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Abstract—We address the problem of the computational 

difficulties occurring by the heavy processing load required 

by the use of the Dempster-Shafer Theory (DST) in 

Information Retrieval. Specifically, we focus our efforts on 

the measure of performance known as the Jousselme 

distance between two basic probability assignments (or 

bodies of evidences). We discuss first the extension of the 

Jousselme distance from the DST to the Dezert-

Smarandache Theory, a generalization of the DST. It is 

followed by an introduction to two new metrics we have 

developed: a Hamming inspired metric for evidences, and a 

metric based on the degree of shared uncertainty. The 

performances of theses metrics are compared one to each 

other.  

 

Index Terms—Dempster-Shafer, Measure of performance, 

Evidential Theory, Dezert-Smarandache, Distance 

 

I.  INTRODUCTION 

Comparing two, or more, bodies of evidences (BOE) 

in the case of large frame of discernment, in the 

Dempster-Shafer theory of evidence [1, 2], may not 

always give intuitive choices from which we can simply 

choose a proposition the with largest basic probability 

assignment (BPA) (or mass), or belief. A metric becomes 

very useful to analyze the behavior of a decision system 

in order to correct and enhance its performance. It is also 

useful when trying to evaluate the distance between two 

systems giving different BOEs. It is also helpful to 

determine if a source of information regularly gives an 

answer that is far from other sources, so that this faulty 

source can be weighted or discarded. Different 

approaches to deal with conflicting or unreliable sources 

are proposed in [3, 4, 5]. 

Although the Dempster-Shafer Theory (DST) has 

many advantages, such as its ability to deal with 

uncertainty and ignorance, it has the problem of 

becoming quickly computationally heavy as it is an NP-

hard problem [6]. To alleviate this computational burden, 

many approximation techniques of belief functions exist 

[7, 8, 9]. References [10, 11] show implementations and a 

comparative study of some approximation techniques.  

To be able to efficiently evaluate the various 

approximation techniques, one needs some form of 

metric. The Jousselme distance between two bodies of 

evidences [12] is one of them. However, there is a 

problem with this metric: it requires the computation of 

the cardinal of a given set, an operation which is very 

costly computation-wise within the DST. Alternatives to 

the Jousselme distance are thus needed. This is the 

objective of the research we present here.  

A.  The Dempster-Shafer Theory in Information Retrieval 

The authors of [13] use the DST to combine the visual 

and textual measures for ranking choosing the best word 

to use as annotation for an image. The DST is also used 

in the modeling of uncertainty in Information Retrieval 

(IR) applied to structured documents. We find in [14] that 

the use of the DST is due to: (i) it’s ability to represent 

leaf objects; (ii) it’s ability to capture uncertainty and the 

aggregation operator it provides, allowing the expression 

of uncertainty with respect to aggregated components; 

and (iii) the properties of the aggregation operator that are 

compatible with those defined by the logical model 

developed by [15].  

Extensible Markup Language (XML) IR, by contrast to 

traditional IR, deals with documents that contain 

structural markups which can be used as hints to assess 

the relevancy of individual elements instead of the whole 

document. Reference [16] presents how the DST can be 

used in the weighting of elements in the document. It is 

also used to express uncertainty and to combine 

evidences derived from different inferences, providing 

relevancy values of all elements of the XML document.  

Good mapping algorithms that perform efficient 

syntactic and semantic mappings between classes and 

their properties in different ontologies is often required 

for Question Answering systems. For that purpose, a 

multi-agent framework was proposed in [17]. In this 

framework, individual agents perform the mappings, and 

their beliefs are combined using the DST. In that system, 

the DST is used to deal with the uncertainty related to the 

use of different ontologies. The authors also use 

similarity assessment algorithms between concepts 

(words) and inherited hypernyms; once using BOE to 

represent information, metrics between BOE could be 

used to accomplish this.  

As shown in [18], the fundamental issues in IR are the 

selection of an appropriate scheme/model for document 

representation and query formulation, and the 

determination of a ranking function to express the 

relevance of the document to the query. The authors 
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compare IR systems based on probability and belief 

theories, and note a series of advantages and 

disadvantages with the use of the DST in IR. Putting 

aside the issue of computational complexity, they come to 

the conclusion that the DST is the better option, thanks to 

its ability to deal with uncertainty and ignorance.  

The most significant differences between DST and 

probability theory are the explicit representation of 

uncertainty and the evidence combination mechanism. 

