
On the Network Characteristics of the Google’s
Suggest Service

Zakaria Al-Qudah, Mohammed Halloush, Hussein R. Alzoubi, Osama Al-kofahi
Yarmouk University, Dept. of Computer Engineering, Irbid, Jordan

Email:{zakaria.al-qudah, mdhall, halzoubi, osameh}@yu.edu.jo

Abstract— This paper investigates application- and
transport-level characteristics of Google’s interactive
Suggest service by analyzing a passively captured packet
trace from a campus network. In particular, we study the
number of HTTP GET requests involved in user search
queries, the inter-request times, the number of HTTP GET
requests per TCP connection, the number of keyword
suggestions that Google’s Suggest service to users, and
how often users utilize these suggestions in enhancing their
search queries. Our findings indicate, for example, that
nearly 40% of Google search queries involve five or more
HTTP GET requests. For 36% of these requests, Google
returns no suggestions, and 57% of the time users do not
utilize returned suggestions. Furthermore, we find that
some HTTP characteristics such as inter-request generation
time for interactive search application are different from
that of traditional Web applications. These results confirm
the findings of other studies that examined interactive
applications and reported that such applications are more
aggressive than traditional Web applications.

Index Terms— Ajax, Web 2.0, Network measurments, Per-
formance, Google search engine

I. I NTRODUCTION

Interactive Web applications have become extremely
common today. The majority of Web sites including major
Web-based email services (e.g., Gmail, Yahoo mail, etc.),
map services, social networks, and web search services
support an interactive user experience.

One of the enabling technologies for this interactive
user-engaging experience is Asynchronous Javascript and
XML (AJAX) [1]. AJAX allows the web client (browser)
to asynchronously fetch content from a server without
the need for typical user interactions such as clicking a
link or a button. Due to this asynchronous nature, these
interactive applications exhibit traffic characteristics that
might be different from those of classical applications. In
classical (non-interactive) applications, requests for con-
tent are usually issued in response to human actions such
as clicking a link or submitting a Web form. Thus, the
human factor is the major factor in traffic generation. With
interactive applications, however, requests can be issued
in response to user interactions that typically would not
generate requests such as filling a text field or hovering
the mouse over a link or an image. Furthermore, these
requests can be made even without user intervention at
all such as the case of fetching new email message with
Gmail or updating news content on a news Web site.
Therefore, traffic generation is not necessarily limited by
the human factor.

In this paper we focus on one such interactive applica-
tion which is the Google interactive search engine. Google
search engine has many interactive features that are aimed
at providing a rich search experience implemented using
the AJAX technology [2]. For example, Google Suggest
(or Autocomplete) [3] provides suggested search phrases
to users as they type their query (See Fig. 1). The user can
select a suggested search phrase, optionally edit it, and
submit a search query for that search phrase. Suggestions
are created using some prediction algorithm to help users
find what they are looking for. Google Instant Search
service [4] streams a continuously updated search results
to the user as they type their search phrases (See Fig. 2).
This is hoped to guide users’ search process even if
they do not know what exactly they are looking for. The
other interactive feature that Google provides is Instant
Previews [5]. With Instant previews (Shown in Fig. 3),
users can see a preview of the web pages returned in
the search results by simply hovering over these search
results. This service is aimed at providing users with the
ability to quickly compare results and pinpoint relevant
content in the results web page.

Figure 1. A snapshot of the Google Suggest feature

In this paper, we study the characteristics of the Google
Suggest service by analyzing a passively captured packet
trace from Yarmouk University campus in Jordan. We
look into the number of HTTP GET requests a search
query generates, the inter-request generation time, the
number of suggestions Google typically returns for a re-
quest, and the percentage of time the returned suggestions

278 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jetwi.4.3.278-284

Figure 2. A snapshot of the Google Instant search feature. Note that
the search results for the first suggestion is displayed before the user
finishes typing his/her query

Figure 3. A snapshot of the Google Instant Preview feature. Note
the displayed preview of the web page of the first search result entry
“Yarmouk University”

are actually utilized by users. We have already begun to
study the Google Instant feature and plan to study the
Instant Previews in the future.

The rest of this paper is organized as follows. Section II
highlights some background information related to our
work. Section III motivates our work. Section IV presents
the related work. Section V highlights the packet trace
capturing environment and characteristics. Section VI
presents our results and discuses our findings. We con-
clude and present our future work plans in Section VII.

