
Towards Identifying Personalized Twitter

Trending Topics using the Twitter Client RSS

Feeds

Jinan Fiaidhi, Sabah Mohammed

Department of Computer Science

Lakehead University

Thunder Bay, Ontario P7B 5E1, Canada

{jfiaidhi,mohammed}@lakeheadu.ca

Aminul Islam

Department of Computer Science

Lakehead University

Thunder Bay, Ontario P7B 5E1, Canada

maislam@lakeheadu.ca

Abstract—We are currently witnessing an information

explosion with aid of many micro-blogging toolkits like the

Twitter. Although Twitter provides a list of most popular

topics people tweet about known as Trending Topics in real

time, it is often hard to understand what these trending

topics are about where most of these trending topics are far

away from the personal preferences of the twitter user. In

this article, we pay attention to the issue of personalizing the

search for trending topics via enabling the twitter user to

provide RSS feeds that include the personal preferences

along with a twitter client that can filter personalized tweets

and trending topics according to a sound algorithm for

capturing the trending information. The algorithms used

are the Latent Dirichlet allocation (LDA) along with the

Levenshtein Distance. Our experimentations show that the

developed prototype for personalized trending topics (T3C)

finds more interesting trending topics that match the

Twitter user list of preferences than traditional techniques

without RSS personalization.

Index Terms—component; Trending topics; Twitter

Streaming; Classification, ADL

I. INTRODUCTION

Twitter is a popular social networking service with

over 100 million users. Twitter monitors the millions and

billions of 140-character bits of wisdom that travel the

Twitter verse and lists out the top 10 hottest trends (also

known as “trending topics”) [1]. With such social

networking, streams have become the main source of

information for sharing and analyzing information as it

comes into the system. Streams are central concepts in

most momentous Twitter applications. Streams become so

important that they even replaces search engines as a

starting point of Web browsing – now a typical Web

session consists in reading Twitter streams and following

links found in these streams instead of starting with Web

search. One of the central applications of using streams

with Twitter is mine in real-time trending topics. To

develop such application one need to use one of the three

Twitter Application Programming Interfaces (APIs). The

first API is the REpresentational State Transfer (REST)

which covers the basic Twitter functions (e.g. send direct

messages, retweets, manipulate your lists). The second is

the Twitter search API which can do everything that the

Twitter Advanced Search can do. The third API is the

streaming API which give developers low latency access

to Twitter's global stream of Tweet data. In particular the

streaming API gives the developer the ability to create a

long-standing connection to Twitter that receives “push”

updates when new tweets matching certain criteria arrive,

obviating the need to constantly poll for updates. For this

reason the use of the streaming APIs becomes more

common practice related to twitter applications like

finding trending topics. In such approach the user

subscribes to followers (e.g. FriendFeed) and read the

stream made up of posts from the followers. However, the

problem with this approach is that there is always a

compromise with the number of followers that the user

would like to read and the amount of information he/she is

able to consume. Twitter users share variety of comments

regarding a wide range of topics. Some researchers

recommended a streaming approach that identifies

interesting tweets based on their density, negativity,

trending and influence characteristics [2, 3]. However,

mining this content to define user interests is a challenge

that requires an effective solution. Certainly identifying a

personalized stream that contains only a moderate number

of posts that are potentially interesting for the user can be

used for the customization and personalization of a variety

of commercial and non-commercial applications like

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 221

© 2012 ACADEMY PUBLISHER
doi:10.4304/jetwi.4.3.221-226

product marketing and recommendation. Recently Twitter

introduced local trending topics that contribute to the

solution of this problem through improving the Discover

Tab to show what users in your geography are tweeting

about. But this service fail short in providing many

personalized trending like displaying trends only from

those you follow or whom they follow. There are many

current other attempts to fill this gap like the Cadmus
1
 and

KeyTweet
2
, however, there is comprehensive solution that

can provide wider range of personalization venues for the

Twitter users. This article introduces our investigation on

developing personalized trending topics over stream of

tweets.

