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Abstract—This paper presents speaker diarization 
mechanisms using low-cost and low-resolution wearable 
wireless sensors. Speaker diarization is used for identifying 
speaking sequence and duration for all individuals engaged 
in a conversation session. The key advantage of the 
proposed mechanisms is their ability to monitor human 
conversation without having to perform energy- and 
processing-expensive speaker identification algorithms. A 
prototype system was constructed for experimental acoustic 
diarization using low-cost and low-resolution wearable 
sensors. It was experimentally demonstrated that an 
inexpensive threshold-based diarization mechanism can be 
used for conversation monitoring with acceptable accuracy. 
But for more detection accuracy, an acoustic comparator-
based diarization is applied. It was shown that comparator-
based diarization mechanism is able to consistently deliver 
significantly better acoustic detection performance than 
threshold-based mechanism in a more distance and noise 
independent manner. Controlled experiments using human 
subjects were carried out for evaluating diarization 
accuracy and the sensitivity to factors such as sampling rate 
and inter-speaker distance during conversations. 
 
Index Terms—Wearable Sensors, Coversation Monitoring, 
Acoustic Diarization, Diagrammatic Speech Diarization, 
Comparator based Diarization 

I. INTRODUCTION 

   Wireless Body Area Networks (WBANs) [1–3] consist 
of a set of wearable or implanted communicating sensors. 
These devices, communicating through wireless links, 
can transmit physiological data from the body to an 
external data aggregator device with Internet connection, 
from where data can be forwarded to hospitals or clinics 
in real-time. Such WBANs can enable a wide variety of 
applications in a number of areas including sports, 
healthcare, tele-health, and human interaction monitoring. 
The WBAN technology is still in its primitive stage and 
is being widely researched in both industry and academia.  
   Human interaction monitoring using wearable sensors 
is an interesting WBAN application. Human interaction 
can be defined as a sequence of brief actions where each 
action is seen as response to what came before and as a 
stimulus to what comes afterward [4], [5]. In the absence 
of visual data, conversation monitoring using acoustic 

sensors is considered as a feasible technique for human 
interaction monitoring.  
   In this paper we develop speaker diarization [6] 
mechanism using low-cost and low-resolution wearable 
wireless sensors. Speaker diarization is then used for 
conversation monitoring by the way of identifying 
speaking sequence and duration for all individuals 
engaged in a conversation session. In other words, the 
objective is to detect who spoke when and for how long, 
as opposed to detect what was spoken. 
   Applications of such conversation monitoring include 
various forms of surveillance, study of behavior and 
speech development for children with autistic conditions 
and other speech related disorders. It can also be used for 
studying team dynamics in controlled and un-controlled 
settings. 
   The key advantage of the proposed diarization based 
conversation monitoring mechanism is its ability to 
monitor human conversation without having to perform 
energy- and processing-expensive speaker identification 
algorithms. In addition to its processing and energy 
overheads, speaker identification algorithms [7–10] 
usually require acoustic sampling at higher rates and, 
subsequently higher wireless bandwidth for collecting 
data from on-body sensors to out-of-body processing 
units. In the proposed approachs, on the other hand, low 
sampling rates (e.g. 5 Hz) lead to lower energy, 
bandwidth, and processing requirements, while being 
able to detect conversation dynamics. This suits the 
proposed mechanisms very well for resource-constrained 
wearable sensors. The primary reason for this proposed 
simple approaches to work is that we are mainly 
interested in detecting who spoke when and for how long, 
as opposed to specific content of the speech. 

