illustrate the different impact of equations (4-8),
consider three fictional base categories, one which has a
density of 4 and is at a distance of 4 from a goal category,
a second with a density of 4 and a distance of 3 from the
same goal category, and the third with a density of 3 and
a distance of 3 from the goal. The contribution of each of
these bases to the goal category in each of the
summations is given in Table II. As we can see in this
table, the contribution of each base decreases as we move
down from equation (4) to equation (8), but it decreases a
lot more and a lot faster for the base at a distance of 4.
The contribution to the summation of the category at a
distance of 4 is almost equal to that of the categories at a
distance of 3 when using equation (4), but is three orders

Figure 4. Overall F1 using from 1 to 500 base categories.

TABLE II
IMPACT OF THE GOAL CATEGORY EQUATIONS

Equation Density 4
Distance 4

Density 4
Distance 3

Density 3
Distance 3

(4) 1.00 1.33 1.00
(5) 0.25 0.44 0.33
(6) 0.07 0.20 0.15
(7) 0.001 0.01 0.007
(8) 4.5x10-7 0.0005 0.0004

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 213

© 2012 ACADEMY PUBLISHER

of magnitude smaller when using equation (8). That is the
result of putting more and more emphasis on distance
rather than density: the impact of a farther-away higher-
density category becomes negligible compared to a closer
lower-density category. Meanwhile, comparing the
contribution of the two categories of different densities at
the same distance shows that, while they are in the same
order of magnitude, the higher-density one is always
more important than the lower-density one, as we would
want.

We ran tests of our system using each of these five
equations. In these tests, we again set Wt = Nk * (Nk / Nt)
for equation (1), kept the 25 highest-density base
categories, and varied from retuning 1 to 5 categories.
The overall F1 of the variations of the system is presented
in Figure 5. In this figure, the classification results
obtained using equation (4) are shown with a black
dashed line with circle markers, equation (5) uses a grey
solid line with square markers, equation (6) uses a dashed
black line with triangle markers, equation (7) uses a light
grey line with circle markers and equation (8) uses a grey
line with triangle markers. For comparison, we also ran
the classification using the exploration algorithm from
our previous work [4], and included those results as a
black dotted line with square markers.

We can see from Figure 5 that putting too much
importance on distance rather than density can have a
detrimental impact on the quality of the results: the results
using equations (7) and (8) are the worst of the five
equations. Even the results from equation (6) are of
debatable quality: although it is in the same range as the
results of equations (4) and (5), it shows a clear
downward trend as we increase the number of goal
categories considered, going from the best result for 2
goals to second-best with 3 goals to a narrow third place
with 4 goals and finally to a more distant third place with
5 goals. Finally, we can see that the results using the
exploration algorithm of [4] are clearly the worst ones,
despite the system being updated to use the better
category density equations and goal category mappings

discovered in this study. The main difference between the
two systems is thus the use of our old exploration
algorithm to discover the goal categories nearest to any of
the 25 base categories. This is also the source of the
poorer results: the exploration algorithm is very sensitive
to noise and outlier base categories that are near a goal
category, and will return that goal category as a result. On
the other hand, all five equations have in common that
they sum the value of all base categories for each goal
category, and therefore build-in noise tolerance. An
outlier base category will seldom give enough of a score
boost to one goal to eclipse the combined effect of the 24
other base categories on other goals.

Out of curiosity, we ran the same test a second time,
but this time keeping the 100 highest-density base
categories. These results are presented in Figure 6, using
the same line conventions as Figure 5. It is interesting to
see that this time it is equation (6) that yields the best
results with a solid lead, not equation (5). This indicates a
more fundamental relationship in our system: the best
summation for the goal categories is not an absolute but
depends on the number of base categories retained. With
a smaller set of 25 base categories, the system works best
when it considers a larger picture including the impact of
more distant categories. But with a larger set of 100 base
categories, the abundance of more distant categories
seems to generate noise, and the system works best by
limiting their impact and by focusing on closer base
categories.

D. Number of Goal Categories Returned
The final parameter in our system is the number of goal

categories to return. We have already explained in
Section IIIC that our preference to return three goal
categories is based on a study of human classification –
namely, in the KDD CUP 2005 competition [5], human
labelers used on average 3.3 categories per query.
Moreover, looking at the F1 figures we presented in the
previous subsections, we can see that the curve seems to
be exponential, with each extra category returned giving a
lesser increase in F1 value. Returning a fifth goal

Figure 6. Goal score formulae using 100 base categories.