This can allow for more effective document processing 

[19]. It is also reported by [20] that the uncertainty 

occurring in IR can come from three sources regarding 

the relation of a document to a query: (i) in the existence 

of different evidences; (ii) due to unknown number of 

evidences; and (iii) in the existence of incorrect evidences. 

There is thus a clear benefit to using a method that can 

better combine evidences and handle their uncertainty. 

Interested readers are encouraged to consult [21] for an 

extensive study of the use of Dempster-Shafer Theory to 

Information Retrieval. 

II.  BACKGROUND 

A.  Dempster-Shafer Theory of Evidence 

Dempster-Shafer Theory (DST) has been in use for 

over 40 years [1-2]. The theory of evidence or DST has 

been shown to be a good tool for representing and 

combining pieces of uncertain information. The DST of 

evidence offers a powerful approach to manage the 

uncertainties within the problem of target identity. DST 

requires no a priori information about the probability 

distribution of the hypothesis; it can also resolve conflicts 

and can assign a mathematical meaning to ignorance. 

However, traditional DST has the major inconvenience 

of being an NP-hard problem [6]. As various evidences 

are combined over time, Dempster-Shafer (DS) 

combination rules will have a tendency to generate more 

and more propositions (i.e. focal elements), which in turn 

will have to be combined with new input evidences. 

Since this problem increases exponentially, the number of 

retained solutions must be limited by some approximation 

schemes, which truncate the number of such propositions 

in a coherent (but somewhat arbitrary) way. Let   be the 

frame of discernment, i.e. the finite set of   mutually 

exclusive and exhaustive hypotheses               . 
The power set of  ,    is the set the      subsets of     
                                         
     , where  denotes the empty set. 

 

1) Belief functions: 

Based on the information provided by sensor sources 

and known a priori information (i.e. a knowledge base), a 

new proposition is built. Then, based on this proposition, 

a Basic Probability Assignment (BPA or mass function) 

is generated, taking into account some uncertainty or 

vagueness. Let us call     , the new incoming BPA. The 

core of the fusion process is the combination of    and 

the BPA at the previous time,     . The resulting BPA at 

time        is then the support for decision making. Using 

different criteria, the best candidate for identification is 

selected from the database. On the other hand,    must 

be combined with a new incoming BPA and thus 

becomes     . However, this step must be preceded by a 

proposition management step, where    is approximated. 

Indeed, since the combination process is based on 

intersections of sets, the number of focal elements 

increases exponentially and rapidly becomes 

unmanageable. This proposition management step is a 

crucial one as it can influence the entire identification 

process. 

The Basic Probability Assignment is a function   such 

that            which satisfies the following 

conditions: 

              (1) 

        (2) 

Where      is called the mass. It represents our 

confidence in the fact that “all we know is that the object 

belongs to A”. In other words,      is a measure of the 

belief attributed exactly to  , and to none of the subsets 

of  . The elements of    that have a non-zero mass are 

called focal elements. Given a BPA   , two functions 

from    to       are defined: a belief function    , and a 

plausibility function    such that  

                         
     (3) 

                        
      

 (4) 

It can also be stated that                , where    

is the complement of A and        measures the total 

belief that the object is in  , whereas       measures the 

total belief that can move into   . The functions   , 

    and    are in one-to-one correspondence, so it is 

equivalent to talk about any one of them or about the 

corresponding body of evidence. 

 

2) Conflict definition: 

The conflict   corresponds to the sum of all masses for 

which the set intersection yield the null set  .   is called 

the conflict factor and is defined as: 

                          (5) 

  measures the degree of conflict between    and   : 

    corresponds to the absence of conflict, whereas 

     implies a complete contradiction between    and 

  . Indeed,     if and only if no empty set is created 

when    and    are combined. On the other hand we get 

    if and only if all the sets resulting from this 

combination are empty. 

 

3) Dempster-Shafer Combination Formulae: 

In DST, a combined or “fused” mass is obtained by 

combining the previous       (presumably the results of 

previous fusion steps) with a new       to obtain a fused 

result as follows: 

             
 

   
           (6) 

                        (7) 
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The renormalization step using the conflict  , 

corresponding to the sum of all masses for which the set 

intersection yields the null set, is a critical feature of the 

DS combination rule. Formulated as is equation (6), the 

DS combination rule is associative. Many alternative 

ways of redistributing the conflict lose this property. The 

associativity of the DS combination rule is critical when 

the timestamps of the sensor reports are unreliable. This 

is because an associative rule of combination is 

impervious to a change in the order of reports coming in. 

