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Abstract—We are currently witnessing an information 

explosion with aid of many micro-blogging toolkits like the 

Twitter. Although Twitter provides a list of most popular 

topics people tweet about known as Trending Topics in real 

time, it is often hard to understand what these trending 

topics are about where most of these trending topics are far 

away from the personal preferences of the twitter user. In 

this article, we pay attention to the issue of personalizing the 

search for trending topics via enabling the twitter user to 

provide RSS feeds that include the personal preferences 

along with a twitter client that can filter personalized tweets 

and trending topics according to a sound algorithm for 

capturing the trending information. The algorithms used 

are the Latent Dirichlet allocation (LDA) along with the 

Levenshtein Distance. Our experimentations show that the 

developed prototype for personalized trending topics (T3C) 

finds more interesting trending topics that match the 

Twitter user list of preferences than traditional techniques 

without RSS personalization. 

Index Terms—component; Trending topics; Twitter 

Streaming; Classification, ADL   

I.  INTRODUCTION  

Twitter is a popular social networking service with 

over 100 million users. Twitter monitors the millions and 

billions of 140-character bits of wisdom that travel the 

Twitter verse and lists out the top 10 hottest trends (also 

known as “trending topics”) [1]. With such social 

networking, streams have become the main source of 

information for sharing and analyzing information as it 

comes into the system. Streams are central concepts in 

most momentous Twitter applications. Streams become so 

important that they even replaces search engines as a 

starting point of Web browsing – now a typical Web 

session consists in reading Twitter streams and following 

links found in these streams instead of starting with Web 

search.  One of the central applications of using streams 

with Twitter is mine in real-time trending topics. To 

develop such application one need to use one of the three 

Twitter Application Programming Interfaces (APIs). The 

first API is the REpresentational State Transfer (REST) 

which covers the basic Twitter functions (e.g. send direct 

messages, retweets, manipulate your lists). The second is 

the Twitter search API which can do everything that the 

Twitter Advanced Search can do. The third API is the 

streaming API which give developers low latency access 

to Twitter's global stream of Tweet data.  In particular the 

streaming API gives the developer  the ability to create a 

long-standing connection to Twitter that receives “push” 

updates when new tweets matching certain criteria arrive, 

obviating the need to constantly poll for updates. For this 

reason the use of the streaming APIs becomes more 

common practice related to twitter applications like 

finding trending topics. In such approach the user 

subscribes to followers (e.g. FriendFeed) and read the 

stream made up of posts from the followers. However, the 

problem with this approach is that there is always a 

compromise with the number of followers that the user 

would like to read and the amount of information he/she is 

able to consume. Twitter users share variety of comments 

regarding a wide range of topics. Some researchers 

recommended a streaming approach that identifies 

interesting tweets based on their density, negativity, 

trending and influence characteristics [2, 3]. However, 

mining this content to define user interests is a challenge 

that requires an effective solution. Certainly identifying a 

personalized stream that contains only a moderate number 

of posts that are potentially interesting for the user can be 

used for the customization and personalization of a variety 

of commercial and non-commercial applications like 
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product marketing and recommendation. Recently Twitter 

introduced local trending topics that contribute to the 

solution of this problem through improving the Discover 

Tab to show what users in your geography are tweeting 

about. But this service fail short in providing many 

personalized trending like displaying trends only from 

those you follow or whom they follow. There are many 

current other attempts to fill this gap like the Cadmus
1
 and 

KeyTweet
2
, however, there is comprehensive solution that 

can provide wider range of personalization venues for the 

Twitter users. This article introduces our investigation on 

developing personalized trending topics over stream of 

tweets. 