Figure 5. Goal score formulae using 25 base categories.

214 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

category gives the least improvement compared to
returning only four goal categories, and in fact in some
cases it causes a drop in F1. Returning three categories
seems to be at the limit between the initial faster rate of
increase of the curve and the later plateau.

Another way to look at the question is to consider the
average score of goal categories at each rank, after
summing the densities of the base categories for each and
ranking them. If on average the top-ranked categories
have a large difference to the rest of the graph, it will
show that there exist a robust division between the likely-
correct goal categories to return and the other goal
categories. The opposite observation, on the other hand,
would reveal that the rankings could be unstable and
sensitive to noise, and that there is no solid score
distinction between the goals our system returns and the
others.

For this part of the study, we used the summation of
equation (5). We can recall from our discussion in
Section III that the maximum word weight is Nk and the
maximum category density is Nk². Queries in the KDD
CUP data set are at most 10 words long, giving a
maximum base category density of 100. This in turn gives
a maximum goal category score of 1,002,400 using
equation (5) and 25 base categories in the case where the
distance between the goal category and each of the base
categories is one except for a single base category at a
distance of zero; in other words, the goal is one of the
base categories found and all other base categories are
immediately connected to it. More realistically, we find in
our experiments that the average base category density
computed by equation (3) is 1.48, and the average
distance between a base and goal category is 5.6 steps, so
an average goal category score using equation (5) would
be 1.18.

Figure 7 shows the average score of the goal category
at each rank over all KDD CUP queries used in our
experiment from the previous section, obtained using the
method described above. This graph shows that the top
category has on average a score of 3,272, several orders
of magnitude above the average but still below our
theoretical maximum. In fact, even the maximum score
we observed in our experiments is only 67,506, very far
below the theoretical maximum. This is due to the fact
that most base categories are more than a single step
removed from the goal category.

The graph also shows the massive difference between
the first three ranks of goal categories and the other 96.
The average score goes from 3,272, to 657 at rank 2 and
127 at rank 3, down to 20 and 16 at ranks 4 and 5
respectively, then cover the interval from 2 to 0.7
between ranks 6 and 99. This demonstrates a number of
facts. First of all, both the values of the first five goal
ranks and the differences between their scores when
compared to the other 94 shows that these first ranks are
resilient to noise and variations. It also justifies our
decision to study the performance of our system using the
top 1 to 5 goal categories, and it gives further
experimental support to our decision to limit the number

of goal categories returned by the classifier to three.
It is interesting to note that the average score of the

categories over the entire distribution is 42.53, very far
off from our theoretical average of 1.18. However, if we
ignore the first three ranks, whose values are very high
outliners in this distribution, the average score becomes
1.62. Moreover, the average score over ranks 6 to 99 is
1.28. Both of these values are in line with the average we
expected to find.

E. The Optimal System
After having performed these experiments, we are

ready to put forward the optimal classifier, or the one that
combines the best features from the options we have
studied. This classifier uses Wt = Nk * (Nk / Nt) for
equation (1), selects the top 25 base categories, ranks the
goal categories using the summation formula of equation
(5), and returns the top-three categories ranked. The
results we obtain with that system are presented in Table
III, with other KDD CUP competition finalists reported in
[5] for comparison. Note that participants had the option
to enter their system for precision ranking but not F1
ranking or vice-versa rather than both precision and F1
ranking, and several participants chose to use that option.
Consequently, there are some N/A values in the results in
Table III. As can be seen from Table III, our system
performs well above the competition average, and in fact
ranks in the top-10 of the competition in F1 and in the
top-5 in precision. For comparison, system #22, which

Figure 7. Average goal category score per rank over all KDD CUP
queries.

TABLE III
CLASSIFICATION RESULTS

System F1
Rank

Overall
F1

Precision
Rank

Overall
Precision

KDDCUP #22 1 0.4444 N/A 0.4141
KDDCUP #37 N/A 0.4261 1 0.4237
KDDCUP #21 6 0.3401 2* 0.3409
Our system 7 0.3366 2 0.3643
KDDCUP #14 7* 0.3129 N/A 0.3173
Our previous work 10 0.2827 7 0.3065
KDDCUP Mean 0.2353 0.2545
KDDCUP Median 0.2327 0.2446
* indicates competition systems that would have been outranked by

ours.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 215

© 2012 ACADEMY PUBLISHER

won the first place in the competition, achieved the best
results by querying multiple web search engines and
aggregating their results [2]. Our method may not
perform as well right now, but it offers the potential for
algorithmic and knowledge-base improvements that goes
well beyond those of a simple aggregate function, and is
not dependent on third-party commercial technology.