By contrast, other rules can be extremely sensitive to the 

order of combination. 

B.  Dezert-Smarandache Theory 

The Dezert-Smarandache Theory (DSmT) [22, 23, 24] 

encompasses DST as a special case, namely when all 

intersections are null. Both the DST and the DSmT use 

the language of masses assigned to each declaration from 

a sensor. A declaration is a set made up of singletons of 

the frame of discernment  , and all sets that can be made 

from them through unions are allowed (this is referred to 

as the power set    ). In DSmT, all unions and 

intersections are allowed for a declaration, this forming 

the much larger hyper power set     which follows the 

Dedekind sequence.  

For a case of cardinality 3,              , with 

     ,    is still of manageable size: 

                                      
 3, 2  3, 1  2  3,  
                                   
                                   
 1, 
                                   
 1,  1  2   1  3   2  3)}   (8) 

For larger cardinalities, the hyper power set makes 

computations prohibitively expensive (in CPU time). 

Table I illustrates the problem with the first few 

cardinalities of   and   . 

 

1) Dezert-Smarandache Hybrid Combination 

Formulae: 

In DSmT, the hybrid rule [22, 23, 24] appropriate for 

constraints turns out to be much more complicated: 

                                       (9) 

                                     (10) 

        
            

                         
 

 
                 

 
      

 

  (11) 

                          
         

       
 (12) 

The reader is referred to a series of books on DSmT 

[22, 23, 24] for lengthy descriptions of the meaning of 

this formula. A three-step approach is proposed in the 

second of these books, which is used in this technical 

report. From now on, the term “hybrid” will be dropped 

for simplicity. 

C.  Pignistic Transformation 

1) Classical Pignistic Transformation: 

One of the most popular transformations is the 

pignistic transformation proposed by Smets [25] as basis 

for decision in the evidential theory framework. The 

decision rule based on a BPA m is: 

         
      

        (13) 

                          (14) 

             
    

         (15) 

with    the identified object among the objects in  .  

This decision presents the main advantage that it takes 

into account the cardinality of the focal elements.  

 

2) DSm Cardinal: 

The Dezert-Smarandache (DSm) cardinal [22, 23, 24] 

of a set A, noted      , accounts for the total number of 

partitions including all intersection subsets. Each of these 

partitions possesses a numeric weight equal to 1, and thus 

they are all equal. The DSm cardinal is used in the 

generalized pignistic transformation equation to 

redistribute the mass of a set A among all its partitions B 

such that    . 

 

3) Generalized Pignistic Transformation: 

The mathematical transformation that lets us go from a 

representation model of belief functions to a probabilistic 

model is called a generalized pignistic transformation [22, 

23, 24]. The following equation defines the 

transformation operator. 

         
       

     
              (16) 

D.  Jousselme Distance between two BOEs 

1) Similarity Properties: 

Diaz and al. [26] expects that a good similarity 

measure should respect the following six properties: 

               normali ation (17) 

                 symmetry (18) 

  
 oth increasing on      

and decreasing on       and      
 (19) 

               
identity of 

indiscernible
 (20) 

   
              e clusi eness (21) 

   ecreasing on   
     

   
 (22) 

TABLE I.   
CARDINALITIES FOR DST AND DSMT 

Cardinal of   2 3 4 5 6 

Cardinal of    4 8 16 32 64 

Cardinal of    5 19 167 7,580 7,828,353 
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2) Jaccard Similarity Measure: 

The Jaccard similarity measure [27] is a statistic used 

for comparing the similarity and diversity of sample sets. 

It was originally created for species similarity evaluation. 

         
     

     
 (23) 

 

3) Distances Properties: 

A distance function, also called a distance metric, on a 

set of points   is a function         with four 

properties [28, 29]; suppose      : 

          non-negati ity (24) 

                  
identity of 

indiscernible
 (25) 

               symmetry (26) 

                      triangle ine uality(27) 

Some authors also require that   be non empty. 

