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Abstract—This  paper presents speaker diarization
mechanisms using low-cost and low-resolution wearable
wireless sensors. Speaker diarization is used for identifying
speaking sequence and duration for all individuals engaged
in a conversation session. The key advantage of the
proposed mechanisms is their ability to monitor human
conversation without having to perform energy- and
processing-expensive speaker identification algorithms. A
prototype system was constructed for experimental acoustic
diarization using low-cost and low-resolution wearable
sensors. It was experimentally demonstrated that an
inexpensive threshold-based diarization mechanism can be
used for conversation monitoring with acceptable accuracy.
But for more detection accuracy, an acoustic comparator-
based diarization is applied. It was shown that comparator-
based diarization mechanism is able to consistently deliver
significantly better acoustic detection performance than
threshold-based mechanism in a more distance and noise
independent manner. Controlled experiments using human
subjects were carried out for evaluating diarization
accuracy and the sensitivity to factors such as sampling rate
and inter-speaker distance during conversations.

Index Terms—Wearable Sensors, Coversation Monitoring,
Acoustic Diarization, Diagrammatic Speech Diarization,
Comparator based Diarization

l. INTRODUCTION

Wireless Body Area Networks (WBANS) [1-3] consist
of a set of wearable or implanted communicating sensors.
These devices, communicating through wireless links,
can transmit physiological data from the body to an
external data aggregator device with Internet connection,
from where data can be forwarded to hospitals or clinics
in real-time. Such WBANSs can enable a wide variety of
applications in a number of areas including sports,
healthcare, tele-health, and human interaction monitoring.
The WBAN technology is still in its primitive stage and
is being widely researched in both industry and academia.

Human interaction monitoring using wearable sensors
is an interesting WBAN application. Human interaction
can be defined as a sequence of brief actions where each
action is seen as response to what came before and as a
stimulus to what comes afterward [4], [5]. In the absence
of visual data, conversation monitoring using acoustic
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sensors is considered as a feasible technique for human
interaction monitoring.

In this paper we develop speaker diarization [6]
mechanism using low-cost and low-resolution wearable
wireless sensors. Speaker diarization is then used for
conversation monitoring by the way of identifying
speaking sequence and duration for all individuals
engaged in a conversation session. In other words, the
objective is to detect who spoke when and for how long,
as opposed to detect what was spoken.

Applications of such conversation monitoring include
various forms of surveillance, study of behavior and
speech development for children with autistic conditions
and other speech related disorders. It can also be used for
studying team dynamics in controlled and un-controlled
settings.

The key advantage of the proposed diarization based
conversation monitoring mechanism is its ability to
monitor human conversation without having to perform
energy- and processing-expensive speaker identification
algorithms. In addition to its processing and energy
overheads, speaker identification algorithms [7-10]
usually require acoustic sampling at higher rates and,
subsequently higher wireless bandwidth for collecting
data from on-body sensors to out-of-body processing
units. In the proposed approachs, on the other hand, low
sampling rates (e.g. 5 Hz) lead to lower energy,
bandwidth, and processing requirements, while being
able to detect conversation dynamics. This suits the
proposed mechanisms very well for resource-constrained
wearable sensors. The primary reason for this proposed
simple approaches to work is that we are mainly
interested in detecting who spoke when and for how long,
as opposed to specific content of the speech.

Contributions of the paper are as follows. First, the
details of a prototype wearable sensor system used for the
proposed speaker diarization experiments are presented.
Second, the proposed low-complexity  speaker
diarizations are formally presented. Finally, the
algorithms are experimentally validated along with a
detailed study of their sensitivity to audio sampling rate
and inter-subject distance during a conversation.



316 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012

Il.  RELATED WORK

Instrumented detection of human interaction [11] has
recently been gaining popularity in both psychology and
sensor literature. Example sensing modalities for
interaction detection are proximity, relative orientation,
and conversation dynamics on an inter-personal basis.
The objective of this paper is to address the modality of
conversation dynamics [12-15] by the way of speaker
diarization.

Speaker diarization in the literature [15] has been used
for a wide range of applications including: 1) analyzing
broadcast audio news programs in the presence of
commercial and other breaks, 2) analyzing recorded
meetings with multiple people participants, and 3) phone
conversations between two or more people. A large
number of diarization approaches in the literature [7-10]
use Hidden Markov Model (HMMSs) [16] in which each
state correspond to an individual speaker. A Gaussian
Mixture Model (GMM) [17] is generally used for
modeling the conversations.