We also updated the the classifier we built in our
previous work of [4] to use Wt = Nk * (Nk / Nt), the top-25
base category cutoff and the goal category mapping of
Appendix A. Its original iterative graph exploration
method was also slightly modified to explore all paths
rather than parents-only, to break ties using equation (5)
rather than a random draw, and to return the top-three
goal categories rather than the top-five. These
modifications are all meant to update the system of [4]
with the best features obtained in this research, to create a
fair comparison. The results we obtained are included in
Table III. While it does perform better than the average
KDDCUP system, we find that our previous classifier still
falls short of the one we studied in this paper.

We also found in our results that 47 of the 800 test
queries were not classified at all, because the algorithm
failed to select any base categories at all. This situation
occurs when no Wikipedia titles featuring query words
can be found. These queries are all single words, and that
word is either an uncommon abbreviation (the query
“AATFCU” for example), misspelled in an unusual way
(“egyptains”), an erroneous compounding of two words
(“contactlens”), a rare website URL, or even a
combination of the above (such as the misspelled URL
“studioeonline.com” instead of “studioweonline.com”).
These are all situations that occur with real user search
queries, and are therefore present in the KDDCUP data
set. It is worth noting that Wikipedia titles include
common cases of all these errors, so that only the 5.9%
most unusual cases lead to failure in our system.

It could be interesting to study a specific example, to
see the system’s behavior step by step. We chose for this
purpose to study a query for “internet explorer” in the
KDDCUP set. This query was manually classified by the
competition’s three labelers, into the KDDCUP categories
“Computers\Software; Computers\Internet & Intranet;
Computers\Security; Computers\Multimedia;
Information\Companies & Industries” by the first labeler,

into “Computers\Internet & Intranet;
Computers\Software” by the second labeler, and into
“Computers\Software; Computers\Internet & Intranet;
Information\Companies & Industries” by the third labeler.

The algorithm begins by identifying a set of relevant
base categories using the procedure explained in Section
IIIB and then weighting them using equation (3). For this
query, our algorithm identifies 1,810 base categories, and
keeps the 25 highest-density ones, breaking the tie for
number 25 by considering the number of titles pointing to
the categories as we explained in Section IIIB.

For any two-word query, the maximum title weight
value that can be computed by equation (1) is 2, and the
maximum base category density value that can be
returned by equation (3) is 4. And in fact, we find that 8
categories receive this maximum density, including some
examples we listed in Table IV. We can see from these
examples that the top-ranked base categories are indeed
very relevant to the query. Examining the entire set of
base categories reveals that the density values drop to half
the maximum by rank 33, and to a quarter of it by rank
37. The density value continues to drop as we go down
the list: the average density of a base category in this
example is 0.4 which corresponds to rank 660, by the
middle of the list at rank 905 the density is 0.33, and the
final category in the list has a density of only 0.05. It can
also be seen from the samples in Table IV that the
relevance of the categories to the query does seem to
decrease along with the density value. Looking at the
complete list of 1,810 base categories, we find that the
first non-software-related category is “Exploration” at
rank 41 with a density of 1. But software-related
categories continue to dominate the list, mixed with a
growing number of non-software categories, until rank
354 (density of 0.5 and 1 title pointing to the category)
where non-computer categories begin to dominate.
Incidentally, the last software-related category in the list
is “United States internet case law”, at rank 1791 with a
density of 0.11.

The next step of our algorithm is to rank the 99 goal
categories using the sum of density values in equation (5).
Sample rankings are given in Table V. This table uses the
Wikipedia goal category labels; the matching KDDCUP
categories can be found in Appendix A. We can see from
these results that the scores drop by half from the first

TABLE IV
SAMPLE BASE CATEGORIES

Category Rank Density Titles
Internet Explorer 1 4 36
Internet history 2 4 32
Windows web browsers 3 4 20
Microsoft criticisms and
controversies

8 4 4

HTTP 25 2.67 5
Mobile phone web browsers 26 2.67 4
Cascading Style Sheets 33 2 5
Internet 37 1 17
PlayStation Games 660 0.4 2
Islands of Finland 905 0.33 1
History of animation 1811 0.05 1

TABLE V
SAMPLE GOAL CATEGORIES

Goal Category Rank Score
Internet 1 11.51
Software 2 10.09
Computing 3 8.03
Internet culture 4 5.63
Websites 5 4.97
Technology 16 3.54
Magazines 18 3.39
Industries 30 2.86
Law 49 2.54
Renting 99 1.30

Refer to Appendix A for the list of KDDCUP categories
corresponding to these goal categories.

