
Web Ontology Language Design and Related
Tools: A Survey

Farheen Siddiqui

(Hamdard University, India
fsiddiqui@jamiahamdard.ac.in)

 M. Afshar Alam

(Hamdard University, India
aalam@jamiahamdard.ac.in)

Abstract— The foundation of the semantic web lies
firmly on a strong foundation of Web Ontology
Language(OWL). OWL was developed by World
Wide Web Consortium (W3C), Web Ontology
Working Group and has features from several
families of representation languages. OWL also shares
many characteristics with RDF, the W3C base of the
Semantic Web. This paper will discuss how the
“thought process” behind OWL can be connected to
its older formalisms, with modifications due to the
functionalities that OWL had to give. A smooth move
from RDF to OWL is made possible by handling
every possible situation of RDF in OWL. Also various
species of OWL are discussed with their features and
restrictions. The recent development in ontology
engineering and the immense tool support for OWL is
a conformance of its acceptability.

Index Terms— Ontologies, Semantic Web,
Description Logics, Frames, RDF

I. INTRODUCTION

Ontologies have become a very popular topic, not only
in AI but also in other disciplines of computing. There
are also efforts focused on developing ontologies in many
other branches of science and technology. Hence
ontologies are growing fast into a distinct scientific field
with its own theories, formalisms, and approaches. The
major purpose of ontologies is not to serve as
vocabularies and taxonomies; it is knowledge sharing and
knowledge reuse by applications. Every ontology
provides a description of the concepts and relationships
that can exist in a domain and that can be shared and
reused among intelligent agents and applications.
Moreover, working agents and applications should be
able to communicate such ontological knowledge. Shared
ontologies let us build specific knowledge bases that
describe specific situations but clearly rely on the same
underlying knowledge structure and organization.

OWL 2 [1] is ontology language for the Semantic
Web, developed by the World Wide Web Consortium
(W3C) Web Ontology Working Group. The OWL Web
Ontology Language is intended to provide a language that
can be used to describe the classes and relations between
them that are inherent in Web documents and
applications. In simpler words OWL represents
information about categories of objects pertaining to a
specific domain and their interdependencies—the
“domain mode” that is often called an ontology. OWL
can also represent information about the objects
themselves—the sort of information that is often thought
of as data.

OWL is an effort in W3C’s Semantic Web activity,
and is compatible with XML and RDF. OWL is primarily
used to formalize a domain by defining classes and
properties of those classes, defining individuals and assert
properties about them, and reason about these classes and
individuals to the degree permitted by the formal
semantics of the OWL language. Before the development
of OWL there was already several ontology languages
designed for use in the Web thus OWL had to maintain a
upward compatibility with earlier web languages to
ensure its smooth adaptability.

The multiple influences on OWL resulted in some
difficult trade-offs. OWL is devised in such a way that it
could be shown to have various desirable features, while
still retaining sufficient compatibility with its roots. This
paper describes some of the trade-offs and design
decisions that had to be made by the Web Ontology
Working Group during the design of OWL and its tool
support After a brief introduction and quick survey of
OWL in Section II , in Section III we present influences
on design of OWL and section IV discusses different
ontology language that preceded OWL. The issues related
to OWL design are discussed in Section V and section VI
gives details of how these issues were addressed .OWL
versions are discussed in VII and section VIII discusses
current trends in ontology engineering and tool support.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011 47

© 2011 ACADEMY PUBLISHER
doi:10.4304/jetwi.3.1.47-59

II. OWL OVERVIEW

Ontology is a term borrowed from philosophy that
refers to the science of describing the kinds of entities in
the world and how they are related. Informally, the
ontology of a certain domain is about its terminology
(domain vocabulary), all essential concepts in the
domain, their classification, their taxonomy, their
relations (including all important hierarchies and
constraints), and domain axioms. According to Dragan
Gaˇsevi´c · etal [9] I”f someone who wants to discuss
topics in a domain D using a language L, an ontology
provides a catalog of the types of things assumed to exist
in D;the types in the ontology are represented in terms of
the concepts, relations, and predicates of L”.

Both formally and informally, the ontology is an
extremely important part of the knowledge about any
domain. Moreover, the ontology is the fundamental part
of the knowledge, and all other knowledge should rely on
it and refer to it. In the context of the Semantic Web,
ontologies are expected to play an important role in
helping automated processes (so called “intelligent
agents”) to access information. Generally ontologies
provide a number of useful features for intelligent
systems, as well as for knowledge representation in
general and for the knowledge engineering process. In
particular, ontologies are expected to be used to provide
structured vocabularies that explicate the relationships
between different terms, allowing intelligent agents (and
humans) to interpret their meaning flexibly yet
unambiguously. Ontology specifies terms with
unambiguous meanings, with semantics independent of
reader and context. Translating the terms in ontology
from one language to another does not change the
ontology conceptually. Thus ontology provides a
vocabulary and a machine-processable common
understanding of the topics that the terms denote. The
meanings of the terms in ontology can be communicated
between users and applications.

The OWL Web Ontology Language is a language for
defining and instantiating Web ontologies. OWL
ontology may include descriptions of classes, properties
and their instances. Given such ontology, the OWL
formal semantics specifies how to derive its logical
consequences, i.e. facts not literally present in the
ontology, but entailed by the semantics. These
entailments may be based on a single document or
multiple distributed documents that have been combined
using defined OWL mechanism

Terms whose meaning is defined in ontologies can be
used in semantic markup that describes the content and
functionality of web accessible resources [2]. Ontologies
and ontology-based semantic markup could be used in

– E-commerce where they can provide a common
domain model of products on form of product ontology
for both sellers and buyers

– search engines, where they can help in finding pages
that contain semantically similar but syntactically
different words and phrases

– Web services, where they can provide rich service
descriptions that can help in locating suitable services.