II. RELATED RESEACH

Research on topic identification within a textual data is

either related to information retrieval, data mining or a

hybrid of both. Information retrieval research provides

searching techniques that can identify the main concepts

in a given text based on structural elements available

within the provided text (e.g. by identifying noun phrases

as good topic markers [5]). This is a multi-stage process

that starts by identifying key concepts within a document,

then grouping these to find topics, and finally mapping the

topics back to documents and using the mapping to find

higher-level groupings. Information retrieval research

utilizes computational linguists and natural language

techniques to predict important terms in document using

methods like coreference, anaphora resolution or

discourse center [6]. However, using linguistic techniques

in identifying important terms do not necessarily

correspond to the subject or the theme. Predicting

important terms involves numerical weighting of terms in

document. Terms with top weights are judged important

and representative of document. In this direction terms

extraction methods like TF-IDF [7] (term frequency-

inverse document frequency (TF–IDF) generally extracts

from a text keywords which represent topics within the

text). However, TF-IDF does not conduct segmentation).

A segmentation method (e.g., TextTiling [8]) generally

segments a text into blocks (paragraphs) in accord with

topic changes within the text, but it does not identify (or

label) by itself the topics discussed in each of the blocks.

While both techniques (i.e. TF-IDF and Segmentation)

have some appealing features—notably in its basic

identification of sets of words that are discriminative for

documents in the collection—these approaches also

provides a relatively small amount of reduction in

description length and reveals little in the way of inter- or

intra-document statistical structure. To address these

shortcomings, IR researchers have proposed several other

dimensionality reduction techniques and topic

identification techniques (e.g. LSI (latent semantic

indexing), LDA (Latent Dirichlet allocation)) [9]. On the

other hand, data mining tries to analyze text and predict

1
 http://thecadmus.com/

2
 http://keytweet.com/

frequent itemsets, or groups of named entities that

commonly appear together from a training dataset and use

these associations to predict topics in future given

documents [10]. This approach assumes a previously

available datasets and it not suitable for streaming and

dynamically changing topics as the one associated with

Twitter. For this reason we consider this approach is out

of the scope of this article.

III. DEVELOPING A STREAMING CLIENT FOR

IDENTIFYING TRENDING TOPICS

It is a simple task to start developing a Twitter

streaming client especially with the availability of variety

of Twitter streaming APIs (e.g. Twitter4J
3
, JavaTwitter

4
,

JTwitter
5
). However, modifying this client to search for

trending topics and adapting to the user preferences is

another issue that can add higher programming

complexities. The advantage of using trending topics is to

reduce messaging overload that each active user receives

each day. Without classifying the incoming tweets users

are forced the Twitter to march through a

chronologically-ordered morass to find tweets of interest.

By finding personalized trending topics and grouping

tweets according to coherently clustered trending topics

for more directed exploration will simplify searching and

identifying tweets of interest. In this section we are

presenting a Twitter client that enables the client to group

tweets according to the user preferences into topics

mentioned explicitly or implicitly, which users can then

be browsed for items of interest. To implement this topic

clustering, we have developed a revised LDA (Latent

Dirichlet allocation) algorithm for discovering trending

topics. Figure 1 illustrates the structure of our Trending

Topics Twitter Client (T3C).

Figure1. The Structure of the T3C Twitter Client.

Data was collected using the Twitter streaming API
6
,

with the filter tweet stream providing the input data and

the trends/location stream providing the list of terms

identified by Twitter as trending topics. The filter

3 http://repo1.maven.org/maven2/net/homeip/yusuke/twitter4j/
4 http://www.javacodegeeks.com/2011/10/java-twitter-client-with-

twitter4j.html
5 http://www.winterwell.com/software/jtwitter.php
6 http://twitter.com

Identify applicable sponsor/s here. If no sponsors, delete this text
box. (sponsors)

222 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

http://repo1.maven.org/maven2/net/homeip/yusuke/twitter4j/
http://www.javacodegeeks.com/2011/10/java-twitter-client-with-twitter4j.html
http://www.javacodegeeks.com/2011/10/java-twitter-client-with-twitter4j.html
http://www.winterwell.com/software/jtwitter.php
http://twitter.com/

streaming API is a limited stream returns public statuses

that match one or more filter predicates. The United

States (New York) and Canada (Toronto) was used as the

location for evaluation. Google Geocoding API has been

used to get location wise Twitter data
7
. The streaming

data was collected automatically using the Twitter4j API.