II. RELATED RESEACH  

Research on topic identification within a textual data is 

either related to information retrieval, data mining or a 

hybrid of both. Information retrieval research provides 

searching techniques that can identify the main concepts 

in a given text based on structural elements available 

within the provided text (e.g. by identifying noun phrases 

as good topic markers [5]). This is a multi-stage process 

that starts by identifying key concepts within a document, 

then grouping these to find topics, and finally mapping the 

topics back to documents and using the mapping to find 

higher-level groupings. Information retrieval research 

utilizes computational linguists and natural language 

techniques to predict important terms in document using 

methods like coreference, anaphora resolution or 

discourse center [6]. However, using linguistic techniques 

in identifying important terms do not necessarily 

correspond to the subject or the theme. Predicting 

important terms involves numerical weighting of terms in 

document. Terms with top weights are judged important 

and representative of document. In this direction terms 

extraction methods like TF-IDF [7] (term frequency-

inverse document frequency (TF–IDF) generally extracts 

from a text keywords which represent topics within the 

text). However, TF-IDF does not conduct segmentation). 

A segmentation method (e.g., TextTiling [8]) generally 

segments a text into blocks (paragraphs) in accord with 

topic changes within the text, but it does not identify (or 

label) by itself the topics discussed in each of the blocks. 

While both techniques (i.e. TF-IDF and Segmentation) 

have some appealing features—notably in its basic 

identification of sets of words that are discriminative for 

documents in the collection—these approaches also 

provides a relatively small amount of reduction in 

description length and reveals little in the way of inter- or 

intra-document statistical structure. To address these 

shortcomings, IR researchers have proposed several other 

dimensionality reduction techniques and topic 

identification techniques (e.g. LSI (latent semantic 

indexing), LDA (Latent Dirichlet allocation)) [9].  On the 

other hand, data mining tries to analyze text and predict 

                                                           
1
 http://thecadmus.com/ 

2
 http://keytweet.com/ 

frequent itemsets, or groups of named entities that 

commonly appear together from a training dataset and use 

these associations to predict topics in future given 

documents [10]. This approach assumes a previously 

available datasets and it not suitable for streaming and 

dynamically changing topics as the one associated with 

Twitter. For this reason we consider this approach is out 

of the scope of this article. 

III. DEVELOPING A STREAMING CLIENT FOR 

IDENTIFYING TRENDING TOPICS 

It is a simple task to start developing a Twitter 

streaming client especially with the availability of variety 

of Twitter streaming APIs (e.g. Twitter4J
3
, JavaTwitter

4
, 

JTwitter
5
). However, modifying this client to search for 

trending topics and adapting to the user preferences is 

another issue that can add higher programming 

complexities. The advantage of using trending topics is to 

reduce messaging overload that each active user receives 

each day. Without classifying the incoming tweets users 

are forced the Twitter to march through a 

chronologically-ordered morass to find tweets of interest. 

By finding personalized trending topics and grouping 

tweets according to coherently clustered trending topics 

for more directed exploration will simplify searching and 

identifying tweets of interest. In this section we are 

presenting a Twitter client that enables the client to group 

tweets according to the user preferences into topics 

mentioned explicitly or implicitly, which users can then 

be browsed for items of interest. To implement this topic 

clustering, we have developed a revised LDA (Latent 

Dirichlet allocation) algorithm for discovering trending 

topics.  Figure 1 illustrates the structure of our Trending 

Topics Twitter Client (T3C). 

 
Figure1. The Structure of the T3C Twitter Client. 

Data was collected using the Twitter streaming API
6
, 

with the filter tweet stream providing the input data and 

the trends/location stream providing the list of terms 

identified by Twitter as trending topics. The filter 

                                                           
3 http://repo1.maven.org/maven2/net/homeip/yusuke/twitter4j/  
4 http://www.javacodegeeks.com/2011/10/java-twitter-client-with-

twitter4j.html 
5 http://www.winterwell.com/software/jtwitter.php  
6 http://twitter.com 

Identify applicable sponsor/s here. If no sponsors, delete this text 
box. (sponsors) 
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streaming API is a limited stream returns public statuses 

that match one or more filter predicates. The United 

States (New York) and Canada (Toronto) was used as the 

location for evaluation. Google Geocoding API has been 

used to get location wise Twitter data
7
. The streaming 

data was collected automatically using the Twitter4j API.  