The other commonly used approach for speaker
diarization is Bayesian machine learning [18]. In order to
avoid premature hard decisions in the diarization process,
the Bayesian mechanisms usually attempt to estimate the
complete distribution of the system parameters as
opposed to just the averages. Monte Carlo Markov
Chains (MCMC) are used in [19] in order to provide a
systematic approach to the computation of such
distributions via exhaustive sampling. Such sampling,
however, is generally slow and expensive when the
amount of data is large, and they often require multiple
passes as the chains get stuck and not converge in a
practical number of iterations. In [20], a variation of
Bayesian machine learning algorithm is used to learn a
GMM speaker model. In [6], the above is combined
successfully with eigenvoice modeling [18] for speaker
diarization of telephone conversations. All the above
approaches require significant amount of processing
overhead that is not usually practical for the on-body
diarization problem as targeted in this paper. Our
approach addresses such processing complexity issues.

The goal of this paper is to propose our wearable sensor
network that can be used for human interaction exposure
through detecting human speech activity. Specific
contributions of the paper are as follows. First, propose
our prototype as one modern framework that can be used
for human interaction and speaker diarization. Second,
develop an analytical framework for determining the
current speaker, for a given collecting data, representing
the current speaker. Third, validate the proposed
prototype and the analytical framework by comparing the
experimental speaker diarization data and the acoustic
recording data. Finally, Study the impact of the sample
rate and signal compression data on the speaker
diarization accuracy in the present of different parameters,
like, human subject’s pair-wise distance and orientation
and environment noise.
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IIl.  WEARABLE SENSORS

This section presents the experimental setting of
wearable sensors that was used for the proposed light-
weight speaker diarization mechanism.

A. Experiment Settings

The wearable node was constructed using a 900MHz
Mica2zDot MOTE [21] (running TinyOS operating
system), with Chipcon’s SmartRF CC1000 radio chip
(chipcon.com), and the sensor card MTS510 from
Crossbow Inc. (xbow.com). The Mica2Dot node runs
from a 570mAH button cell with a total sensor weight of
approximately 10 grams. The default CSMA MAC
protocol was used with a data rate of 19.2kbps. In our
experiments, each sensor was worn as a badge fastened at
a subject’s chests so that the sensor does not move during
an experiment.

A wireless link is established from the wearable sensor
to an external processing server to transport raw data or
the results from on-body diarization depending on the
chosen processing mode. A Mica2Dot radio node with
custom-built serial interface, running RS232 protocol,
was used as a base station for collecting data from on-
body sensors and for sending to a Windows PC
processing server through its serial port.

B. Acoustic Sensing

Within the MTS510 sensor card, acoustic data from a
microphone is fed into an ADC through an amplifier. The
ADC values are read by the Mica2Dot’s microprocessor
and formatted as packets before sending it out to
processing server PC through 900MHz radio links. The
speaker diarization was then executed within the
processing server PC. The sampling rate of the acoustic
data was varied from 5Hz to 40Hz during our
experiments.

As a control, for each scripted conversation session the
entire conversation was also recorded using a separate
high fidelity microphone so that the actual conversation
dynamics can be post-coded by listening to that recording
and can be compared with the output of the diarization
algorithms for their accuracy. The high fidelity
microphone is connected to the same processing server
PC so that it can time-stamp both the externally recorded
audio data and the samples received from on-body
sensors using the same clock, thus synchronizing the two
data streams.

C. Polling Based Channel Access for Collision Control

Since each person is required to wear a separate sensor
badge, multiple sensors can be simultaneously active and
share the radio for sending data to the processor server. In
order to avoid the CSMA MAC collisions due to such
multiple accesses, we implemented a higher layer polling
based TDMA access strategy that is managed by the base
station (BS) connected to the processing server. In
addition to avoiding collisions, TDMA operation also
enables the system to run in a more energy-efficient
manner by turning the wireless interface of a sensor node
off during the TDMA slots of other sensor nodes.



JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012 317

The BS polls the on-body sensors in a round-robin
fashion. A node forwards its packet only when it is polled
by the BS for giving access to the channel. With n-node
network (see Figure 1), a polling time frame of 100 X
nmsec is used which is divided into 100 x n msec time
slots, one for each on-body node. If a node misses a
polling packet from the BS, it simply misses one
transmission opportunity. Each slot is further divided into
two 50 msec sub-slots. The first sub-slot is used for
polling packets from the BS to an on-body sensor node,
while the second sub-slot is used for the data packet from
the on-body node to the BS.

Node-1 Node-2 Node-n Node-1
[—— [ —
50ms 100ms
100xn ms \

[l Polling packet from BS to all nodes
[%] Data packet from on-body node to BS

Figure 1. Collision-free MAC access via polling

IV. SPEAKER DIARIZATION

The goal of this section is to develop a speaker
diarization mechanism for the down sampled signal, by
which a current speaker can be decided.