II. BACKGROUND

When browsing the web, one normally uses web search
engines several times a day to find the required infor-
mation on the web. Web search engines therefore are
visited by huge number of people every day. Web search
can use query-based, directory-based, or phrase-based
query reformulation-assisted search methods. Google is
considered among the most popular search engines on the
web. The Google search engine uses the standard Internet
query search method [6], [7].

In 2010 Google announced Google Instant, which live-
updates search results interactively during the time at
which users type queries. Every time the user hits a
new character, the search results are changed accordingly
based on what the search engine thinks a user is looking
for. This can save substantial user time, since most of the
time, the results that a user are looking for are returned
before finishing typing. Another advantage of Google
Instant is that users are less likely to type misspelled
keywords because of the instant feedback. The public
generally provided positive feedback towards this new
feature [8].

Google Instant Preview is another feature provided by
Google. This feature allows users to get snapshots of web
pages for the search results without leaving the search
results. This feature enhances researcher’s search expe-
rience and satisfaction. Google Instant Preview provides
an image of the web page in addition to the extracted
text. Previews are dynamically generated because content
is continuously changing. Google users are 5% better
satisfied with this new feature [9].

III. M OTIVATION

One motivation of this study is that we believe that
measuring such services is extremely important due to
the recent popularity of interactive web features. Charac-
terizing new trends in network usage help the research
community and network operators update their mental
model about network usage. Another motivation is that
such characterization is quite important for building sim-
ulators and performance benchmarks and for designing
new services and enhancing existing ones.

Moreover, Google interactive features may produce
large amount of information, which may result in bad
experience for users on mobile devices or over low-
speed Internet connections [8]. With the prevalence of
browsing the web via mobile devices today, we believe
that characterizing these services is vital to understanding
the performance of these services. To the best of our
knowledge, this is the first attempt to characterizing in-
teractive features of a search engine from the application-
and the transport-level perspective.

IV. RELATED WORK

The AJAX technology suit enables automated HTTP
requests without human intervention by allowing web
browsers to make requests asynchronously. This has been
made possible through the use of advanced features of
HTTP 1.1 like prefetching data from servers, HTTP per-
sistent connections, and pipelining. These features mask
network latency and give end users a smoother experience
of web applications. Therefore, AJAX creates interactive
web applications and increases speed and usability [10].

The authors of [10] performed a traffic study of a
number of Web 2.0 applications and compared their char-
acteristics to traditional HTTP traffic through statistical
analysis. They collected HTTP traces from two networks:
the Munich Scientific Network in Munich, Germany and
the Lawrence Berkeley National Laboratories (LBNL) in
Berkeley, USA and classified traffic into Web 2.0 appli-
cations traffic and conventional applications traffic. They
have used packet-level traces from large user populations
and then reconstructed HTTP request-response streams.
They identified the 500 most popular web servers that
used AJAX-enabled Web 2.0 applications. Google Maps
is one of the first applications that used AJAX. Therefore,
the authors have focused on Google Maps Traffic. The
presented findings of this study show that Web 2.0 traffic
is more aggressive and bursty than classical HTTP traffic.
This is due to the active prefetching of data, which means

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 279

© 2012 ACADEMY PUBLISHER

many more automatic HTTP requests, and consequently
greater number of bytes transferred. Moreover, they found
that sessions in AJAX applications last longer and are
more active than conventional HTTP traffic. Furthermore,
AJAX inter-request times within a session are very similar
and much shorter because they are more frequent than all
other HTTP traffic.

Besides [10], some work exists in the literature for
characterizing HTTP traffic generated by popular Web
2.0 websites. In [11] for example, the authors examined
traces of Web-based service usage from an enterprise
and a university. They examined methodologies for ana-
lyzing Web-based service classes and identifying service
instances, service providers, and brands pointing to the
strengths and weaknesses of the techniques used. The
authors also studied the evolution of Web workloads
over the past decade, where they found that although the
Web services have significantly changed over time, the
underlying object-level properties have not.

The authors of [12] studied HTTP traffic from their
campus network related to map applications. Their work
examined the traffic from four map web sites: Google
Maps, Yahoo Maps, Baidu Maps, and Sogou Maps. In
their paper, they proposed a method for analyzing the
mash-up (combing data from multiple sources) charac-
teristics of Google Maps traffic. They found that 40%
of Google Maps sessions come from mash-up from other
websites and that caching is still useful in web based map
applications.