The streaming data was stored in a tabular CSV formatted 

file. Data has been collected with different time interval 

for same city and topic. We collected different topics of 

dataset from different city with different time interval. 

We collected Canada gas price topics from Thunder Bay 

and Toronto on 25th April 2012 and 26
th

 April 2012 

about 200 tweets.  We collected sport (Basketball) related 

topics from New York and Toronto on 8
th

 May 2012 and 

9
th

 may 2012 about 28000 tweets. We collected health 

(flu) related topics from Toronto and Vancouver on 8
th

 

May 2012 and 9
th

 May 2012 about 600 tweets.  We 

collected political (election) topics from Los Angeles and 

Toronto on 9
th
 May 2012 and 10

th
 May 2012 about 6000 

tweets. We collected education (engineering school) 

related topics from Toronto and New York on 9
th

 May 

2012 and 10
th

 May 2012 about 2000 tweets. Additionally 

we collected large set of data from USA and Canada 

between 25
th

 June 2012 and 30
th

 June 2012. We collected 

total 2736048 (economy 1795211, education 89455, 

health 390801, politics 60265, sports 400316) tweets. We 

ran our client to automatically collect the data. We used 

multiple twitter account to collect data concurrently
8
.  

Next the tweets were preprocessed to remove URL’s, 

Unicode characters, usernames, and punctuation, html, 

etc. A stop word file containing common English stop 

words was used to filter out tweets from common words.
9
  

The T3C client collects tweets and filters those that match 

the user preferences according the user feeds sent by the 

T3C user via the RSS protocol.   

IV. T3C TRENDING TOPICS PERSONALIZATION  

In this section, we describe an improved Twitter  

personalization mechanism by incorporating the user 

personalization RSS feeds. The user of our T3C Twitter 

client can feed his or her own personalization feeds via 

the RSS protocol or the user can directly upload the 

personalize data list from a given URL. Using RSS, the 

T3C reads these feeds an XMLEventReader method that 

reads all the available feeds and store them in a 

personalize data list. Figure 2 illustrates the filtering of 

personalized tweets through the streaming process. 

While the Twitter API collects tweet to form a dataset, 

the tweets that are related to the user personalization 

feeds are filtered out using string similarity method that is 

based on the Levenshtein Distance algorithm
10

. The 

Levenshtein distance is a measure between strings: the 

minimum cost of transforming one string into another 

through a sequence of edit operations. In our T3C the use 

of this measure can be illustrated using the following 

code snippet.   

                                                           
7 http://developers.google.com/maps/geocoding 
8 http://flash.lakeheadu.ca/~maislam/Data  
9 http://flash.lakeheadu.ca/~maislam/Data/stopwords.txt 
10 http://en.wikipedia.org/wiki/Levenshtein_distance  

Figure2. Filtering Personalized Tweets During Streaming. 
 

while((line = input.readLine()) != null){ 

 line=cleanup(line); 

double Distance = 80;     

if(personalize.size()>0) 

     Distance=4000; 

for (int j = 0; j < personalize.size(); ++j )  { 

 String comparisionTweet = personalize.get(j); 

 Int thisDistance; 
 

thisDistance=Util.computeLevenshteinDistance(comparisionTweet,
line);   

  if (Distance > thisDistance) {    Distance = thisDistance;}                                 

 } 

if(Distance<=80)   

 articleTextList.add(line); 

} 

 