 

4) Jousselme Distance: 

To analyze the performance of approximation 

algorithm, to compare the proximity to non-approximated 

versions, or to analyze the performance of the DS fusion 

algorithm comparing the proximity with the ground truth 

if available, the Jousselme distance measures can be used 

[12]. The Jousselme distance is an Euclidean distance 

between two BPAs. Let    and    be two BPAs defined 

on the same frame of discernment   , the distance 

between    and    is defined as:  

             
 

 
                  (28) 

                                      
(29) 

where        is the Jaccard similarity measure 

III.  NEW METRICS 

A.  Extension of the Jousselme distance to the DSmT 

The Jousselme distance as defined originally in [12] 

can work without major changes, as it is within the DSm 

framework. The user simply has to use two BPAs defined 

over the DSm theory instead of BPAs defined within the 

DS theory. Boundaries, size, and thus amount of 

computation will of course be increased. But otherwise, 

there is no counter indication to using this distance in 

DSmT. We thus can keep equation (28) as the definition 

of Jousselme distance within DSmT, with the definition 

of the DSm Cardinal.  

Tables II and III show the bodies of evidences and 

their distances one-to-another. The example was realized 

with a discernment frame of size three (      , so that 

the cardinal of its hyper power set would be      19 for 

the free model, as defined by Dezert and Smarandache 

[22]. Table II is divided into three sections, each one of 

them represents data for one BOE. The three columns 

give the focal sets, associated BPA value, and the 

cardinal of that set.  

Pairwise computation between the different pairs of 

BOEs took quite some time with all the required 

calculations by the Jousselme distance of evidences. The 

results are shown in Table III. The proof of respect of all 

properties has already been done for the DST in [12].  

The difference with the original version of the distance 

presented in [12] is the allowed presence of intersections 

which creates the hyper power set from the power set. 

This difference adds up possibilities of more 

computations to get to the distance value. More 

specifically, the cardinal evaluation part of the Jousselme 

distance is worsened by the hyper power set increase in 

size when compared to the power set.  

B.  Hamming-inspired metric on evidences 

1) Continuous XOR mathematical operator: 

In [30], Weisstein define the standard OR operator 

noted   as a connective in logic which yields true if any 

one of a sequence conditions is true, and false if all 

conditions are false.  

In [31], Germundsson and Weisstein define the 

standard XOR logical operator (   ) as a connective in 

logic known as the exclusive OR or exclusive disjunction. 

It yields true if exactly one, but not both, of two 

conditions are true. This operator is typically designed as 

symmetric difference in set theory [32]. As such, the 

authors define it as the union of the complement of A 

with respect to B and B with respect to A. Figure 1 is a 

Venn diagram displaying binary XOR operator on 

numerical discrete values in Figure 1.  

TABLE III 
EXTENTED JOUSSELME DISTANCE RESULTS 

    

               

               

               

 

TABLE II 
FIRST SERIES OF THREE BODIES OF EVIDENCES 
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Starting with the standard XOR logical operator and 

inspired by the Hamming distance [33] which uses a 

symmetric difference implicitly, we develop the idea of a 

continuous XOR operator. Figure 2 shows a simple case 

similar to that of previous figure but using values from  . 

We can see that it is working as an absolute value of the 

difference applied on each partition of the Venn diagrams 

individually one to another.  

 

2) Metric between evidences based on Hamming 

distance principle: 

The Hamming distance [33] between two strings is the 

minimum number of substitutions required to change one 

string to another. In other words, it is defined by the sum 

of absolute values of differences. From this, with the 

DSm cardinal [22], and using a continuous XOR 

mathematical operator, we have developed a new 

distance, the Hamming Distance of Evidences (HDE). 

This distance is bounded within normal values, such that 

           . This new distance also respects the 

properties of equations (24-27): non-negativity, identity 

of indiscernibility, symmetry, and the triangle inequality. 

The HDE is defined as in equation (30), which uses the 

    defined in equation (31), and where    

             is the super-power set. For example, in the 

case where we have a discernment frame such as 

         , we would obtain the following super-power 

set                                           
                                              .     

           
 

 
            

 (30) 

            

      

 
    

   
 (31) 

The HDE uses the BPA mass distributed among the 

different parts (sets) in     that composes the BPA 

from    . This transition from    to    is done using 

equation (31). Using the super-power set version of the 

BPA gets us a more refined and precise definition of it.  

Once in the super-power set framework, we use an 

adaptation of the Hamming distance or the continuous 

XOR operation defined previously. Its implementation is 

more easily understood as a summation of the absolute of 

the differences
1
 between the BPAs in     divided by 2.  

For BOEs defined in Table II in the previous section, 

without any constrained set, we get the results given in 

Table IV. Then, we can easily compare relative distances 

to have a reliable point of reference. The Jousselme 

distance is considered to be our distance of reference. 

                                                           
1
 This is equivalent to the symmetric difference  

expression used to define XOR operator in literature [32]. 