216 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

result to the fourth one. This is much less drastic than the
drop we observed on average in Figure 7, but is
nonetheless consistent as it shows a quick drop from a
peak over the first three ranks and a long and more stable
tail over ranks 4 to 99.

It is also encouraging to see that the best two goal
categories selected by our system correspond to
“Computers\Internet & Intranet” and
“Computers\Software”, the only two categories to be
picked by all three KDDCUP labelers. The fourth goal
corresponds to “Online Community/Other” and is the first
goal that is not in the KDDCUP “Computer/” category,
although it is still strongly relevant to the query. Further
down, the first goal that corresponds neither to a
“Computers/” nor “Online Community/” category is
Technology (“Information\Science & Technology”) at
rank 16, which is still somewhat related to the query, and
the first truly irrelevant result is Magazines
(“Living\Book & Magazine”) at rank 18 with a little over
a quarter of the top category’s score. Of the categories
picked by labelers, the one that ranked worst in our
system was “Information\Companies & Industries” at
rank 30. All the other categories they identified are found
in the top-10 results of our system.

F. New Data and Final Tests
In order to show that our results in Table III are general

and not due to picking the best system for a specific data
set, we ran two more tests of our system with two new
data sets.

The first data set is a set of 111 KDD CUP 2005
queries classified by a competition judge. This set was
not part of the 800 test queries we used previously; it was
a set of queries made available by the competition
organizers to participants prior to the competition, to
develop and test their systems. Naturally, the queries in
this set will be similar to the other KDD CUP queries,
and so we expect similar results.

The second data set is a set of queries taken from the
TREC 2007 Question-Answering (QA) track [19]. That
data set is composed of 445 questions on 70 different
topics; we randomly selected three questions per topic to
use for our test. It is also worth noting that the questions
in TREC 2007 were designed to be asked sequentially,
meaning that a system could rely on information from the
previous questions, while our system is designed to
classify each query by itself with no query history.
Consequently, questions that were too vague to be
understood without previous information were
disambiguated by adding the topic label. For example, the
question ‘Who is the CEO?’ in the series of questions on
the company 3M was rephrased as ‘Who is the CEO of

3M?’ Finally, two of the co-authors independently
labeled the questions to KDD CUP categories in order to
have a standard to compare our system’s results to in
Equations (9) and (10). The TREC data set was selected
in order to subject our system to very different testing
conditions: instead of the short keyword-only KDD CUP
web queries, TREC has long and grammatically-correct
English questions.

The results from both tests are presented in Table VI,
along with our system’s development results already
presented in Table III for comparison. These results show
that our classifier works better with the test data than with
the training data it was developed and optimized on. This
counter-intuitive result requires explanation.

The greatest difference in our results is on recall, which
increases by over 20% from the training KDDCUP test to
the TREC test. Recall, as presented in equation (10), is
the ratio of correct category labels identified by our
system for a query to the total number of category labels
the query really has. Since our classifier returns a fixed
number of three categories per query, it stands to reason
that it cannot achieve perfect recall for a query set that
assigns more than three categories, and that it can get
better recall on a query set that assigns fewer categories
per query. To examine this hypothesis, we compared the
results of five of our labelers individually: the three
labelers of the KDDCUP competition and the two
labelers of the TREC competition (the 111 KDDCUP
demo queries, having been labeled by only one person,
were not useful for this test). Specifically, we looked at
the average number of categories per query each labeler
used and the recall value our system achieved using that
query set. The results, presented in Table VII, show that
our intuition is correct: query sets with less categories per
query lead to higher recall, with the most drastic example
being the increase of 1.5 categories per query between
KDDCUP labelers 2 and 3 that yielded a 10% decrease in
recall. However, it also appears from that table that the
relationship does not hold across different query sets:
KDDCUP labeler 2 assigns less labels per query that
TREC labeler 2 but still has a much lower recall.