Li et al. [13] studied the evolution of HTTP traffic
and classified its usage. The results provided are based
on a trace collected in 2003 and another trace collected
in 2006. The total bytes in each HTTP traffic classes
in the two traces were compared. The authors found
that the whole HTTP traffic increased by 180% while
Web browsing and Crawler both increased by 108%.
However, Web apps, File download, Advertising, Web
mail, Multimedia, News feeds and IM have shown sharp
rise.

Maier et al. [14] presented a study of residential
broadband Internet traffic using packet-level traces from
a European ISP. The authors found that session durations
are quite short. They also found that HTTP, not peer-
to-peer, carries most of the traffic. They observed that
Flash Video contributes 25% of all HTTP traffic, followed
by RAR archives, while peer-to-peer contributes only to
14% of the overall traffic. Moreover, most DSL lines fail
to utilize their available bandwidth and that connections
from client-server applications achieve higher throughput
per flow than P2P connections.

In [15], a study of user sessions of YouTube was
conducted. The results obtained from the study indicate
longer user think times and longer inter-transaction times.
The results also show that in terms of content, large video
files transferred. Finally, in [16] [17], the authors pro-
posed the AJAXTRACKER, a tool for mimicking a hu-
man interaction with a web service and collecting traces.
The proposed tool captures measurements by imitating

mouse events that result in exchanging messages between
the client and the Web server. The generated traces can be
used for studying and characterizing different applications
like mail and maps.

V. DATA SET AND METHODOLOGY

As mentioned, this study is conducted based on a
packet-level trace captured at the edge of the engineering
building at Yarmouk University, Jordan. The engineering
building contains roughly 180 hosts that are connected
through a typical 100Mbps ethernet. The trace is collected
over a period of five business days. The trace contains a
total 31490 HTTP transactions that are related to Google
search. To extract the transactions that are related to
Google search, the URL or the “HOST:” HTTP request
header has to contain the word “google”. The search query
is contained in the URL in the form of “q=xyz” where
“xyz” is the query. After identifying the HTTP request
as a Google search request, the corresponding HTTP
response is also extracted. The returned suggestions are
extracted from these HTTP responses. We also collect the
type of the returned HTTP response in order to separate
queries from one another as explained later in Section VI.

VI. RESULTS

In this section, we measure various parameters related
to Google search queries. To identify the boundaries of
a search query, we manually analyze a portion of the
collected trace. We found that throughout the process a
user is typing the search phrase, the browser generates
HTTP GET requests. For these HTTP GET requests,
the type of the HTTP response is either “text/xml” or
“text/javascript”. When the user hits the Return key (to
obtain the search results), the browser generates another
HTTP GET request, for which the type of the returned
HTTP response is “text/html”. We verify this observation
by actively performing a number of search queries and
observing the captured traffic.

In our trace, however, we found a number of occur-
rences of a scenario where a series of HTTP GET requests
from a user appear to be related to two different queries,
yet this series of HTTP GET requests is not split by an
“text/html” response separating the boundaries of the two
different queries. There is a number of usage scenarios
that could result in such a behavior. For example, a user
might type in a search phrase and get interrupted for some
reason. Therefore, the search query will end without the
Return key being hit. Furthermore, the TCP connection
that is supposed to carry the last HTTP response might
get disrupted after the user hit the Return key and before
the HTTP response is delivered back to the user.

To handle such cases, we consider two HTTP GET
requests that are not split by an “text/html” response be-
long to two different search queries if the time separation
between the two requests is greater thant seconds. To find
a suitable value for this parameter, we plot the percentage
of queries found using the time separation to the overall
number of search queries for different values oft in Fig.

280 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60 70 80 90

%
 o

f q
ue

rie
s

id
en

tif
ie

d
us

in
g

tim
e

se
pa

ra
tio

n

 Time (sec)

Figure 4. Setting of parametert

4. The figure suggests that, in general, the percentage of
queries identified using the time separation heuristic is
insensitive to the setting of the parametert when t is
above 30 seconds, ant = 60 is an appropriate value since
the percentage of search queries identified using the time
spacing heuristic to the number of overall search queries
remains stable around this value. Therefore, we choose
this value throughout our evaluation below.