A. Speech Signal Variation

The captured acoustic signal from the on-body sensor
of the i subject during an n-subject conversation can be
represented as:

X,0) =3 AS, 1)+ N,(1), forallien ©)
j=1
where S i denotes the acoustic signal from the j" speaker

and N denotes the ambient noise. AJ. denotes the

coefficient of the acoustic signal between the j™ speaker
and node i in the network, which depends on the distance
between the speaker and the node. Therefore A, is

maximize when i=j. Means, when the speech signal is
captured by the speaker node itself, because that is the
shortest distance between the speaker and the
corresponding node.

For a system with n speakers, each node can potentially

receive acoustic signal from all the speakers in the system.

Eqgn. 1 can be extended to include n such signals captured
at any node in the network as follows:
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B. Diagrammatic Speaker Diarization (DSD)

In this section we propose diagrammatic based speaker
diarization mechanism. The key idea behind the proposed
power based diagrammatic speaker diarization (DSD) is
that when a sensor captures signal from its wearer, the
variability in the captured samples (i.e. the power) is
higher than when signal is captured from other sensors.

The power of the acoustic activity at node i during a
discrete time window of T samples can be computed as

-t

where X, (t) is the discrete acoustic signal captured at

node i as defined in Eqgn. 1. Statistically, Eqn. 3 can be
written in terms of the variance of the signals within a
window of T samples as:

Giz =R, _;Uiz (4)
where o2 is the variance and g; is the mean of the
acoustic signals captured at node i during a window of T
samples. As define in Eqgn. 4, the acoustic power is
directly proportion to the diversity of the data samples. In
other words, the power of a signal can be estimated by
observing the variance of samples within pre-specified
time windows.

In Eqgn. 3, the number of samples T depends on the time
window W in seconds, during which the acoustic signals
are captured at a sampling rate of f; Hertz.

T=W-f, (5)
In all the presented experiments, the window size W is
kept fixed to be 300ms, and the sampling frequency f; is
changed from 5 to 40Hz.

After the acoustic power is computed, a set of acoustic
signals can be classified to be a speech or not by
computing the histogram of the collected data power. The
power is classified to be, either high, if it corresponds to a
speech time frame, or low, if it corresponds to a silent or
a low speech time frame, as defined in Eqgn. 3. With DSD,
we propose a diagrammatic process to classify the power
and then to decide the current speaker. DSD mechanism
is summarized by computing the histogram of P; at node i,
and then classifying the speech and the silent time frames.

Ideally, the histogram of P; should classify the acoustic
power into two sets or in a form of a bimodal distribution.
One set is in the left with low power, which represents
the silent power, and the other set is to the right with high
power, which represents the speech power. The goal of
DSD is to assign a threshold value by which the power
can be classified into silent or speech, as shown in

Figure 2.

In this figure, the discrete acoustic signals are fist
computed as described in Egn. 1. Then, the speech power
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of the collected signals is computed at each node
according to Eqgn. 3. Finally, the computed powers of the
all signals are compared with DSD threshold value at
each user to decide the current speaker.
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Figure 2. Capturing speech using diagrammatic speech diarization

Ideally, DSD at any node should be in the middle of the
acoustic power distribution, and in this case it will be
computed as

.
DSD,, = %Zaf ©)
=1

where T is the total number of the sampled data within
the window W and o7 is the variance of the acoustic

signals captured at the node, which corresponds to the
speech activity power. On the other hand, due to the
diversity of the expected acoustic power, the bimodal
distribution of P; is expected to shift to the left or to the
right, depending on the speech conversation, subjects,
noise orientation and distance. Therefore, DSD threshold
values are chosen to be proportional to DSDy,q and the
relative frequency of the distribution. More details about
DSD threshold values are presented in Section V.

C. Acoustic Comparator based Diarization (ACD)
With DSD, the down sampled signal X, (t) will still

have some other speakers’ acoustics, as shown also in
Eqgn. 2. Therefore, DSD accuracy will be affected during
the diarization, and it will not perform well, as we will
sdiscuss in Section V. In this section we propose Acoustic
Comparator based Diarization or ACD for speech
detection.