The similarity detection loop continues until the end of 

the dataset. For each tweets we remove URL’s, Unicode 

characters, usernames, and punctuation, html, stop words, 

etc. Then similarity loop iterates over the user personalize 

RSS data list to get the minimum Levenshtein distance 

value. In our implementation we have set an average 

distance value 80 as a good value to catch most related 

personalize tweets. We also found that using the 

Levenshtein distance we can remove duplicate tweets if 

the distance is zero indicating that the two tweets are 

identical [11]. After filtering the personalized tweets the 

Latent Dirichlet allocation (LDA) algorithm is used to 

generate trending topics model.  The basic idea of LDA is 

that documents are represented as random mixtures over 

latent topics, where each topic is characterized by a 

distribution over words [4].  LDA makes the assumption 

that document generation can be explained in terms of 

these distributions, which are assumed to have a Dirichlet 

prior.  First a topic distribution is chosen for the 

document, and then each word in the document is 

generated by randomly selecting a topic from the topic 

distribution and randomly selecting a word from the 

chosen topic.  Given a set of documents, the main 

challenge is to infer the word distributions and topic 

mixtures that best explain the observed data.  This 

inference is computationally intractable, but an 

approximate answer can be found using a Gibbs sampling 
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approach. The LingPipe LDA implementation
11

 was used 

in our Twitter client prototype. In this LDA 

implementation, a topic is nothing more than a discrete 

probability distribution over words. That is, given a topic, 

each word has a probability of occurring, and the sum of 

all word probabilities in a topic must be one. For the 

purposes of LDA, a document is modeled as a sequence 

of tokens. We use the tokenizer factory and symbol table 

to convert the text to a sequence of token identifiers in the 

symbol table, using the static utility method built into 

LingPipe LDA
12

. Using the LingPipe LDA API we can 

report topics according to the following code snippet: 

 
for (int topic = 0; topic < numTopics; ++topic) { 

        int topicCount = sample.topicCount(topic); 
        ObjectToCounterMap<Integer> counter = new 

ObjectToCounterMap<Integer>(); 

for (int wordId = 0; wordId < numWords; ++wordId) 
{             

        String word = mSymbolTable.idToSymbol(wordId); 

         double Distance = 4;     
          if(personalize.size()>0) 

               Distance=4000; 

           for (int j = 0; j < personalize.size(); ++j )  
            { 

                   String comparisionTweet = personalize.get(j); 

thisDistance=Util.computeLevenshteinDistance(comparisionTweet,wor
d);   

             if (Distance > thisDistance) {                                     

                                        Distance = thisDistance; 

                                    }                                 

                                }                                 

                                if(Distance<=4 ){   
counter.set(Integer.valueOf(wordId), 

sample.topicWordCount(topic, wordId)); 

     } 
 }        

 List<Integer> topWords = counter.keysOrderedByCountList(); 

 } 
 

The iterative process of identifying trending topics 

maps the word identifiers to their counts in the current 

topic. The resulting mapping is sorted for each identifier 

based on their counts, from high to low, and assigned to a 

list of integers. Then trending topics are ranked according 

to the Z score by testing binomial hypothesis of word 

frequency in personalized topic against the word 

frequency in the corpus 
 
[11]. Table 1 and 2 illustrates 

running T3C with or without personalization with initial 

search around football and basketball. 

 

 

 

 

 

 

 

 

 

 

                                                           
11 http://alias-

i.com/lingpipe/docs/api/com/aliasi/cluster/LatentDirichletAllocation.ht
ml 
12 http://alias-i.com/lingpipe/demos/tutorial/cluster/read-me.html 

TABLE I. 

TRENDING TOPICS WITHOUT PERSONALIZATION 

Trending Topic Count Probability 

basketball 12479 0.161 

play 2471 0.032 

watch 1277 0.016 

school 1271 0.016 

game 1153 0.015 

bballproblemz 1109 0.014 

#basketballproblem 1082 0.014 

basketballproblem 1079 0.014 

asleep 1063 0.014 

love 874 0.011 

player 853 0.011 

football 647 0.008 

 

TABLE II. 

TRENDING TOPICS WITH PERSONALIZATION 

Trending Topic Count Probability 

basketball      3660    0.298        

watch       372 0.030        

love       322    0.026        

play       322 0.026        

game       289    0.024        

football       204     0.017        

player       181 0.015 

team        82 0.007 

don        72 0.007 

season        72 0.007 

baseball        59 0.005 

short        57 0.005 

 

 

V. EXPERIMENTATION RELATED TO THE IDENIFICATION OF 

TRENDING TOPICS 

Our experimentation starts by collecting a reasonable 

tweets samples on general topics like health, education, 

sports, ecomomy and politics. For this purpose, we run 

our T3C client to find trending topics by applying certain 

personalization feeds/queries as well as without any 

personalization. To demonstrate the effects of our RSS-

Based personalization, we conducted for experiments. 