A. HTTP GET Requests

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
D

F

No. of HTTP GET requests

Figure 5. No. of HTTP GET requests per search query

This subsection investigates the number of HTTP GET
requests a search query typically involves. We identify
a total of 7598 search query. We plot the Cumulative
Distribution Function (CDF) of the number of HTTP GET
requests in a query in Fig. 5. As shown, over 40% of
search queries involve only one HTTP GET request. The
possible reasons for the existence of these queries include
(i) users not turning on Google Suggest and (ii) users
copying search phrases and pasting them into Google
and hitting the Return key. The figure also shows that
arround 30% of search queries involve five or more HTTP

GET requests with some search queries involving over 90
HTTP GET requests. These results show that the “chatty”
nature of AJAX-based applications reported in [10] for the
map and email applications also applies to the Google
suggest application.

Among the near 60% of search queries for which we
believe that users are enabling Suggest (i.e., number of
GET requests is greater than one), the vast majority of
queries seem to not utilize the suggestions for the first
few characters. This is because users continue to type
despite the returned suggestions. A possible reason for
this might be that for a small number of characters of the
search phrase, Google returns quite general suggestions
that are usually not selected by the user. We believe there
is a room for improvement in the service design by not
returning suggestions for the initial few characters of the
query.

B. Inter-Requests Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-05 0.0001 0.001 0.01 0.1 1 10 100

C
D

F

Inter-request time (sec)

Figure 6. HTTP GET inter-request times within a search query

Next, we turn our attention to investigating the time
spacing between HTTP GET requests within the same
search query. Fig. 6 shows the results. As shown, 64%
of HTTP GET requests involved in a search query are
separated by less than one second. We contrast these
results with our mental model of traditional HTTP in-
teractions. Normally, a number of HTTP requests are
made to download a Web page along with the embedded
objects. Then, a think time elapses before new requests
are made to download a new page [18]. The interactive
search application generates a radically different pattern
of HTTP GET requests. This is due to the fact that
requests for new set of Google suggestions are automat-
ically made while the user types the search query. This
also confirms the results of [10] indicating that inter-
request times are shorter in AJAX-based applications than
it is in traditional applications. We however believe that
the traffic characteristics of these interactive applications
are generally application-dependent and not technology-
dependent. That is, the characteristics of the traffic that is

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 281

© 2012 ACADEMY PUBLISHER

generated by an application employing AJAX technology
depends on the type of the application and not on the fact
that it uses the AJAX technology. This is because AJAX
enables the application to generate traffic automatically
without user intervention (or in response to user actions
that typically do not generate traffic such as hovering over
a link), however, it is up to the application logic to decide
whether to generate HTTP requests and when to generate
these requests.

C. TCP Connections

In our trace, we find that each HTTP GET request is
carried over its own TCP connection. To verify if this is
a result of the deployed HTTP proxy, we have performed
a number of search queries from the author’s houses
(i.e., using residential broadband network connections).
This experiment involves performing a number of search
queries for different web browsers (Microsoft Internet
Explorer, Mozialla Firefox, and Google Chrome) on a
Microsoft Windows 7 machine. We have captured and
examined the packet trace of these search queries. Our
findings indicate that, contrary to what we find in our
trace, various HTTP GET requests can be carried over
the same TCP connection. We note here that HTTP
proxies are commonly deployed in institutional networks.
Therefore, our network setting is not necessarily unique,
and we believe that it is totally legitimate to assume that
many other institutions are employing similar network
settings.

We note that having a separate TCP connection per
request might have significant impact on the performance
of this service. In particular, each new TCP connection
requires the TCP three-way handshake which might add a
significant delay. Furthermore, if an HTTP request needs
to be split over many packets, the rate at which these
packets are transmitted to the server is limited by the TCP
congestion control mechanisms. Therefore, these added
delays might limit the usefulness of the Suggest service
since suggestions usually become obsolete when the user
types new text.