In order to support these and other usage scenarios,
OWL takes the basic fact-stating ability of RDF [8] and
the class- and property-structuring capabilities of RDF
Schema [6] and extends them in important ways. OWL
can declare classes, and organize these classes in a
“subclass” hierarchy, as can RDF Schema. OWL classes
can be specified as logical combinations (intersections,
unions, or complements) of other classes, or as
enumerations of specified objects, going beyond the
capabilities of RDFS. OWL can also declare properties,
organize these properties into a “subproperty” hierarchy,
and provide domains and ranges for these properties,
again as in RDFS. The domains of OWL properties are
OWL classes, and ranges can be either OWL classes or
externally-defined datatypes such as string or integer.
OWL can state that a property is transitive, symmetric,
functional, or is the inverse of another property, here
again extending RDFS.

OWL can express which objects (also called
“individuals”) belong to which classes, and what the
property values are of specific individuals. Equivalence
statements can be made on classes and on properties,
disjoint statements can be made on classes, and equality
and inequality can be asserted between individuals.
However, the major extension over RDFS is the ability in
OWL to provide restrictions on how properties behave
that are local to a class. OWL can define classes where a
particular property is restricted so that all the values for
the property in instances of the class must belong to a
certain class (or datatype); at least one value must come
from a certain class (or datatype); there must be at least
certain specific values; and there must be at least or at
most a certain number of distinct values. For example,
using RDFS we can

– declare classes like StudyProgaram, Courses, and
student;

– state that RegularStudent is a subclass of Student;
With OWL we can additionally

– RegularStudent and ParttimeStudent are disjoint
classes;

– RegularStudent is equivalent to Student with
EnrollIn property value from RegularCourse

– Instructs and HasInstructor are inverse properties
– A StudyProgram should have minimum of 5 Courses
– Enrollment is a functional property.

The core education ontology will define concept such

as study Programs, Courses, students and Instructors.(to
link a study program with its courses and courses with its
instructors)There could be a subtype of study Program
such as Online program and Regular Program Using
OWL logical connectors it is further possible to define
classes by their logical characteristics such as regular
Student could be defined as student who is enrolled in
some Regular Study Program Also OWL allows classes
to be defined disjoint or equivalent by logical connectors
equivalent and disjoint. For example the class Regular
Student is equivalent to class Student will Enroll In

48 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

property value belonging to some regular course. Also
the class Regular Student can be defined Disjoint to the
class Online Student. These defined classes allow
reasoners to automatically classify existing domain
objects into matching types (classes).

The above shows that OWL is quite a sophisticated
language. OWL has both RDF/XML exchange syntax
and an abstract frame-like syntax, and it has three named
sublanguages. This multiplicity is the direct result of
trying to satisfy a large number of sometimes conflicting
influences and requirements, as will be discussed
subsequently in this paper.

III. INFLUENCES ON OWL

As mentioned above, the design of OWL has been
subject to a variety of influences. These included
influences from established formalisms and knowledge
representation paradigms, influences from existing
ontology languages, and influences from existing
Semantic Web languages. Some of the most important
influences on the design of OWL came, via its
predecessor DAML+OIL, from Description Logics, from
the frames paradigm, and from RDF. In particular, the
formal specification of the language was influenced by
Description Logics, the surface structure of the language
(as seen in the abstract syntax) was influenced by the
frames paradigm, and the RDF/XML exchange syntax
was influenced by a requirement for upwards
compatibility with RDF.

The major influence on the design of OWL was the
requirement to maintain the maximum upwards
compatibility with existing web languages and in
particular with RDF [3]. On the face of it this
requirement made good sense as RDF (and in particular
RDF Schema) already included several of the basic
features of a class and property based ontology language,
e.g., it allows subclass and subproperty relationships to
be asserted. Moreover, the development of RDF preceded
that of OWL, and it seemed reasonable to try to appeal to
any user community already established by RDF. In order
to provide maximum upwards compatibility, however, it
was also thought necessary to ensure that the semantics
of OWL ontologies was also consistent with the
semantics of RDF. This proved to be difficult given the
greatly increased expressive power provided by OWL.
Each of these influences will be examined in more detail
in the following sections.

A. Description Logics

Description Logics are a family of class-based
(concept-based) knowledge representation formalisms
[9]. They are characterized by the use of various
constructors to build complex classes from simpler ones,
an emphasis on the decidability of key reasoning
problems, and by the provision of sound, complete and
(empirically) tractable reasoning services. Thus an entire
group of languages for knowledge representation, based
on description logics, is of particular interest in the
context of ontology representation and development. The
semantics of the underlying concepts of these languages

identifies them as decidable fragments of first-order
logic. Developing a knowledge base using a description
logic language means setting up a terminology (the
vocabulary of the application domain) in a part of the
knowledge base called the TBox, and assertions about
named individuals (using the vocabulary from the TBox)
in a part of the knowledge base called the ABox. The
vocabulary consists of concepts and roles. Concepts
denote sets of individuals. Roles are binary relationships
between individuals. There are atomic concepts and roles
(names of concepts and roles) and complex concepts and
roles (terms for concepts and roles). The complex
concepts are built using descriptions expressed in the
corresponding description logic language and are
assigned names in the TBox. For example, if
StudyProgram and Course are atomic concepts and
hasCourse d is an atomic role (a relation), part of a TBox
defining complex concepts about relationships may look
like this :