For the first experiment, we have collected 3,90,801 

Tweets related to the health topic and applied our 

personalization mechanism by uploading medical feeds 

related to cancer/oncology research from 

MedicalNewsToday
13

.  We used the same sample and 

filter trending topics without personalization feeds for 

comparison purposes using the Twitter Filter API and the 

LDA algorithm. For personalization purpose, we apply 

the Twitter Filter API first to get general helath related 

Tweets followed by calling  our rss reader to read the 

client personalization feeds and after that we apply the 

Levenshtein Distance algorithm (between user 

personalization feeds and health related tweets) followed 

by the LDA algorithm to finally finding the personalized 

                                                           
13 http://www.medicalnewstoday.com/rss/cancer-oncology.xml 
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trending topics. Figures 3a and 3b illustrate the 

comparison between finding trending topics with 

personalization and without personalization. For this 

expirement, we used fixed some variables like: Dirichlet 

priors to be .01 for η , .01 for α, number of topics to be 12 

for, samples to be 2000, 200 for buring period and 5 

sampling frequency
14

. 

 
                           (a) Comparison Histogram 

 
(b) Comparison Graph 

Figure 3.  Comparing Health Related Trending Topics with RSS 
Personalization and without Personalization. 

 

 

Figures 4.a and 4.b are showing the most frequent 

health related trending topics word for both personalize 

and non-personalize topics.  

Moreover, we conducted similar experiments using 

other general topics. For economy and finance, we 

collected 17,95,211 and used the Economist Banking 

RSS feeds
15

. For education we collected 89455 tweets 

and used the CBC Technology Feeds
16

. For politics we 

collected 60265 tweets and use the CBC Politics Feeds
17

. 

Finally for sports we collected 400316 tweets and used 

the CBC Sports Feeds
18

. We publish all the results of 

these experiments on our Lakehead University Flash 

server
19

. Our experiments shows clearly that our RSS-

Based personalization mechanism finds trending topics 

that matches the user perferences through the provided 

user feeds. 

                                                           
14 http://alias-i.com/lingpipe/docs/api/index.html  
15 http://www.economist.com/topics/banking/index.xml 
16 http://rss.cbc.ca/lineup/technology.xml. 
17 http://rss.cbc.ca/lineup/politics.xml. 
18 http://rss.cbc.ca/lineup/sports.xml 
19 http://flash.lakeheadu.ca/~maislam/TestSample 

 
                                                    (a) 

 

 

 
                                              (b) 
Figure 4.  Frequency Counts for Trending Topics with or without RSS 

Personalization. 

 

VI. CONCLUSIONS 

While numerous volumes of Tweets users receive daily, 

certain popular issues tend to capture their attention. Such 

trending topics are of great interest not only to the Twitter 

micro-bloggers but also to advertisers, marketers, 

journalists and many others. An examination of the state 

of the art in this area reveals progress that lags its 

importance [14]. In this article, we have introduced a new 

method for identifying trending topics using RSS feeds. 

In this method we used two algorithms to identify tweets 

that are similar to the RSS Levenshtein Distance 

algorithm and the LDA. Although LDA is a popular 

information retrieval algorithm that have been used also 

for finding trending topics [12], no attempt that we know 

have used the RSS feed for personalization. Figure 5 

shows a screenshot of GUI of our RSS-Based 

Personalization Twitter Client (T3C). 
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Figure 5.  GUI for the RSS-Based T3C Client. 

 

We are continuing our attempts to develop more 

personalization mechanisms that adds more focused 

identification of personalized trending topics using 

techniques that utilize machine learning algorithms [13]. 

The results of these experiments will be the subject of our 

next article. 
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