Contributions of the paper are as follows. First, the 
details of a prototype wearable sensor system used for the 
proposed speaker diarization experiments are presented. 
Second, the proposed low-complexity speaker 
diarizations are formally presented. Finally, the 
algorithms are experimentally validated along with a 
detailed study of their sensitivity to audio sampling rate 
and inter-subject distance during a conversation. 
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II. RELATED WORK 
   Instrumented detection of human interaction [11] has 
recently been gaining popularity in both psychology and 
sensor literature. Example sensing modalities for 
interaction detection are proximity, relative orientation, 
and conversation dynamics on an inter-personal basis. 
The objective of this paper is to address the modality of 
conversation dynamics [12–15] by the way of speaker 
diarization.  
   Speaker diarization in the literature [15] has been used 
for a wide range of applications including: 1) analyzing 
broadcast audio news programs in the presence of 
commercial and other breaks, 2) analyzing recorded 
meetings with multiple people participants, and 3) phone 
conversations between two or more people. A large 
number of diarization approaches in the literature [7–10] 
use Hidden Markov Model (HMMs) [16] in which each 
state correspond to an individual speaker. A Gaussian 
Mixture Model (GMM) [17] is generally used for 
modeling the conversations.  
   The other commonly used approach for speaker 
diarization is Bayesian machine learning [18]. In order to 
avoid premature hard decisions in the diarization process, 
the Bayesian mechanisms usually attempt to estimate the 
complete distribution of the system parameters as 
opposed to just the averages. Monte Carlo Markov 
Chains (MCMC) are used in [19] in order to provide a 
systematic approach to the computation of such 
distributions via exhaustive sampling. Such sampling, 
however, is generally slow and expensive when the 
amount of data is large, and they often require multiple 
passes as the chains get stuck and not converge in a 
practical number of iterations. In [20], a variation of 
Bayesian machine learning algorithm is used to learn a 
GMM speaker model. In [6], the above is combined 
successfully with eigenvoice modeling [18] for speaker 
diarization of telephone conversations. All the above 
approaches require significant amount of processing 
overhead that is not usually practical for the on-body 
diarization problem as targeted in this paper. Our 
approach addresses such processing complexity issues. 
   The goal of this paper is to propose our wearable sensor 
network that can be used for human interaction exposure 
through detecting human speech activity. Specific 
contributions of the paper are as follows. First, propose 
our prototype as one modern framework that can be used 
for human interaction and speaker diarization. Second, 
develop an analytical framework for determining the 
current speaker, for a given collecting data, representing 
the current speaker. Third, validate the proposed 
prototype and the analytical framework by comparing the 
experimental speaker diarization data and the acoustic 
recording data. Finally, Study the impact of the sample 
rate and signal compression data on the speaker 
diarization accuracy in the present of different parameters, 
like, human subject’s pair-wise distance and orientation 
and environment noise. 

III. WEARABLE SENSORS 
   This section presents the experimental setting of 
wearable sensors that was used for the proposed light-
weight speaker diarization mechanism. 

A. Experiment Settings 
   The wearable node was constructed using a 900MHz 
Mica2Dot MOTE [21] (running TinyOS operating 
system), with Chipcon’s SmartRF CC1000 radio chip 
(chipcon.com), and the sensor card MTS510 from 
Crossbow Inc. (xbow.com). The Mica2Dot node runs 
from a 570mAH button cell with a total sensor weight of 
approximately 10 grams. The default CSMA MAC 
protocol was used with a data rate of 19.2kbps. In our 
experiments, each sensor was worn as a badge fastened at 
a subject’s chests so that the sensor does not move during 
an experiment. 
   A wireless link is established from the wearable sensor 
to an external processing server to transport raw data or 
the results from on-body diarization depending on the 
chosen processing mode. A Mica2Dot radio node with 
custom-built serial interface, running RS232 protocol, 
was used as a base station for collecting data from on-
body sensors and for sending to a Windows PC 
processing server through its serial port. 

B. Acoustic Sensing 
    Within the MTS510 sensor card, acoustic data from a 
microphone is fed into an ADC through an amplifier. The 
ADC values are read by the Mica2Dot’s microprocessor 
and formatted as packets before sending it out to 
processing server PC through 900MHz radio links. The 
speaker diarization was then executed within the 
processing server PC. The sampling rate of the acoustic 
data was varied from 5Hz to 40Hz during our 
experiments. 
   As a control, for each scripted conversation session the 
entire conversation was also recorded using a separate 
high fidelity microphone so that the actual conversation 
dynamics can be post-coded by listening to that recording 
and can be compared with the output of the  diarization 
algorithms for their accuracy. The high fidelity 
microphone is connected to the same processing server 
PC so that it can time-stamp both the externally recorded 
audio data and the samples received from on-body 
sensors using the same clock, thus synchronizing the two 
data streams. 