RegularStudent ≡ Student ∩ EmrollIn.RegularCourse

In fact, the TBox defines (in a general way) semantic

relationships between individuals introduced in the ABox
and their properties. In other words, the ABox describes a
specific state of affairs in the world in terms of the
concepts and roles defined in the TBox. An ABox
corresponding to the above TBox might be

RegularStudent(JAMES)
An intelligent system with a knowledge base

structured as a TBox–ABox pair can reason about its
terminology and assertions. It can determine whether a
description in the TBox is satisfiable (i.e.,
noncontradictory), and whether there is a subsumption
relationship between two descriptions (i.e., one is more
general than the other). For example, in the above TBox
Person subsumes Woman, and both Parent and Woman
subsume Mother. Two important reasoning tasks about
assertions in the ABox are to determine whether the
assertions imply that a particular individual is an instance
of a given concept description, and whether a set of
assertions is consistent (whether it has a model). From a
pragmatic point of view, consistency checks of sets of
assertions and satisfiability checks of concept
descriptions help to determine whether a knowledge base
is meaningful at all. Subsumption tests help to organize
the terminology into a meaningful hierarchy of concepts
according to their generality. Each test can be also
interpreted as a query about objects of interest; it
retrieves the set of individuals that satisfies the test.

 Description Logics [4], and insights from Description
Logic research, had a strong influence on the design of
OWL, particularly on the formalization of the semantics,
the choice of language constructors, and the integration
of data types and data values. In fact OWL DL and OWL
Lite (two of the three species of OWL) can be viewed as
expressive Description Logics, with an ontology being
equivalent to a Description Logic knowledge base. Like
OIL and DAML+OIL, OWL uses a Description Logic
style model theory to formalize the meaning of the

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011 49

© 2011 ACADEMY PUBLISHER

language. This was recognized as an essential feature in
all three languages, as it allows ontologies, and
information using vocabulary defined by ontologies, to be
shared and exchanged without disputes as to precise
meaning. The need for this kind of formality was
reinforced by experience with early versions of the RDF
and RDFS specification, where a lack of formality soon
led to arguments as to the meaning of language constructs
such as domain and range constraints [10]. In order to
avoid such problems, the meaning of RDF is now also
defined in terms of a model theory [11].

Another advantage of formalizing the meaning of the
language in this way is that automated reasoning
techniques can be used to check the consistency of
classes and ontologies, and to check entailment
relationships. This is crucial if the full power of
ontologies is to be exploited by intelligent agents, and the
ability to provide such reasoning support was a key
design goal for OWL.

B. Frames Paradigm

In frame based languages, each class is described by a
frame. The frame includes the name of the class,
identifies the more general class (or classes) that it
specializes, and lists a set of “slots”. A slot may consist
of a property-value pair or a constraint on the values that
can act as slot “fillers” (in this context, value means
either an individual or a data value). This structure was
used in the OIL (Ontology Interface Language), with
some enrichment of the syntax for specifying classes and
slot constraints so as to enable the full power of a
Description Logic style language to be captured. In
addition, property frames were used to describe
properties, e.g., specifying more general properties, range
and domain constraints, transitivity and inverse property
relationships. A class frame is semantically equivalent to
a Description Logic axiom asserting that the class being
described by the frame is a subclass of each of the classes
that it specializes and of each of the property restrictions
corresponding to the slots. As well as a richer slot syntax,
OIL also offered the possibility of asserting that the class
being described by the frame was exactly equivalent to
the relevant intersection class, (i.e., that they were
mutually subsuming). A property frame is equivalent to a
set of axioms asserting the relevant sub property
relationships, range and domain constraints etc.].

The traditional frame-based languages lacked precise
characterization of their semantics. Moreover,
discrimination between different types of knowledge
embedded in a frame system was not clear. As a result,
every frame-based system behaved differently from the
others (which were developed using different frame-
based languages), in many cases despite virtually
identical-looking components and even identical
relationship names [Baader et al., 2003]. As a
consequence, different systems could not interoperate and
share knowledge. Later frame languages introduced more
formal semantics, retaining the hierarchical concept
structures and ease of representation and simultaneously
improving the efficiency of reasoning and the
representational rigor. Another disadvantage of frame-

based languages is inadequate way in which they deal
with procedural knowledge. The way they do this is
usually to use some limited arithmetic, plus calling
procedures and functions written in a procedural
language and attached to slot facets. The procedural
knowledge encoded in this other language is not
represented in a frame-based way – it is hard-coded in the
corresponding function/procedure. As a consequence, the
resulting systems can only reason with that knowledge,
but not about it.

In the Semantic Web context, where users with a wide
range of expertise might be expected to create or modify
ontologies, readability and general ease of use are
important considerations for an ontology language. In the
design of OIL, one of the languages on which OWL is
based; these requirements were addressed by providing a
surface syntax based on the frames paradigm. Frames
group together information about each class, making
ontologies easier to read and understand, particularly for
users not familiar with (Description) Logics. The frames
paradigm has been used in a number of well known
knowledge representation systems including the Prot´eg´e
ontology design tool [13] and the OKBC knowledge
model [8]. The design of OIL was influenced by XOL
[14]—a proposal for an XML syntax for OKBC Lite (a
cut down version of the OKBC knowledge model).