For a given i" node, let us define X, (1), X, (2),..., X, (T)
be T acoustic samples that are collected during T discrete
time at node i. In order to measure the variation of the

acoustic samples, let us define Acoustic Variation
Coefficient (AVC) as:

AVCL- — AVar; (7)

where y; is the mean of T acoustic samples, and it can be
defined by:

=2 X Xi() ®)
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X, (t) is the acoustic signal computed in node i and at

time t, as described in Egn. 1. AVar; in Eqn. 7 is the
variance of the T acoustic samples, and can be computed
as:
AVar; = 3T, (X, (8) — w)? ©)
After the AVC is computed in every node in the
network, ACD is applied among the all nodes at the same
time. Consequently, the sampling and processing times
are synchronized among all the nodes as reported in
Section Ill. For given N nodes in the network and
AVC, (1), AVC, (L), -, AVCx(L) acoustic  variation
coefficients reported from all nodes, the current SPeaker
(SP) at time t corresponds to a node with the following
argument among the all nodes in the network.

SP(t) = "8 I[AVC(D)] (10)
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Figure 3. Capturing Speech using acoustic comparator based diarization

Figure 3 shows ACD steps for speaker diarization. As
shown in the figure, AVC is computed at each node and
the maximum AVC value will correspond to the current
speaker, as defined in Egn. 10. With two subjects
conversation, the current speaker can be detected by
simply comparing AVC; with AVC,, or AVC; — AVC,. In
this case the output will show either, positive (subject-1
speak), negative (subject-2 speak) or silent. More details
about ACD results are presented in Section V.

V. EXPERIMENTAL PERFORMANCE

In this section we study the performance of ACD
speech diarization and its performance in comparison
with DSD based approaches that are described in Section
(\A

Controlled experiments are designed in which two
human subjects, each with an acoustic data collection
sensor node, are given pre-determined sequences of
conversation. The two subjects are conversing in
unknown noisy environment and within a pre-defend
distance as shown in. Speaker identified using acoustic
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detection mechanisms, are then temporally correlated
with the actual conversation given to the subjects for
evaluating the identification accuracy.

A. Acoustic Power Dissemination

In order to study the acoustic power in a conversation,
the acoustic power distribution is computed using Eqn. 3
with a window size of 300ms, as discussed in Section IV.
Figure 4 shows four experiments results that were
conducted in same environment with sampling frequency
fs of 5, 10, 20 and 40Hz. With each frequency, the figure
shows each subject’s acoustic power. The following
conclusions can be made from Figure 4.

First, the figure shows how the acoustic power
constructs a very close to a bimodal distribution for each
subject’s speech. The form of the distribution is caused
due to the silent and the speech scenario of the two
subjects speeches during the conversation. Second, even
with different sampling frequencies, the acoustic powers
construct very similar distributions. Finally, the speech
and the silent can be detected by choosing a threshold
power value between the two peaks of the acoustic
powers. This threshold value can be easily determined
due to the wide range between the silent and the speech
power.

B. Acoustic Diarization using Diagrammatic

In order to determine the performance of DSD,
different DSD threshold values are applied on the
conducted experiments results that are shown in Figure 4.
The threshold values are chosen from the acoustic power
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distributions that are described in Section IV.B. The exact
threshold values that are used for speaker diarization are
presented in TABLE I. The performance of DSD is then
computed by comparing the DSD output with the
recorded acoustic data. Table | includes also a benchmark
scenario, at which, DSD represents the best case of
maximized percentage match with the recorded acoustic
data.

TABLEI:
DSD THRESHOLD SELECTED VALUES
DSD Threshold DSD Chosen Description
Value
DSD; A value below the 10% of the
relative frequency
DSD, A value above the 10% of the
relative frequency
DSD; 10% of DSD g
DSD, 50% of DSDyg
Bmark Best-case DSD assignment scenario

Juency
R

2 Freq

Figure 5 shows the performance results correspond to
DSD threshold values presented in TABLE 1. As shown
in the figure, for a given DSD threshold value, it was able
to identify the current speaker. Similarly, different
threshold values perform well and almost close to each
other. That is because of the noise, distance and sampling
rate as discussed in Section I1V.B. On the other hand, even
with different sampling rate, the best case benchmark
performance is very close to the other DSD thresholds
performance.
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Figure 4. Acoustic power Distribution
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Figure 6. The impact of the sampling frequency on the performance

C. Sampling Frequency

Figure 6 shows the impact of the sampling frequency
on the performance. Where sampling frequency of 5, 10,
20 and 40Hz are applied. As shown the figure, as the rate
of collecting acoustic data increased, the percentage
match of acoustic diarization is increased. The reason is
due to of missing of some acoustic data by using low
sampling frequencies, which causes missing some
matching with the actual speech.