The streaming data was stored in a tabular CSV formatted

file. Data has been collected with different time interval

for same city and topic. We collected different topics of

dataset from different city with different time interval.

We collected Canada gas price topics from Thunder Bay

and Toronto on 25th April 2012 and 26
th

 April 2012

about 200 tweets. We collected sport (Basketball) related

topics from New York and Toronto on 8
th

 May 2012 and

9
th

 may 2012 about 28000 tweets. We collected health

(flu) related topics from Toronto and Vancouver on 8
th

May 2012 and 9
th

 May 2012 about 600 tweets. We

collected political (election) topics from Los Angeles and

Toronto on 9
th
 May 2012 and 10

th
 May 2012 about 6000

tweets. We collected education (engineering school)

related topics from Toronto and New York on 9
th

 May

2012 and 10
th

 May 2012 about 2000 tweets. Additionally

we collected large set of data from USA and Canada

between 25
th

 June 2012 and 30
th

 June 2012. We collected

total 2736048 (economy 1795211, education 89455,

health 390801, politics 60265, sports 400316) tweets. We

ran our client to automatically collect the data. We used

multiple twitter account to collect data concurrently
8
.

Next the tweets were preprocessed to remove URL’s,

Unicode characters, usernames, and punctuation, html,

etc. A stop word file containing common English stop

words was used to filter out tweets from common words.
9

The T3C client collects tweets and filters those that match

the user preferences according the user feeds sent by the

T3C user via the RSS protocol.

IV. T3C TRENDING TOPICS PERSONALIZATION

In this section, we describe an improved Twitter

personalization mechanism by incorporating the user

personalization RSS feeds. The user of our T3C Twitter

client can feed his or her own personalization feeds via

the RSS protocol or the user can directly upload the

personalize data list from a given URL. Using RSS, the

T3C reads these feeds an XMLEventReader method that

reads all the available feeds and store them in a

personalize data list. Figure 2 illustrates the filtering of

personalized tweets through the streaming process.

While the Twitter API collects tweet to form a dataset,

the tweets that are related to the user personalization

feeds are filtered out using string similarity method that is

based on the Levenshtein Distance algorithm
10

. The

Levenshtein distance is a measure between strings: the

minimum cost of transforming one string into another

through a sequence of edit operations. In our T3C the use

of this measure can be illustrated using the following

code snippet.

7 http://developers.google.com/maps/geocoding
8 http://flash.lakeheadu.ca/~maislam/Data
9 http://flash.lakeheadu.ca/~maislam/Data/stopwords.txt
10 http://en.wikipedia.org/wiki/Levenshtein_distance

Figure2. Filtering Personalized Tweets During Streaming.

while((line = input.readLine()) != null){

 line=cleanup(line);

double Distance = 80;

if(personalize.size()>0)

 Distance=4000;

for (int j = 0; j < personalize.size(); ++j) {

 String comparisionTweet = personalize.get(j);

 Int thisDistance;

thisDistance=Util.computeLevenshteinDistance(comparisionTweet,
line);

 if (Distance > thisDistance) { Distance = thisDistance;}

 }

if(Distance<=80)

 articleTextList.add(line);