The formal specification and semantics of OWL are
given by an abstract syntax [13] that have been heavily
influenced by frames in general and by the design of OIL
in particular. In the abstract syntax, axioms are compound
constructions that are very like an OIL-style frame. For
classes, they consist of the name of the class being
described, a modality of “partial” or “complete”
(indicating that the axiom is asserting a subclass or
equivalence relationship respectively), and a sequence of
property restrictions and names of more general classes.
Similarly, a property axiom specifies the name of the
property and its various features. The frame style of the
abstract syntax makes it much easier to read (compared to
the RDF/XML syntax), and also easier to understand and
to use. Moreover, abstract syntax axioms have a direct
correspondence with Description Logic axioms, and they
can also be mapped to a set of RDF triples.

C. RDF Syntax

The third major influence on the design of OWL was
the requirement to maintain the maximum upwards
compatibility with existing web languages and in
particular with RDF [3]. On the face of it this
requirement made good sense as RDF (and in particular
RDF Schema) already included several of the basic
features of a class and property based ontology language,
e.g., it allows subclass and sub property relationships to
be asserted. Moreover, the development of RDF preceded
that of OWL, and it seemed reasonable to try to appeal to
any user community already established by RDF. It may
seem easy to meet this requirement simply by giving
OWL an RDF based syntax. In order to provide
maximum upwards compatibility, however, it was also
thought necessary to ensure that the semantics of OWL
ontologies was also consistent with the semantics of

50 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

RDF. This proved to be difficult given the greatly
increased expressive power provided by OWL. This will
be discussed in more detail in Section 5.

IV. OWL PREDECESSORS

OWL came into existence after development of RDFS,
SHOE, OIL, DAMLONT and DAML+OIL and was soon
adapted by W3C as standard for ontology description.
DAML+OIL in particular was a major influence on
OWL, and members of Web Ontology working group
emphasized that the design of OWL should be based on
DAML+OIL. DAML+OIL in turn were heavily
influenced by the OIL language, with additional influence
from work on DAML-ONT and RDFS.

A. Simple HTML Ontology Extensions

One of the first attempts at defining an ontology
language for deployment on the Web was SHOE [16].
SHOE is a frame-based language with an XML syntax
that could be safely embedded in existing HTML
documents. SHOE used URI references for names, an
important innovation (see Section 7) that was
subsequently adopted by DAML-ONT and DAML+OIL.
Giving the authors the ability to embed knowledge
directly into HTML pages, making it also simple for user
agents and robots to retrieve and store knowledge, was
the goal of the so-called Simple HTML Ontology
Extension (SHOE). This approach allows authors to add
semantic content to web pages, relating the context to
common ontologies that provide contextual information
about the domain [16]. Most web pages with SHOE
annotations tend to have tags that categorize concepts;
therefore there is no need for complex inference rules to
perform automatic classification [20]. This approach
extends HTML with a set of object-oriented tags to
provide structure for knowledge acquisition. It associates
meaning with content by committing web pages to
existing ontologies. These ontologies permit the
discovery of implicit knowledge through the use of
taxonomies and inference rules, allowing information
providers to encode only the necessary information into
their web pages. An ontology tag delimits the machine-
readable portion of the ontology.

SHOE focuses on the problem of maintaining
consistency as the ontologies evolve. In [21] the use of
SHOE in a real world internet application is described.
Tools for annotating pages, information gathering
tasks,and querying are provided. SHOE also placed
emphasis on the fact that ontologies would be tightly
interlinked and subject to change. Consequently, SHOE
included a number of directives which allowed importing
of other ontologies, local renaming of imported constants,
and stating versioning and compatibility information
between ontologies. This line of thinking has influenced
the extra-logical vocabulary of OWL that is designed to
partially deal with such issues. SHOE was of lesser
influence on the syntactic and semantic design of OWL
since it was not based on RDF, and did not come with a
formal semantics

B. DAML-ONT

In 1999 the DARPA Agent Markup Language
(DAML) program3 was initiated with the aim of
providing the foundations of a next generation
“semantic” Web [19]. As a first step, it was decided that
the adoption of a common ontology language would
facilitate semantic interoperability across the various
projects making up the program. RDFS (which had
already been proposed as a W3C standard) was seen as a
good starting point, but was not sufficiently expressive to
meet DAML’s requirements. A new language called
DAML-ONT was therefore developed that extended RDF
with language constructors from object-oriented and
frame-based knowledge representation languages.
DAML-ONT was tightly integrated with RDFS, and
while this was useful from a compatibility viewpoint, it
led to some serious problems in the design of the
language. Like RDFS, DAML-ONT suffered from an
inadequate semantic specification, and it was soon
realized that this could lead to disagreements, both
amongst humans and machines, as to the precise meaning
of terms in DAMLONT ontology. Moreover, DAML-
ONT property restrictions had, like those of RDFS,
global rather than local scope, and while this was
reasonable for the domain and range constraints provided
by RDFS, global cardinality constrains, for example, are
difficult to understand and of doubtful utility—in fact it
seems likely that this would have been recognized as a
design flaw if the semantics of the language had been
adequately formalized.