D. Suggestions (Predictions)

In this section, we investigate the number of sugges-
tions Google returns in HTTP responses for each HTTP
GET request. We observe that the maximum number of
returned suggestions is ten. Fig. 7 plots CDF of the
number of returned suggestions per HTTP GET request.
As shown, close to 40% of HTTP responses involve
zero suggestions. This includes cases where the sug-
gest algorithm returned no suggestions and connections
disrupted before responses arrive. Furthermore, around
50% of HTTP responses the Google Suggest service
returns the full ten suggestions. For the remaining small
fraction, the Suggest service returns between one and nine
suggestions. A likely reason for returning between one
and nine sugestions is the inability of google to find ten
suggestions for the specific user’s search phrase.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

C
D

F

No. of Google suggestions (logscale)

Figure 7. No. of suggested search phrases returned for an HTTPGET
request

E. Prediction Usefulness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1

C
D

F

Percentage (logscale)

Figure 8. Percentage of time users actually use the returned suggestions
of the search query

Next, we investigate the percentage of time users do
actually use the returned suggestions during the search
process. To assess this, within a search query, we assume
that the user has utilized the returned suggestions if the
search phrase in the current request matches one of the
suggestions appeared in the response for the previous
request. To illustrate this, consider the following scenario
from our trace. An HTTP GET request was sent to Google
with “you” as a partial search phrase. Google responded
with “youtube, you, youtube downloader, yout, youtube to
mp3, youtu, youtube download, youtube music, you top,
you born” as search suggestions. The next HTTP GET
request was sent to Google with “youtube” as the search
phrase. In this case, we assume that the user has utilized
the returned suggestion since the current HTTP GET
request involves one of the suggestions that were provided
as a response to the previous HTTP GET request. That
is, the user is asking for “youtube” which was one of the
suggestions made by Google in the previous response.

282 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

We note that this is an upper limit on the usage of this
service because a search phrase in the current request may
match the suggestions in the previous request, yet, the user
might have typed the phrase instead of selecting it from
the list of returned suggestions.

The result is plotted in Fig. 8. As shown, nearly 58% of
the time, users do not use the returned suggestions at all.
On the other hand, nearly 10% of queries are constructed
with complete guidance of the Suggest service. The
following scenario from our trace illustrates a case where
a query can be constructed with complete help of Google
suggestions. A user typed “f” which triggered a request
for suggestions to Google. Google responsed with “face-
book,face,fa,friv,fac,firefox,faceboo,farfesh,factjo,fatafeat”
as suggestions. The next and final request was for
“facebook” which is among the suggested search
phrases. In this case the user selected a search phrase
from the first set of returned suggestion to complete the
search query. This means suggestions are fully utilized.
Hence, full utilization of google suggest service is
acheived when the user selects a suggested phrase from
each returned list of suggestions for a particular search
query.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have investigated the application-
and transport-level characteristics of Google’s Suggest
interactive feature as observed in a passively captured
packet trace from a campus network. We find that a
large number of HTTP GET requests could be issued
to obtain suggestions for a search query. Interestingly,
the characteristics of the HTTP GET requests deviate
significantly from those of HTTP GET requests issued for
classical Web interactions. In particular, while classical
Web interactions are limited by the human factor (think-
time), interactive applications are not necessarily limited
by this factor. Furthermore, we have characterized the
number and usefulness of suggestions made by Google.
To this end, we have found that Google responds to the
majority of requests for suggestions with either zero or 10
suggestions (the number 10 is the maximum number of
suggestions returned per request). However, nearly 58%
of users do not utilize the returned suggestions at all.

We have already begun to investigate the characteristics
of other Google interactive search features such as Google
instant search and plan to evaluate the Google instant
preview as well.

REFERENCES

[1] J. J. Garrett, “Ajax: A new approach to web applications,”
http://adaptivepath.com/ideas/essays/archives/000385.php,
February 2005, [Online; Stand
18.03.2008]. [Online]. Available:
http://adaptivepath.com/ideas/essays/archives/000385.php

[2] “Ajax:A New Approach to Web Applications,”
http://adaptivepath.com/ideas/ajax-new-approach-web-
applications.

[3] “Google Suggest (or Autocomplete),”
http://www.google.com/support/websearch/bin/static.py?hl=
en&page=guide.cs&guide=1186810&answer=106230&rd=1.

[4] “Google Instant,” http://www.google.com/instant/.
[5] “Google Instant Previews,”

http://www.google.com/landing/instantpreviews/#a.
[6] P. Bruza, R. McArthur, and S. Dennis, “Interactive internet

search: keyword, directory and query reformulation mech-
anisms compared,” inSIGIR’00, 2000, pp. 280–287.