}

The similarity detection loop continues until the end of

the dataset. For each tweets we remove URL’s, Unicode

characters, usernames, and punctuation, html, stop words,

etc. Then similarity loop iterates over the user personalize

RSS data list to get the minimum Levenshtein distance

value. In our implementation we have set an average

distance value 80 as a good value to catch most related

personalize tweets. We also found that using the

Levenshtein distance we can remove duplicate tweets if

the distance is zero indicating that the two tweets are

identical [11]. After filtering the personalized tweets the

Latent Dirichlet allocation (LDA) algorithm is used to

generate trending topics model. The basic idea of LDA is

that documents are represented as random mixtures over

latent topics, where each topic is characterized by a

distribution over words [4]. LDA makes the assumption

that document generation can be explained in terms of

these distributions, which are assumed to have a Dirichlet

prior. First a topic distribution is chosen for the

document, and then each word in the document is

generated by randomly selecting a topic from the topic

distribution and randomly selecting a word from the

chosen topic. Given a set of documents, the main

challenge is to infer the word distributions and topic

mixtures that best explain the observed data. This

inference is computationally intractable, but an

approximate answer can be found using a Gibbs sampling

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 223

© 2012 ACADEMY PUBLISHER

http://developers.google.com/maps/geocoding
http://flash.lakeheadu.ca/~maislam/Data
http://flash.lakeheadu.ca/~maislam/Data/stopwords.txt
http://en.wikipedia.org/wiki/Levenshtein_distance

approach. The LingPipe LDA implementation
11

 was used

in our Twitter client prototype. In this LDA

implementation, a topic is nothing more than a discrete

probability distribution over words. That is, given a topic,

each word has a probability of occurring, and the sum of

all word probabilities in a topic must be one. For the

purposes of LDA, a document is modeled as a sequence

of tokens. We use the tokenizer factory and symbol table

to convert the text to a sequence of token identifiers in the

symbol table, using the static utility method built into

LingPipe LDA
12

. Using the LingPipe LDA API we can

report topics according to the following code snippet:

for (int topic = 0; topic < numTopics; ++topic) {

 int topicCount = sample.topicCount(topic);
 ObjectToCounterMap<Integer> counter = new

ObjectToCounterMap<Integer>();

for (int wordId = 0; wordId < numWords; ++wordId)
{

 String word = mSymbolTable.idToSymbol(wordId);

 double Distance = 4;
 if(personalize.size()>0)

 Distance=4000;

 for (int j = 0; j < personalize.size(); ++j)
 {

 String comparisionTweet = personalize.get(j);

thisDistance=Util.computeLevenshteinDistance(comparisionTweet,wor
d);

 if (Distance > thisDistance) {

 Distance = thisDistance;

 }

 }

 if(Distance<=4){
counter.set(Integer.valueOf(wordId),

sample.topicWordCount(topic, wordId));

 }
 }

 List<Integer> topWords = counter.keysOrderedByCountList();

 }

The iterative process of identifying trending topics

maps the word identifiers to their counts in the current

topic. The resulting mapping is sorted for each identifier

based on their counts, from high to low, and assigned to a

list of integers. Then trending topics are ranked according

to the Z score by testing binomial hypothesis of word

frequency in personalized topic against the word

frequency in the corpus

[11]. Table 1 and 2 illustrates

running T3C with or without personalization with initial

search around football and basketball.

11 http://alias-

i.com/lingpipe/docs/api/com/aliasi/cluster/LatentDirichletAllocation.ht
ml
12 http://alias-i.com/lingpipe/demos/tutorial/cluster/read-me.html

TABLE I.

TRENDING TOPICS WITHOUT PERSONALIZATION

Trending Topic Count Probability

basketball 12479 0.161

play 2471 0.032

watch 1277 0.016

school 1271 0.016

game 1153 0.015

bballproblemz 1109 0.014

#basketballproblem 1082 0.014

basketballproblem 1079 0.014

asleep 1063 0.014

love 874 0.011

player 853 0.011

football 647 0.008

TABLE II.

TRENDING TOPICS WITH PERSONALIZATION

Trending Topic Count Probability

basketball 3660 0.298

watch 372 0.030

love 322 0.026

play 322 0.026

game 289 0.024

football 204 0.017

player 181 0.015

team 82 0.007

don 72 0.007

season 72 0.007

baseball 59 0.005

short 57 0.005

V. EXPERIMENTATION RELATED TO THE IDENIFICATION OF

TRENDING TOPICS

Our experimentation starts by collecting a reasonable

tweets samples on general topics like health, education,

sports, ecomomy and politics. For this purpose, we run

our T3C client to find trending topics by applying certain

personalization feeds/queries as well as without any

personalization. To demonstrate the effects of our RSS-

Based personalization, we conducted for experiments.