C. DAML-ONT

At around the same time that DAML-ONT was being
developed, a group of (largely European) researchers
with aims similar to those of the DAML researchers had
designed another Web oriented ontology language called
OIL (the Ontology Inference Layer) [12]. OIL was the
first ontology language to combine elements from
Description Logics, frame languages and web standards
such as XML and RDF. OIL placed a strong emphasis on
formal rigor, and the language was explicitly designed so
that its semantics could be specified via a mapping to the
SHIQ description logic [23]. The structure of the
language was, however, frame-based, using compound
class “definitions” in the style described in Section 3.2.
OIL had both XML and RDF syntaxes, but although the
RDF syntax was designed to maintain compatibility with
RDFS, it did not concern itself with the precise details of
RDF semantics, which had not at that time been formally
defined.

D. DAML +OIL

It became obvious to both the DAML-ONT and OIL
groups that their objectives could best be served by
combining their efforts, the result being the merging of
DAML-ONT and OIL to produce DAML+OIL. The
development of DAML+OIL was undertaken by a
committee largely made up of members of the two
language design teams, and rather grandly titled the Joint
US/EU ad hoc Agent Markup Language Committee.5
The merged language has a formal semantics given by its

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011 51

© 2011 ACADEMY PUBLISHER

own DL style model theory instead of via a translation
into a suitable DL. The DL derived language constructors
of OIL were retained in DAML+OIL, but the frame
structure was largely discarded in favour of DL style
axioms, which were more easily integrated with RDF
syntax. Influenced by DAML-ONT, DAML+OIL is more
tightly integrated with RDF. DAML+OIL, however, only
provided a meaning for those parts of RDF which were
consistent with its own syntax and DL style model
theory. This did not seem to be too much of a problem
given that RDF did not at that time have a formally
specified meaning of its own, but was the cause of
serious difficulties when DAML+OIL was used as the
basis for OWL.

V CHALLANGES FOR OWL

The multiple influences on OWL have actually created
number of chanllages for its developers. For example it a
tradeoff between RDF/XML as the official OWL syntax
and having an redable and more user friendly syntax.
Some of these problems arise from a need to maintain a
upward compatibility to OWL predecessors.

A. Syntactic challanges

For a number of reasons, including maintaining
connections to frames and Description Logics, OWL
should have an easy-to-read syntax that can be easily
understood and easily created. However, it was a
requirement of OWL that it use XML as its normative
syntax, and, moreover, use XML in the same way as it is
used in RDF [8]. This requirement had already been
addressed by OIL and, later, by DAML+OIL: OIL has
both an RDF/XML and XML syntax [15], while
DAML+OIL has only an RDF/XML syntax [9]. Taken
just as a syntax for OWL, RDF in the form of RDF/XML
has a number of problems. These problems can be
overcome, but they do make OWL more complex that it
might otherwise be.

One problem is that RDF/XML is extremely verbose.
Compare for example, information about a class as it
would be given in a Description Logic syntax

Student = Person ∩>1 enrolledIn
(a Student is a Person who is enrolledIn at least 1

thing), with how it would most naturally be written using
the OWL RDF/XML syntax

<owl:Class rdf:ID="Student">
<owl:intersectionOf rdf:parsetype="Collection">
<owl:Class rdfs:about="Person" />
<owl:Restriction>
<owl:onProperty rdf:resource="enrolledIn" />
<owl:minCardinality rdfs:datatype="&xsd;Integer">
1
</owl:minCardinality>
</owl:Restriction>
<owl:intersectionOf>
</owl:Class>

Another problem is that RDF breaks everything down
into RDF triples [17] This means that many OWL
constructs, such as property restrictions, have to be
encoded as several triples. OWL generally uses an
encoding similar to that used by DAML+OIL. For
example, an OWL value restriction that would be written
in Description Logic syntax as 9child.person (the class
whose instances have some child that is a person) is
encoded as two RDF triples something like

:x owl:onProperty ex:child .
:x owl:someValuesFrom ex:Person .
where _:x is a syntactic placeholder for the restriction

as a whole.
 A third problem is that all RDF triples are

independent. This means, for example, that as far as RDF
is concerned there is no requirement that the two above
triples must always occur together. Similarly, there is no
requirement that there not be extra triples, so adding

:x owl:onProperty ex:friend .
:x owl:allValuesFrom ex:Doctor .

to the above two triples cannot be ruled out in RDF.
A fourth problem is that RDF triples are all accessible.

This means that circular and other unusual structures
cannot be ruled out. For example, there is no problem in
RDF with collections of triples like

:x owl:onProperty ex:child .
:x owl:allValuesFrom :x .
These issues are not addressed in OIL, which provides

no guidance as to what should happen for collections of
triples that don’t match the syntax productions of the
language. DAML+OIL take a different approach,
allowing unusual constructions but declining to give them
a DAML+OIL meaning. OWL has roughly followed the
DAML+OIL solution, but with several modifications.

B. Semantic Challanges

Once issues of syntax have been addressed, issues
related to meaning still remain. RDF provides a meaning
for every triple, so if OWL is to be considered to be an
extension of RDF, the meaning that OWL provides for
triples needs to be an extension of this RDF meaning.
This was not as much of an issue when OIL and
DAML+OIL were designed, as the meaning of RDF was
not very well specified. OIL in particular does not bother
to relate the RDF meaning of its RDF/XML syntax to the
OIL meaning of this syntax—the RDF/XML syntax for
some OIL constructs does more-or-less line up with the
RDF meaning of these constructs but this is by no means
the case for all such constructs. For example, OIL has a
special property (oil:hasSlotConstraint) used to relate a
class to its slots, but the RDF meaning [11] of this
property, namely the standard meaning assigned to any
RDF triple is ignored by the OIL semantics.