C.  Metric using a degree of shared uncertainty 

1) Similarity coefficient of degree of shared 

uncertainty: 

The idea behind a similarity coefficient of degree of 

shared uncertainty is to quantify the degree of shared 

uncertainty that lies behind a pair of sets. We want to 

avoid the use of cardinal operators. We conceived a 

decision tree test which will evaluate the degree of shared 

uncertainty. The following equation shows what the 

coefficient of similarity between a pair of sets is when 

using the metric that we suggest. 

       

 
  
 

  
 
     
          

     
         

   
       

    (32) 

Equation (32) gives a coefficient value of 3 when the 

pair of sets is equal; the value 2 when one of the sets is 

included in the other one, and 1 when the sets give a non-

empty intersection but none is included in another nor 

being equal. Finally, the coefficient has a value of 0 when 

the intersection between the pair of sets is the empty set. 

The maximum value that the coefficient of 

similarity      has between sets A and B is 3. 

 

2) Metric between evidences based on a degree of 

shared uncertainty: 

From the similarity coefficient of degree of shared 

uncertainty as defined above, we get the following 

distance, noted         and defined in equation (33). In 

that equation, the factor                   is a 

normalization factor   required to bound of the distance. 

The summation over             symbolizes a 

sum going over the matrix of every possible pair of sets 

from focal elements       .  

               
 

               
                 

(33) 

Even if we consider (33) as the distance using      

similarity coefficient, we might want to consider the 

possibility of building one that uses only a triangular 

matrix out of the matrix-domain of the summation. 

However, since commutativity is a built-in property, this 

measure will have a bit of useless redundancy.  

 

Figure 1.  Venn diagram displaying binary XOR operator on numerical 

discrete values. 

TABLE IV 
HAMMING DISTANCE ON EVIDENCES RESULTS 

      

                 

                 

                 

 

 

Figure 2.  Venn diagram displaying continuous XOR operator. 
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Equation (33) could be expressed in the simple 

form:                  , where    is a similarity 

factor. Since distances use dissimilarity factors (so that a 

distance of 0 means that    ), a subtraction from 1 is 

required. However, the idea of a distance solely based on 

equation (33) isn’t enough. One should consider 

weighting similarities with mass value from BPAs in 

order to really represent the distance between bodies of 

evidences and not only a combination of sets. We 

propose (34) as a final equation for that reason. 

 

          

  
 

      
    

       
                  

 (34) 

Table V uses a simple case to show the inner workings of 

this method. The first matrix shown in the table is a 

computation matrix with the degree of shared uncertainty 

    , defined in (32), and the product of the masses of 

the pair of sets    
       

     The second matrix 

gives the value of the weighted similarity values. Finally, 

the last table in Table V indicates the sum of the values 

from within the previous matrix, or the value of the sum 

in equation (34), the normalization factor and finally the 

Distance of Shared Uncertainty (DSU).  

This distance could be qualified as discrete in the sense 

that not all values of   will be possible for DSU in any 

case of distance measurement. However, that is true only 

for fixed values of BPA. Since BPA values are 

continuous in       then DSU        
Table VI shows the results of the metric based on the 

degree of shared uncertainty measurements on the same 

BOEs described in Table II as previously experimented 

on at Tables III for Jousselme distance and Table IV for 

Hamming distance on evidences. 

 

IV.  EXAMPLES AND PERFORMANCES 

This section explores the metrics presented in the 

previous section. Theses metrics will be used as distance 

measurements. We have implemented a DST, DSmT 

combination system within Matlab
TM

. The details 

explaining how DSmT was implemented appear in [34, 

35]. Functions have been added in that system for the 

execution of the computation of various metrics.    

A.  A few simple examples 

1) Exploration case 1: 

Using the same bodies of evidences as presented in 

Table II, we obtained the results and times given in Table 

VII for the execution, in seconds, for the same inputs 

given to the three distances presented previously: the   , 

the HDE and DSU. Based only on this data, it is difficult 

to choose which metric is best. However we can already 

see, as expected, that the Jousselme distance would be 

difficult to use in real-time complex cases due to the 

computation time it requires.  

 

2) Exploration case 2: 

This case further explores the behaviors of the distance 

metrics. We will use two bodies of evidences. The first 

will be fixed with the following values:        
                  . For the second BOE, we will 

increment successively the mass of one focal element 

nine times, reducing from the same value the mass of the 

second focal element such as                  

        
 

  
  , where        . 