For the first experiment, we have collected 3,90,801

Tweets related to the health topic and applied our

personalization mechanism by uploading medical feeds

related to cancer/oncology research from

MedicalNewsToday
13

. We used the same sample and

filter trending topics without personalization feeds for

comparison purposes using the Twitter Filter API and the

LDA algorithm. For personalization purpose, we apply

the Twitter Filter API first to get general helath related

Tweets followed by calling our rss reader to read the

client personalization feeds and after that we apply the

Levenshtein Distance algorithm (between user

personalization feeds and health related tweets) followed

by the LDA algorithm to finally finding the personalized

13 http://www.medicalnewstoday.com/rss/cancer-oncology.xml

224 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

http://alias-i.com/lingpipe/docs/api/com/aliasi/cluster/LatentDirichletAllocation.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/cluster/LatentDirichletAllocation.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/cluster/LatentDirichletAllocation.html
http://alias-i.com/lingpipe/demos/tutorial/cluster/read-me.html
http://www.medicalnewstoday.com/rss/cancer-oncology.xml

trending topics. Figures 3a and 3b illustrate the

comparison between finding trending topics with

personalization and without personalization. For this

expirement, we used fixed some variables like: Dirichlet

priors to be .01 for η , .01 for α, number of topics to be 12

for, samples to be 2000, 200 for buring period and 5

sampling frequency
14

.

 (a) Comparison Histogram

(b) Comparison Graph

Figure 3. Comparing Health Related Trending Topics with RSS
Personalization and without Personalization.

Figures 4.a and 4.b are showing the most frequent

health related trending topics word for both personalize

and non-personalize topics.

Moreover, we conducted similar experiments using

other general topics. For economy and finance, we

collected 17,95,211 and used the Economist Banking

RSS feeds
15

. For education we collected 89455 tweets

and used the CBC Technology Feeds
16

. For politics we

collected 60265 tweets and use the CBC Politics Feeds
17

.

Finally for sports we collected 400316 tweets and used

the CBC Sports Feeds
18

. We publish all the results of

these experiments on our Lakehead University Flash

server
19

. Our experiments shows clearly that our RSS-

Based personalization mechanism finds trending topics

that matches the user perferences through the provided

user feeds.

14 http://alias-i.com/lingpipe/docs/api/index.html
15 http://www.economist.com/topics/banking/index.xml
16 http://rss.cbc.ca/lineup/technology.xml.
17 http://rss.cbc.ca/lineup/politics.xml.
18 http://rss.cbc.ca/lineup/sports.xml
19 http://flash.lakeheadu.ca/~maislam/TestSample

 (a)

 (b)
Figure 4. Frequency Counts for Trending Topics with or without RSS

Personalization.

VI. CONCLUSIONS

While numerous volumes of Tweets users receive daily,

certain popular issues tend to capture their attention. Such

trending topics are of great interest not only to the Twitter

micro-bloggers but also to advertisers, marketers,

journalists and many others. An examination of the state

of the art in this area reveals progress that lags its

importance [14]. In this article, we have introduced a new

method for identifying trending topics using RSS feeds.

In this method we used two algorithms to identify tweets

that are similar to the RSS Levenshtein Distance

algorithm and the LDA. Although LDA is a popular

information retrieval algorithm that have been used also

for finding trending topics [12], no attempt that we know

have used the RSS feed for personalization. Figure 5

shows a screenshot of GUI of our RSS-Based

Personalization Twitter Client (T3C).

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 225

© 2012 ACADEMY PUBLISHER

http://alias-i.com/lingpipe/docs/api/index.html
http://www.economist.com/topics/banking/index.xml
http://rss.cbc.ca/lineup/technology.xml
http://rss.cbc.ca/lineup/politics.xml
http://rss.cbc.ca/lineup/sports.xml
http://flash.lakeheadu.ca/~maislam/TestSample

Figure 5. GUI for the RSS-Based T3C Client.