DAML+OIL do a better job of abiding by the RDF
meaning of its syntax. The DAML+OIL model theory
[18] includes a semantic condition for triples that is close
to the RDF meaning (as defined at that time) for triples.
Further, DAML+OIL uses the built-in RDF and RDFS
vocabulary to a greater extent than does OIL, and uses it
in a way generally compatible with the RDF or RDFS

52 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

meaning (as defined at that time) for this vocabulary. For
example DAML+OIL uses rdfs:subClassOf to relate
classes to superclasses, including DAML+OIL
restrictions, whereas OIL uses oil:hasSlotConstraint in
some of these situations. Even when DAML+OIL was
being developed, however, there were some aspects of
the meaning of RDFS that could not be reconciled with
the appropriate meaning in DAML+OIL. In particular,
RDFS [5] then had an unusual meaning for domains and
ranges of properties. Only a single range was permitted
for properties and multiple domains were treated
disjunctively. For example,

ex:foo rdfs:domain ex:Person .
ex:foo rdfs:domain ex:Rock .

would allow both people and rocks to participate in the
foo property. This disjunctive reading of domains caused
problems for the DAML+OIL semantics so a choice was
made to change this to a conjunctive reading and allow
multiple domains and ranges, both with a conjunctive
reading. As part of its clean-up of the RDF and RDFS
semantics, the RDF Core working group has decided to
make this change, eliminating a problem for OWL. While
cleaning up problems with RDF and RDFS, the RDF
Core working group also decided to put RDF on a firmer
semantic ground. It did this by providing a model theory
for RDF and RDFS, along with a standard treatment of
inference for RDF and RDFS. This has meant that there
is now more meaning provided for RDF and RDFS that
OWL has to be compatible with. In particular, all the
triples that are used to encode the OWL syntax now have
RDF meaning, and this RDF meaning has to be taken into
account by OWL if the semantics of OWL are to be fully
compatible with those of RDF and RDFS. Neither OIL
nor DAML+OIL provided a standard theory of inference.
This was common in the formalisms that influenced OIL
and DAML+OIL.

Frames generally provided an interface to the internal
data structures in lieu of any other inferences or even
queries. Description Logics do provide a formal theory of
querying, but this is somewhat different from a standard
theory of inference. The difference is that Description
Logic querying could have been defined for DAML+OIL
in a way that would have helped to hide the RDF
meaning of triples. For example, asking whether an
individual belonged to a class could add the syntax used
to specify the class to the premises of the query.
However, a standard theory of inferencing cannot do this.
The effects of this change can be seen in a simple
example. Given the following information

ex:John rdf:type ex:Student .
ex:John rdf:type ex:Employee .

it would have been fairly easy to arrange it so that asking
whether John belonged to the intersection of student and
employee first ensured that this intersection existed and
then asked whether John belonged to it. However, turning
this into an entailment requires the above information to
entail

_:c owl:intersectionOf _:l1 .
_:l1 rdf:first ex:Student .
:l1 rdf:rest :l2 .

_:l2 rdf:first ex:Employee .
_:l2 rdf:rest rdf:nil .
ex:John rdf:type _:c .

which, because of the RDF meaning ascribed to all
triples, requires the existence of the triples that encode
the syntax. OWL thus has had to develop a method that
augments the new RDF semantics just enough to support
the above inferences without being too strong.

C. Expresive Power

Because many things were expected of, there were
many demands for expressive power going beyond that
generally provided by Description Logics. For example,
many users wanted to be able to associate information
with classes and properties and to make classes belong to
other classes, as is possible in RDF. Similarly, there were
many demands for expressive power going beyond RDF
and RDFS. For example, many users wanted to be able to
provide local typing for property values, as is possible in
Description Logics. OWL had to be designed to
somehow allow these sorts of expressivity while still
retaining connections to its roots. When DAML+OIL
was developed, the only datatype supported by RDF was
literals: roughly undifferentiated values given as strings.
DAML+OIL thus had to provide its own solution for
datatypes, and did so by allowing the use of XML
Schema datatypes [19]. However, any reasonable solution
to datatyping that uses only RDF syntax needs help from
RDF (i.e., an extension to RDF syntax), and thus the
DAML+OIL solution remained incomplete. Recently
RDF has added its own version of datatyping, similar to,
but different from, the DAML+OIL solution. OWL has
thus needed to move from DAML+OIL data typing to
RDF data typing.

D. Computational challanges

One aspect of OWL that distinguishes it from RDF and
RDFS is that it supports a rich set of inferences. Some of
these inferences are quite obvious, such as the example
given above about students and employees, and thus
appear to be easy to compute. Other inferences supported
by OWL, however, are quite complex, requiring, e.g.,
reasoning by cases and following chains of properties.
Taking all the representational desires for OWL together
would have created formalism where key inference
problems were undecidable. For example, allowing
relationships to be asserted between property chains
(such as saying that an uncle is precisely a parent’s
brother) would make OWL entailment undecidable. 9 In
addition, some aspects of RDF, such as the use of classes
as instances, interact with the rest of OWL to create
computational difficulties, taking OWL beyond the range
of practical algorithms and implemented reasoning
systems. OWL has thus had to provide a solution for
these computational issues while still retaining upwards
compatibility with RDF and RDFS.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011 53