D. Conversational Distance

To see the impact of the subjects distance on the
diagrammatic acoustic diarization, same conversation
experiment with sampling frequency of 40Hz was
repeated many times with a distance between the two
subjects of 0.5, 1, 2 and 3m. Same subjects, environment
and dialog were used in these experiments. The idea of
doing these experiments is to see the impact of the
distance on the collected acoustic data on each subject’s
sensor node.

AR KRB . reports experimentally
obtained average percentage match with different DSD
thresholds compared with the actual recorded speech. As
seen in the figure, the percentage match does not change
with a distance of 1m or more, while with small distance
the percentage match is reduced significantly. The fall of
accuracy with small distance is caused due to the starting
of acoustic interfacing from each subject to the other
subject’s sensor node. In other words, by reducing the
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Figure 7. The impact of distance on the diarization performance

E. Comparator based Diarization

In order to study the performance of the comparator
based diarization, new experiments were conducted.
Same subjects and dialog were used in these experiments
with a distance of 1 and 2m between the two subjects. In
these experiments, a source of noise is also introduced, to
see the impact of the noise on the performance. The
sampled data was then processed, and AVC values at
each node were computed. Then, the current speaker was
decided using Egn. 10.

Figure 8, 9, 10 and 11 show the performance results of
two subject’s conversations under different scenarios.
The first two plots of each figure show subject-1 and
subject-2 AVC output compared with the actual speech.
While the third plot of each figure shows SP values in
terms of AVC, — AVC, , of subject-1 and subject-2
compared with the actual speech. On other words, the
peak of AVC cross the x-axis should belong to the
current speaker speech. As seen in these figures, the AVC
outputs belong to the current speaker, which means the
current speaker can be directly decided as discussed in
Section IV and Eqgn. 10.

The corresponding percentage match of the results
that are shown in Figure 8, 9, 10 and 11 are shown in
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Figure 12. Where each percentage match is computed by
comparing the ACD outputs with the actual speech. As
seen in Figure 8, even with different distances and noise
environment, the ACD approach delivers very high state
match rates (84% and above) diarization in all scenarios.
This is because with ACD mechanism it was able to
capture the speech activity, as shown in Eqgns. 7-9, and
removing the impact of the distance and noise at each
node, as computed in Egn. 10.
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Figure 9. ACD with 1m distance and noise

F. Inter-speaker Distance

In order to study the impact of the distance between the
source of the acoustic and the sensor node on the acoustic
diarization, more experiments were conducted. Here, we
are considering the small distances (less than 1m). In this
new set of experiments, Acoustic Variation Coefficient
AVC is computed, and as described in Section IV. In this
sets of experiments, same source of acoustic is used with
same dialog and environment. In each set of experiments,
a distance of 10cm is changed, where a distance of 10, 20,
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30, 40, 50, 60, 70, 80, 90 and 100cm in each set of
experiments is applied.
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Figure 11. ACD with 2m distance and noise
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Figure 12. ACD performance results

Figure 13 shows the results, where each point in the
figure represents an average of five AVC values collected
form five experiments. As shown in the figure, by
increasing the distance from the source of the acoustic to
the sensor node, AVC goes down significantly. That
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means, by increasing the distance, the sensitivity of the
sensor node goes down. This is because by increasing the
distance, the ADC converter output of the sensor was
unable to deliver the acoustic data. Then, the acoustic
data will not be collected very well at the sensor to see an
impact on the computed AVC variation, as shown in
Figure 13. The results in this figure clarify also why
ACD performs well with different subject’s distances, as
shown in Figure 8, 9, 10, 11 and 12.
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Figure 13. Acoustic variation coefficient vs. distance
VI. CONCLUSION AND FUTURE WORK

We present an experimental framework for a wearable
sensor network that can be used for networked human
acoustic diarization. Diagrammatic Speech Diarization
(DSD), coupled with Acoustic Comparator based
Diarization (ACD), have been used for detecting the
current speaker. It was first demonstrated that the
acoustic power is shown in a form of a bimodal
distribution, corresponds to the silent and speech acoustic
powers. Then, DSD was proposed to decide some
threshold power, by which, the current speaker can be
decided. Although DSD threshold based mechanism can
be used for reasonable acoustic diarization performance,
the intrinsic noise and unpredictability subject’s distance
require a delicate dimensioning of the used threshold
values for consistent acoustic diarization performance
across various distance and noise. To avoid this, an ACD
based detection process is applied. It was shown that the
ACD method is able to consistently deliver significantly
better acoustic detection performance than DSD threshold
based mechanism in a more distance and noise
independent manner. Ongoing work on this topic includes,
adjusting the DSD, ACD and processing mechanism to
adapt for many subjects and different scenarios of
subjects orientation and environment noise.
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