[7] S. Dennis, P. Bruza, and R. McArthur, “Web searching:
A process-oriented experimental study of three interactive
search paradigms,”Journal of the American Society for
Information Science and Technology, vol. 53, issue 2, pp.
120–130, 2002.

[8] http://dejanseo.com.au/google-instant/.
[9] http://dejanseo.com.au/google-instant-previews/.

[10] F. Schneider, S. Agarwal, T. Alpcan, and A. Feldmann,
“The new web: Characterizing ajax traffic.” inPAM’08,
2008, pp. 31–40.

[11] P. Gill, M. Arlitt, N. Carlsson, A. Mahanti, and
C. Williamson, “Characterizing organizational use of web-
based services: Methodology, challenges, observations and
insights,” ACM Transactions on the Web, 2011.

[12] S. Lin, Z. Gao, and K. Xu, “Web 2.0 traffic
measurement: analysis on online map applications,”
in Proceedings of the 18th international workshop on
Network and operating systems support for digital
audio and video, ser. NOSSDAV ’09. New York,
NY, USA: ACM, 2009, pp. 7–12. [Online]. Available:
http://doi.acm.org/10.1145/1542245.1542248

[13] W. Li, A. W. Moore, and M. Canini, “Classifying http
traffic in the new age,” 2008.

[14] G. Maier, A. Feldmann, V. Paxson, and M. Allman,
“On dominant characteristics of residential broadband
internet traffic,” in Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement
conference, ser. IMC ’09. New York, NY, USA:
ACM, 2009, pp. 90–102. [Online]. Available:
http://doi.acm.org/10.1145/1644893.1644904

[15] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Characterizing
user sessions on youtube,” inIn Proc. of 15th Annual
Multimedia Computing and Networking Conference, San
Jose, CA, USA, 2008.

[16] M. Lee, R. R. Kompella, and S. Singh, “Ajaxtracker: active
measurement system for high-fidelity characterization
of ajax applications,” in Proceedings of the 2010
USENIX conference on Web application development,
ser. WebApps’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 2–2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863166.1863168

[17] M. Lee, S. Singh, and R. Kompella, “Ajaxtracker: A
tool for high-fidelity characterization of ajax applications,”
2008.

[18] M. E. Crovella and A. Bestavros, “Self-similarity in
world wide web traffic: Evidence and possible causes,”
IEEE/ACM Transactions on Networking, 1997.

Zakaria Al-Qudah received his B.S. degree in Computer
Engineering from Yarmouk University, Jordan in 2004. He
recived his M.S. and Ph.D. degrees in Computer Engineering
from Case Western Reserve University, USA, in 2007 and 2010
respectively. He is currently an assistent professor of Computer
Engineering at Yarmouk University. His research interests in-
clude internet, content distribution networks, and security.

Mohammed Halloush received the B.S. degree from Jordan
University of Science and Technology, Irbid, Jordan in 2004,
the M.S. and the Ph.D. degrees in Electrical Engineering from
Michigan State University, East Lansing, MI, USA in 2005,
2009 respectively. Currently he is an Assistant professor in the
department of Computer Engineering at Yarmouk University,
Irbid Jordan. His research interests include network coding,

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012 283

© 2012 ACADEMY PUBLISHER

multimedia communications, wireless communications and net-
working.

Hussein Al-Zoubi received his MS. and Ph.D. in Computer
Engineering from the University of Alabama in Huntsville, USA
in 2004 and 2007, respectively. Since 2007, he has been working
with the Department of Computer Engineering, Hijjawi Faculty
for Engineering Technology, Yarmouk University, Jordan. He
is currently an associate professor. His research interests in-
clude computer networks and their applications: wireless and
wired, security, multimedia, queuing analysis, and high-speed
networks.

Osameh Al-Kofahi received his B.S. degree in Electrical and
Computer Engineering from Jordan University of Science and
Technology, Irbid, Jordan in 2002. He received his Ph.D. de-
gree from Iowa State University, USA. in 2009. His research
interests include Wireless Networks, especially Wireless Sensor
Networks (WSNs), Wireless Mesh Networks (WMNs) and Ad
hoc networks, Survivability and Fault Tolerance in wireless
networks and Practical Network Coding.

284 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