© 2011 ACADEMY PUBLISHER

VI SOLUTION

The Web Ontology working devoted a lot of efforts in
overcoming the basic tensions underlying the above
problems. The difficulty lay not in each problem in
isolation, but in the combination of all the above
problems and the constraints placed on the design of
OWL. It would have been much easier, for example, to
meet all the above requirements if only OWL could have
used an extension of the RDF syntax. If this had been
allowed, OWL could have added new, natural syntax for
its constructs whose semantics would not have been
required to carry along an RDF triple meaning.
Nevertheless a viable solution has been found that
satisfies all the above requirements. Or, actually, it is
more accurate to say that three solutions have been found,
each of which satisfies almost all of the above
requirements.
OWL DL: If friendly syntax or decidable inference is
considered of primary importance, then OWL DL, a
version of OWL with decidable inference that can be
written in a frame or Description Logic manner, is
appropriate.
OWL Lite: If an even-simpler syntax and more tractable
inference is considered of primary importance, then OWL
Lite, a syntactic subset of OWL DL, is appropriate.
OWL Full: If compatibility with RDF and RDFS is
considered of primary importance, then OWL Full, a
syntactic and semantic extension of RDFS, is appropriate.
The next section provides a more-detailed description of
these versions (species) of OWL, and explains how the
problems described above have been overcome.

Each of these sublanguages is an extension of its simpler
predecessor, both in what can be legally expressed and in
what can be validly concluded. The following set of
relations hold. Their inverses do not.

• Every legal OWL Lite ontology is a legal OWL
DL ontology.

• Every legal OWL DL ontology is a legal OWL
Full ontology.

• Every valid OWL Lite conclusion is a valid
OWL DL conclusion.

• Every valid OWL DL conclusion is a valid
OWL Full conclusion.

A. Readability

As shown by the examples above, OWL is not very
readable when written as RDF/XML or even as RDF
triples. Part of this problem is that RDF/XML is
extremely verbose, but the major part of the readability
problem is the encoding of OWL constructs into
RDF/XML or RDF triples. In part to address this
problem, an abstract syntax was created for OWL, along
with a mapping from abstract syntax to RDF graphs. This
abstract syntax is closer to the syntax of OIL than of

DAML+OIL, but without OIL’s extreme emphasis on
readability. In this abstract syntax the Student example
above would be written
Class(Student complete
Person
restriction(enrolledIn minCardinality(1))).

 OWL DL was then defined as the syntactic subset of
OWL induced by the translation from the abstract syntax
to RDF graphs. That is, an RDF graph is an OWL DL
ontology just when it is the translation of some ontology
in the abstract syntax. Users and tools that are more
interested in readability than in RDF/XML can use this
abstract syntax internally, or even externally for
presentation to users, reserving the RDF/XML syntax for
purposes of exchange between applications.

B. Handling Malformed Graphes

Because OWL Full allows arbitrary RDF graphs, it
must be able to handle malformed OWL syntax. (OWL
DL does not suffer from this problem as it is defined in
terms of the necessarily well-formed RDF graphs that can
be generated from the abstract syntax.) OWL uses an
extension of the DAML+OIL solution: only triples that
together form well-formed OWL constructs are given an
extra meaning, so
:x owl:onProperty ex:child .
by itself does not have any special OWL meaning. To
handle the cases of too many triples, OWL again uses the
DAML+OIL solution of picking out all the well-formed
subsets and giving them OWL meaning. This has unusual
consequences—for example

_:x owl:onProperty ex:child .
_:x owl:someValuesFrom ex:Person .
_:x owl:onProperty ex:friend .
_:x owl:allValuesFrom ex:Doctor .
ends up equating the extension of four different OWL
restrictions (all possible combinations of the two
properties with the two classes), which is almost certainly
not what was intended by the user. This solution,
however, maintains monotonicity, and the (possibly) non-
intuitive meaning is a minor problem given that such
malformed constructions can easily be avoided.

VII. OWL

This section describes how the solutions outlined
above have been incorporated in the final design of the
OWL language. For various reasons, described in the
preceding sections, there are two styles of using OWL. In
the first style, embodied in OWL DL and OWL Lite, only
certain constructions are allowed, and these constructions
can only be combined in certain ways. The benefits of
staying within these limitations include decidability of
inferences and the possibility of thinking of OWL in a
more-standard fashion, essentially as an expressive
Description Logic. In the second style, embodied in OWL
Full, all RDF graphs are allowed. The benefits of this
expansive style include total upward compatibility with
RDF and a greater expressive power. Even the more-
limited versions of OWL have some differences from

54 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

standard Description Logics. These differences move
these versions of OWL from the formal Description
Logic world to the Semantic Web world.

– OWL uses URI references as names, and
constructs these URI references in OWL to use
qualified names as shorthands for URI references,
using, for example, the qualified name owl:Thing
for the URI reference
http://www.w3.org/2002/07/owl#Thing.

– OWL gathers information into ontologies, which
are generally stored as Web documents written in
RDF/XML. Ontologies can import other ontologies,
adding the information from the imported ontology
to the current ontology.

– Even the DL/Lite style of using OWL allows
RDF annotation properties to be used to attach
information to classes, properties, and ontologies,
such as owl:DeprecatedClass. These annotations are
RDF triples, and are therefore required to carry a full
semantic weight. They cannot be treated as informal
comments without a formal meaning. This partly
breaks down the firm Description Logic distinction
between individuals, on the one hand, and classes
and properties, on the other.