We are continuing our attempts to develop more

personalization mechanisms that adds more focused

identification of personalized trending topics using

techniques that utilize machine learning algorithms [13].

The results of these experiments will be the subject of our

next article.

ACKNOWLEDGMENT

Dr. J. Fiaidhi would like to acknowledge the support of

NSERC for the research conducted in this article.

REFERENCES

[1] James Benhardus, Streaming Trend Detection in Twitter,

2010 UCCS REU FOR ARTIFICIAL INTELLIGENCE,
NATURAL LANGUAGE PROCESSING AND
INFORMATION RETRIEVAL FINAL REPORT.

[2] Ming Hao et. al, Visual sentiment analysis on twitter data
streams,2011 IEEE Conference onVisual Analytics
Science and Technology (VAST), 23-28 Oct. 2011, pp277
– 278

[3] Suzumura, T. and Oiki, T., StreamWeb: Real-Time Web
Monitoring with Stream Computing, 2011 IEEE

International Conference on Web Services (ICWS), 4-9
July 2011, pp620 – 627

[4] Kevin R. Canini, Lei Shi and Thomas L. Griffiths, Online
Inference of Topics with Latent Dirichlet Allocation,In
Proceedings of the International Conference on Artificial
Intelligence and Statistics, 2009,
http://cocosci.berkeley.edu/tom/papers/topicpf.pdf

[5] Bendersky, M. and Croft, W.B. Discovering key concepts
in verbose queries. SIGIR '08, ACM Press (2008).

[6] Nomoto, Tadashi and Matsumoto, Yuji,EXPLOITING
TEXT STRUCTURE FOR TOPIC IDENTIFICATION,
Workshop On Very Large Corpora, 1996

[7] Salton, G., & Yang, C. S. (1973). On the specification of
term values in automatic indexing. Journal of
Documentation, 29(4), 351–372.

[8] Hearst, M. (1997). Texttiling: Segmenting text into multi-
paragraph subtopic passages. Computational Linguistics,
23(1), 33–64.

[9] David M. Blei, Andrew Y. Ng and Michael I. Jordan,
Latent Dirichlet Allocation, Journal of Machine Learning
Research 3 (2003) 993-1022

[10] Alexander Pak and Patrick Paroubek, Twitter as a Corpus
for Sentiment Analysis and Opinion Mining, Proceedings
of the Seventh International Conference on Language
Resources and Evaluation (LREC'10)}, May 19-21,
2010,Valletta, Malta.

[11] Alex Hai Wang, Don’t Follow me: Spam Detection in
Twitter, IEEE Proceedings of the 2010 International
Conference on Security and Cryptography (SECRYPT),
26-28 July 2010,
http://test.scripts.psu.edu/students/h/x/hxw164/files/SECR
YPT2010_Wang.pdf

[12] Daniel Ramage, Susan Dumais, and Dan Liebling,
Characterizing Microblogs with Topic Models, in Proc.
ICWSM 2010, American Association for Artificial
Intelligence , May 2010

[13] Kathy Lee, Diana Palsetia, Ramanathan Narayanan, Md.
Mostofa Ali Patwary, Ankit Agrawal, and Alok Choudhary,
Twitter Trending Topic Classification, 2011 11th IEEE
International Conference on Data Mining Workshops,
ICDMW2011,pp.251-258.

[14] Fang Fang and Nargis Pervin, Finding Trending Topics in
Twitter in Real Time, NRICH Research, 2010, Available
online: http://nrich.comp.nus.edu.sg/research_topic3.html.

226 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

http://cocosci.berkeley.edu/tom/papers/topicpf.pdf
http://test.scripts.psu.edu/students/h/x/hxw164/files/SECRYPT2010_Wang.pdf
http://test.scripts.psu.edu/students/h/x/hxw164/files/SECRYPT2010_Wang.pdf