Next, we can contrast the two KDDCUP tests: they
both had nearly identical recall but the new data gave a
6% increase in precision. This is interesting because the
queries are from the same data sets, they are web
keyword searches of the same average length, and the
correct categorization statistics are nearly identical to
those of Labeler 3 so we would actually expect the recall
to be lower than it ended up being. An increase in both
precision and recall can have the same origin in equations

TABLE VI
TEST CLASSIFICATION RESULTS

Query set Overall
F1

Overall
Precision

Overall
Recall

KDDCUP 111 0.3636 0.4254 0.3175
TREC 0.4639 0.4223 0.5267
KDDCUP 800 0.3366 0.3643 0.3195

TABLE VII
CATEGORIZATION AND RECALL

Query set Average number
of categories

Recall

TREC Labeler 1 1.93 ± 0.81 0.5443
TREC Labeler 2 2.91 ± 0.92 0.5090
KDDCUP Labeler 2 2.39 ± 0.93 0.3763
KDDCUP Labeler 1 3.67 ± 1.13 0.3076
KDDCUP Labeler 3 3.85 ± 1.09 0.2747

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 217

© 2012 ACADEMY PUBLISHER

(9) and (10): a greater proportion of correct categories
identified by our classifier. But everything else being
equal, this would only happen if the queries themselves
were easier for our system to understand. To verify this
hypothesis, we checked both query sets for words that are
unknown in our system. As we explained previously, a lot
of these words may be rare but simple typos (“egyptains”)
or missing spaces between two words (“contactlens”),
and while they are unknown and ignored in our system
their meaning is immediately obvious to the human
labelers. The labelers thus have more information to
classify the queries, which makes it inherently more
difficult for our system to generate the same
classification. Upon evaluation of our data, we find that
the KDDCUP set of 800 queries features about twice the
frequency of unknown words of the set of 111 queries.
Indeed, 10.4% of queries in the 800-query set have
unknown words and 4.4% of words overall are unknown,
while only 5.4% of queries in the 111-query set have
unknown words and only 2.5% of words in that set are
unknown. This is an important difference between the
two query sets, and we believe it explains why the 111
queries are more often classified correctly. It incidentally
also indicates that an automated corrector should be
incorporated in the system in the future.

The better performance of our system on the TREC
query set can be explained in the same way. Thanks to the
fact that set is composed of correct English questions, it
features even fewer unknown words: a mere 0.4% of
words in 1.9% of queries. Moreover, for the same reason,
the queries are much longer: on average 5.3 words in
length after stopword removal, compared to 2.4 words for
the KDDCUP queries. This means that even if there is an
unknown word in a query, there are still a lot of other
words in the TREC queries for our system to make a
reasonably good classification.

Differences in the queries aside, it does not appear to
be major distinctions, much less setbacks, when using our
classifier on new and unseen data sets. It seems robust
enough to handle new queries in a different spread of
domains, and to handle both web-style keyword searches
and English questions without loss of precision or recall.

Finally, it could be interesting to determine how our
classifier’s performance compares to that of a human
doing the same labeling task. Query classification is a
subjective task: since queries are short and often
ambiguous, their exact meaning and classification is often
dependent on human interpretation [20]. It is clear from
Table VII that this is the case for our query sets, that
human labelers do not agree with each other on the
classification of these queries. We can evaluate the
human labelers by computing the F1 of each one’s
classification compared to the others in the same data set.
In the case of the KDDCUP data, the average F1 of
human labelers is known to be between 0.4771 and
0.5377 [5], while for our labeled TREC data we can
compute the F1 between the two human labelers to be
0.5605. This means our system has between 63% and
71% of a human’s performance when labeling the

KDDCUP queries, and 83% of a human’s performance
when labeling the TREC queries. It thus appears that by
this benchmark, our classifier again performs better on
the TREC data set than on the KDDCUP one. This gives
further weight to our conclusion that our system is robust
enough to handle very diverse queries.

V. CONCLUSION

In this paper, we presented a ranking and classification
algorithm to exploit the Wikipedia category graph to find
the best set of goal categories given user-specified
keywords. To demonstrate its efficiency, we implemented
a query classification system using our algorithm. We
performed a thorough study of the algorithm in this paper,
focusing on each design decision individually and
considering the practical impact of different alternatives.
We showed that our system’s classification results
compare favorably to those of the KDD CUP 2005
competition: it would have ranked 2nd on precision with
a performance 10% better than the competition mean, and
7th in the competition on F1. We further detailed the
results of an example query in key steps of the algorithm,
to demonstrate that each partial result is correct. And
finally we presented two blind tests on different data sets
that were not used to develop the system, to validate our
results.