The results of this exploration case are given in Table 

VIII. We can notice from that table that DSU is not able 

to correctly consider distances with the mass distributions. 

Obviously, this is an undesirable behavior occurring for 

the situation with a pair of BOE with identical sets.  

We can also see that the HDE and Jousselme distance 

responds in a symmetric manner to the symmetric mass 

distribution around equal BOEs. In other words, steps 

    and     gives equal values, as they should. For 

step    , all metrics gives the proper distance of zero.  

TABLE VI 
METRIC BASED ON SHARED UNCERTAINTY DEGREE RESULTS 

      

                  

                  

                  

 

TABLE V 

SIMPLE CASE OF METRIC BASED ON SHARED UNCERTAINTY DEGREE 

        

            

        

              

        

              

 

        

            

    
          

    

    
          

    

 

       

         

         

 

TABLE VII  
DISTANCE AND TIME OF EXECUTION VALUES FOR CASE 1 

                            

Dist. time Dist. time Dist. time 

                                        

HDE                                

DSU                                    
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Figure 3. Venn diagram with the 7 partitions of a size 3 case. 

 
Table IX shows that both HDE and DSU demonstrate a 

clear advantage over Jousselme distance in terms of 

execution times. 

 

3) Exploration case 3: 

Figure 3 shows the 7 possible partitions of a size 3 case. 

This case proceeds a little differently from the previous 

two. Instead of keeping identical BOEs with varying 

masses, the BOEs are now varied. A third and fourth 

focal elements in some of the BOEs are introduced for 

that purpose. The first BOE is always the same: 

                         . The BOEs used as 

the second one in the pairwise distances are listed here: 

 

A.                               
 =0.2} 

B.                               
 =0.2} 

C.                               
 =0.2} 

D.                               
        

E.                                
                   

F.                                
                   

G.                                
                   
 

The results of this case are given in Table X. As 

expected, we can observe a Distance Variation (  ) 

increase for the following pairs:        ,        , 

        and        . The notation         

signifies that the observed distance variation going from 

case X to Y is increasing.  

For the interesting cases F and G, we have      
          . The difference between F and G is that 

the mass of      goes to       in F, while in G it mainly 

goes to      .  
DSU metric for case F is equal to case G, in all the 

other metrics they give smaller values for case G when 

compared to case F. Similar conclusions are obtained 

when comparing metrics for the pairs of cases (A, C), and 

(B,D): for similar mass redistribution, when giving the 

mass to a disjunction the resulting distance is smaller than 

if it were to be distributed to an intersection. 

 

3) Exploration’s conclusions: 

In general, it is better for identical sets to have lowest 

distance. Otherwise, a minimal number of sets will 

minimize the distribution of mass onto unshared 

partitions. With no identical partitions in common, it is 

preferable to have a higher mass onto disjunctive sets 

which have more common partitions. Also, it is better to 

have disjunctive sets as specific as possible; in other 

words, of lowest cardinality. Hence, too much mass given 

to a set that has too many uncommon partitions with the 

targeted ID or ground truth must be avoided. To get 

distances values such as               
             , one needs masses in      to be 

distributed on sets that have a higher ratio of common 

partitions with      than the sets of      would have. 

Finally the use of either Jousselme (adapted to DSmT) 

or the DHE, which is much quicker, is recommended. 

TABLE VIII 
DISTANCE VALUES FOR CASE 2 

     HDE DSU 

                    

                    

                    

                    

                    

                    

                    

                    

                    

 

TABLE IX 
EXECUTION TIME VALUES FOR CASE 2 

     HDE DSU 

                    

                    

                    

                    

                    

                    

                    

                    

                    

 

TABLE X 
DISTANCE VALUES FOR CASE 3 

    HDE DSU 
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V.  CONCLUSIONS 

This paper introduced two new distances between 

evidences for both the Dempster-Shafer Theory and 

Dezert-Smarandache Theory to replace the Jousselme 

distance.  

When the size of the discernment frame gets high: the 

distance calculation becomes too big to handle in a 

reasonable amount of time. In time critical systems, it 

would be better to use the Hamming distance of 

evidences. For the distance using the degree of shared 

uncertainty DSU, studies must be done further. A 

correction may be required to prevent it from considering 

masses properly when facing identical bodies of 

evidences.  

Future works would include the use of DSmT [22, 23, 

24] and its hierarchical information representation 

abilities in conjunction with approximation of belief 

functions algorithms in Information Retrieval.  
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