C. Polling Based Channel Access for Collision Control 
   Since each person is required to wear a separate sensor 
badge, multiple sensors can be simultaneously active and 
share the radio for sending data to the processor server. In 
order to avoid the CSMA MAC collisions due to such 
multiple accesses, we implemented a higher layer polling 
based TDMA access strategy that is managed by the base 
station (BS) connected to the processing server. In 
addition to avoiding collisions, TDMA operation also 
enables the system to run in a more energy-efficient 
manner by turning the wireless interface of a sensor node 
off during the TDMA slots of other sensor nodes. 
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   The BS polls the on-body sensors in a round-robin 
fashion. A node forwards its packet only when it is polled 
by the BS for giving access to the channel. With n-node 
network (see Figure 1), a polling time frame of 100 ൈ
݊ msec is used which is divided into 100 ൈ ݊ msec time 
slots, one for each on-body node. If a node misses a 
polling packet from the BS, it simply misses one 
transmission opportunity. Each slot is further divided into 
two 50 msec sub-slots. The first sub-slot is used for 
polling packets from the BS to an on-body sensor node, 
while the second sub-slot is used for the data packet from 
the on-body node to the BS. 

 
Figure 1. Collision-free MAC access via polling 

IV. SPEAKER DIARIZATION 

   The goal of this section is to develop a speaker 
diarization mechanism for the down sampled signal, by 
which a current speaker can be decided. 

A. Speech Signal Variation 
   The captured acoustic signal from the on-body sensor 
of the ith subject during an n-subject conversation can be 
represented as: 
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where jS denotes the acoustic signal from the jth speaker 

and N denotes the ambient noise. ijA  denotes the 

coefficient of the acoustic signal between the jth speaker 
and node i in the network, which depends on the distance 
between the speaker and the node.  Therefore ijA is 

maximize when i=j. Means, when the speech signal is 
captured by the speaker node itself, because that is the 
shortest distance between the speaker and the 
corresponding node. 

   For a system with n speakers, each node can potentially 
receive acoustic signal from all the speakers in the system. 
Eqn. 1 can be extended to include n such signals captured 
at any node in the network as follows: 
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B. Diagrammatic Speaker Diarization (DSD) 
   In this section we propose diagrammatic based speaker 
diarization mechanism. The key idea behind the proposed 
power based diagrammatic speaker diarization (DSD) is 
that when a sensor captures signal from its wearer, the 
variability in the captured samples (i.e. the power) is 
higher than when signal is captured from other sensors.   

   The power of the acoustic activity at node i during a 
discrete time window of T samples can be computed as 

∑
=

=
T

t
ii tX

T
P

1

2)(1    (3) 

where )(tXi  is the discrete acoustic signal captured at 
node i as defined in Eqn. 1. Statistically, Eqn. 3 can be 
written in terms of the variance of the signals within a 
window of T samples as: 

22
iii P μσ −=    (4) 

where 2
iσ  is the variance and iμ is the mean of the 

acoustic signals captured at node i during a window of T 
samples. As define in Eqn. 4, the acoustic power is 
directly proportion to the diversity of the data samples. In 
other words, the power of a signal can be estimated by 
observing the variance of samples within pre-specified 
time windows.  
   In Eqn. 3, the number of samples T depends on the time 
window W in seconds, during which the acoustic signals 
are captured at a sampling rate of fs Hertz.  

sfWT ⋅=    (5) 
In all the presented experiments, the window size W is 
kept fixed to be 300ms, and the sampling frequency fs is 
changed from 5 to 40Hz. 
   After the acoustic power is computed, a set of acoustic 
signals can be classified to be a speech or not by 
computing the histogram of the collected data power. The 
power is classified to be, either high, if it corresponds to a 
speech time frame, or low, if it corresponds to a silent or 
a low speech time frame, as defined in Eqn. 3. With DSD, 
we propose a diagrammatic process to classify the power 
and then to decide the current speaker. DSD mechanism 
is summarized by computing the histogram of Pi at node i, 
and then classifying the speech and the silent time frames. 

   Ideally, the histogram of Pi should classify the acoustic 
power into two sets or in a form of a bimodal distribution. 
One set is in the left with low power, which represents 
the silent power, and the other set is to the right with high 
power, which represents the speech power. The goal of 
DSD is to assign a threshold value by which the power 
can be classified into silent or speech, as shown in  

Figure 2. 

   In this figure, the discrete acoustic signals are fist 
computed as described in Eqn. 1. Then, the speech power 

Node-1 …

…
Node-2 Node-n Node-1

Polling packet from BS to all nodes
Data packet from on-body node to BS

50ms 100ms
100×n ms

…
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