We believe this work will be of interest to anyone
developing query classification systems, text
classification systems, or most other kinds of
classification software. By using Wikipedia, a
classification system gains the ability to classify queries
into a set of almost 300,000 categories covering most of
human knowledge and which can easily be mapped to a
simpler application-specific set of categories when
needed, as we did in this study. And while we considered
and tested multiple alternatives at every design stage of
our system, it is possible to conceive of further
alternatives that could be implemented on the same
framework and compared to our results. Future work can
focus on exploring these alternatives and further
improving the quality of the classification. In that respect,
as we indicated in Section IV.F, one of the first directions
to work in will be to integrate an automated corrector into
the system, to address the problem of unknown words.

APPENDIX A

This appendix lists how we mapped the 67 KDD CUP
categories to 99 corresponding Wikipedia categories in
the September 2008 version of the encyclopedia.

KDD CUP Category Wikipedia Category
Computers\Hardware Computer hardware

Computers\Internet & Intranet Internet
Computer networks

Computers\Mobile
Computing Mobile computers

Computers\Multimedia Multimedia
Computers\Networks &
Telecommunication

Networks
Telecommunications

218 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

Computers\Security Computer security
Computers\Software Software
Computers\Other Computing
Entertainment\Celebrities Celebrities

Entertainment\Games & Toys
Games
Toys

Entertainment\Humor & Fun Humor
Entertainment\Movies Film
Entertainment\Music Music
Entertainment\Pictures &
Photos Photographs

Entertainment\Radio Radio
Entertainment\TV Television
Entertainment\Other Entertainment
Information\Arts &
Humanities

Arts
Humanities

Information\Companies &
Industries

Companies
Industries

Information\Science &
Technology

Science
Technology

Information\Education Education

Information\Law & Politics
Law
Politics

Information\Local &
Regional

Regions
Municipalities
Local government

Information\References &
Libraries

Reference
Libraries

Information\Other Information

Living\Book & Magazine
Books
Magazines

Living\Car & Garage
Automobiles
Garages

Living\Career & Jobs Employment
Living\Dating &
Relationships

Dating
Intimate relationships

Living\Family & Kids
Family
Children

Living\Fashion & Apparel Fashion
Clothing

Living\Finance & Investment Finance
Investment

Living\Food & Cooking
Food and drink
Cooking

Living\Furnishing &
Houseware

Decorative arts
Furnishings
Home appliances

Living\Gifts & Collectables
Giving
Collecting

Living\Health & Fitness
Health
Exercise

Living\Landscaping &
Gardening

Landscape
Gardening

Living\Pets & Animals
Pets
Animals

Living\Real Estate Real estate

Living\Religion & Belief Religion
Belief

Living\Tools & Hardware
Tools
Hardware (mechanical)

Living\Travel & Vacation
Travel
Holidays

Living\Other Personal life
Online Community\Chat &
Instant Messaging

On-line chat
Instant messaging

Online Community\Forums &
Groups Internet forums

Online
Community\Homepages Websites

Online Community\People
Search Internet personalities

Online Community\Personal
Services Online social networking

Online Community\Other Virtual communities
Internet culture

Shopping\Auctions & Bids Auctions and trading

Shopping\Stores & Products
Retail
Product management

Shopping\Buying Guides &
Researching

Consumer behaviour
Consumer protection

Shopping\Lease & Rent Renting
Shopping\Bargains &
Discounts

Sales promotion
Bargaining theory

Shopping\Other Distribution, retailing, and
wholesaling

Sports\American Football American football
Sports\Auto Racing Auto racing
Sports\Baseball Baseball
Sports\Basketball Basketball
Sports\Hockey Hockey
Sports\News & Scores Sports media

Sports\Schedules & Tickets
Sport events
Seasons

Sports\Soccer Football (soccer)
Sports\Tennis Tennis
Sports\Olympic Games Olympics
Sports\Outdoor Recreations Outdoor recreation
Sports\Other Sports

REFERENCES

[1] Maj. B. J. Jansen, A. Spink, T. Saracevic, “Real life, real
users, and real needs: a study and analysis of user queries
on the web”, Information Processing and Management,
vol. 36, issue 2, 2000, pp. 207-227.

[2] D. Shen, R. Pan, J.-T. Sun, J. J. Pan, K. Wu, J. Yin, Q.
Yang, “Q2C@UST: our winning solution to query
classification in KDDCUP 2005”, ACM SIGKDD
Explorations Newsletter, vol. 7, issue 2, 2005, pp. 100-110.

[3] M. Alemzadeh, F. Karray, “An efficient method for
tagging a query with category labels using Wikipedia
towards enhancing search engine results”, 2010
IEEE/WIC/ACM International Conference on Web

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 219

© 2012 ACADEMY PUBLISHER

Intelligence and Intelligent Agent Technology, Toronto,
Canada, 2010, pp. 192-195.

[4] M. Alemzadeh, R. Khoury, F. Karray, “Exploring
Wikipedia’s Category Graph for Query Classification”, in
Autonomous and Intelligent Systems, M. Kamel, F. Farray,
W. Gueaieb, A. Khamis (eds.), Lecture notes in Artificial
Intelligence, 1st edition, vol. 6752, Springer, 2011, pp.
222-230.

[5] Y. Li, Z. Zheng, H. Dai, “KDD CUP-2005 report: Facing a
great challenge”, ACM SIGKDD Explorations Newsletter,
vol. 7 issue 2, 2005, pp. 91-99.

[6] D. Shen, J. Sun, Q. Yang, Z. Chen, “Building bridges for
web query classification”, Proceedings of SIGIR’06, 2006,
pp. 131-138.

[7] H. Cao, D. H. Hu, D. Shen, D. Jiang, J.-T. Sun, E. Chen,
and Q. Yang. “Context-aware query classification”,
Proceedings of SIGIR, 2009.

[8] J. Fu, J. Xu, K. Jia, “Domain ontology based automatic
question answering”, International Conference on
Computer Engineering and Technology (ICCET '08), vol.
2, 2009, pp. 346-349.

[9] J. Yu, N. Ye, “Automatic web query classification using
large unlabeled web pages”, 9th International Conference
on Web-Age Information Management, Zhangjiajie, China,
2008, pp. 211-215.

[10] S. M. Beitzel, E. C. Jensen, D. D. Lewis, A. Chowdhury,
O. Frieder, “Automatic classification of web queries using
very large unlabeled query logs”, ACM Transactions on
Information Systems, vol. 25, no. 2, 2007, article 9.

[11] J. Hu, G. Wang, F. Lochovsky, J.-T. Sun, Z. Chen,
“Understanding user's query intent with Wikipedia”,
Proceedings of the 18th international conference on World
Wide Web, Spain, 2009, pp. 471-480.

[12] R. Khoury, “Query Classification using Wikipedia”,
International Journal of Intelligent Information and
Database Systems, vol. 5, no. 2, April 2011, pp. 143-163.

[13] P. Schönhofen, “Identifying document topics using the
Wikipedia category network”, Web Intelligence and Agent
Systems, IOS Press, Vol. 7, No. 2, 2009, pp. 195-207.

[14] Z. Minier, Z. Bodo, L. Csato, “Wikipedia-based kernels for
text categorization”, International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing,
Romania, 2007, pp, 157-164.

[15] P. Wang, J. Hu, H.-J. Zeng, Z. Chen, “Using Wikipedia
knowledge to improve text classification”, Knowledge and
Information Systems, vol. 19, issue 3, 2009, pp. 265-281.

[16] S. Banerjee, K. Ramanathan, A. Gupta, “Clustering short
texts using Wikipedia,” Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, Amsterdam,
Netherlands, 2007 pp. 787-788.

[17] K. Coursey, R. Mihalcea, “Topic identification using
Wikipedia graph centrality”, Proceedings of NAACL HLT,
2009, pp. 117-120.

[18] Z. S. Syed, T. Finin, A. Joshi, “Wikipedia as an ontology
for describing documents”, Proceedings of the Second
International Conference on Weblogs and Social Media,
March 2008.

[19] H. T. Dang, D. Kelly, J. Lin, “Overview of the TREC 2007
question answering track”, Proceedings of the Sixteenth
Text Retrieval Conference, 2007.

[20] B. Cao, J.-T. Sun, E. W. Xiang, D. H. Hu, Q. Yang, Z.
Chen, “PQC: personalized query classification”,
Proceedings of the 18th ACM conference on information
and knowledge management, Hong Kong, China, 2009, pp.
1217-1226.

220 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