– OWL uses the facilities of RDF datatypes and
XML Schema datatypes to provide datatypes and
data values.

– The DL and Lite versions of OWL have a frame-like
abstract syntax, whereas RDF/XML is the official
exchange syntax for all of OWL.

A. OWL as Description Logic

OWL DL—the Description Logic style of using
OWL—is very close to the SHOIN(D) Description Logic
which is itself an extension of the the influential
SHOQ(D) Description Logic [23] (extended with inverse
roles and restricted to unqualified number restrictions).
OWL DL can form descriptions of classes, datatypes,
individuals and data values. OWL DL uses these
description-forming constructs in axioms that provide
information about classes, properties, and individuals.

B. Semantics for OWL DL

A formal semantics, very similar to the semantics
provided for Description Logics, is provided for this style
of using OWL. Full details on this model theory can be
found in the OWL Semantics and Abstract Syntax [6].

Because OWL includes datatypes, the semantics for
OWL is very similar to that of Description Logics that
also incorporate datatypes, in particular SHOQ(D).
However, the particular datatypes used in OWL are taken
from RDF and XML Schema Datatypes [19]. Data values
such as "44" ^^ xsd:integer thus mean what they would
mean as XML Schema data values.

The semantics for OWL DL does include some
unusual (for Description Logics) aspects. Annotations are
given a simple separate meaning, not shown here, that
can be used to associate information with classes,
properties, and individuals in a manner compatible with
the RDF semantics. Ontologies also live within the
semantics and can be given annotation information.

Finally, owl:imports is given a meaning that involves
finding the referenced ontology (if possible) and adding
its meaning to the meaning of the current ontology. What
makes OWL DL a Semantic Web language, therefore, is
not its semantics, which are quite standard for a
Description Logic, bu t instead the use

of URI references for names, the use of XML Schema
datatypes for data values, and the ability to connect to
documents in the World Wide Web.

C. OWL Lite

OWL DL is related to SHOIN(D), a very expressive
Description Logic. This Description Logic is somewhat
difficult to present to naive users, as it is possible to build
complex boolean descriptions using, for example, union
and complement. SHOIN(D) is also difficult to reason
with, as key inference problems have NExpTime
complexity, and somewhat difficult to build even non-
reasoning tools for, because of the complex descriptions.
For these reasons, a subset of OWL DL has been
identified that should be easier on all the above metrics;
this subset is called OWL Lite. OWL Lite prohibits
unions and complements, restricts intersections to the
implicit intersections in the frame-like class axioms,
limits all embedded descriptions to concept names, does
not allow individuals to show up in descriptions or class
axioms, and limits cardinalities to 0 or 1. These
restrictions make OWL Lite similar to the Description
Logic SHIF(D). Like SHIF(D), key inferences in OWL
Lite can be computed in worst case exponential time
(ExpTime), and there are already several optimized
reasoners for logics equivalent to OWL Lite. This
improvement in tractability comes with relatively little
loss in expressive power—although OWL Lite syntax is
more restricted than that of OWL DL it is still possible to
express complex descriptions by introducing new class
names and exploiting the implicit negations introduced
by disjointness axioms. Using these techniques, all OWL
DL descriptions can be captured in OWL Lite except
those containing either individual names or cardinalities
greater than 1.

D. OWL Full as RDF Extension

OWL DL and OWL Lite are extensions of a restricted
use of RDF and RDFS, because, unlike RDF and RDFS,
they do not allow classes to be used as individuals, and he
language constructors cannot be applied to the language
itself. For users who need these capabilities, a version of
OWL that is upward compatible with RDF and RDFS has
been provided; this version is called OWL Full. In OWL
Full, all RDF and RDFS combinations are allowed. For
example, in OWL Full, it is possible to impose a
cardinality constraint on rdfs:subClassOf, if so desired.
OWL Full contains OWL DL, but goes well outside the
standard Description Logic framework. The penalty to be
paid here is two-fold. First, reasoning in OWL Full is
undecidable (because restrictions required in order to
maintain the decidability of OWL DL do not apply to
OWL full). Second, the abstract syntax for OWL DL is
inadequate for OWL Full, and the official OWL
exchange syntax, RDF/XML, must be used.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011 55

© 2011 ACADEMY PUBLISHER

E. OWL 2 and OWL 1

Like OWL 1, OWL 2 is designed to facilitate ontology
development and sharing via the Web, with the ultimate
goal of making Web content more accessible to
machines. The RDF-Based Semantics assigns meaning
directly to RDF graphs and so indirectly to ontology
structures via the Mapping to RDF graphs. The RDF-
Based Semantics is fully compatible with the RDF
Semantics, and extends the semantic conditions defined
for RDF. The RDF-Based Semantics can be applied to
any OWL 2 Ontology, without restrictions, as any OWL
2 Ontology can be mapped to RDF. "OWL 2 Full" is used
informally to refer to RDF graphs considered as OWL 2
ontologies and interpreted using the RDF-Based
Semantics. OWL 2 has a very similar overall structure to
OWL 1.Almost all the building blocks of OWL 2 are
present in OWL 1, albeit possibly under different names.

The central roles of RDF/XML, the role of other
syntaxes, and the relationships between the Direct and
RDF-Based semantics (i.e., the correspondence theorem)
have not changed. More importantly, backwards
compatibility with OWL 1 is maintained and all OWL 1
Ontologies remain valid OWL 2 Ontologies, with
identical inferences in all practical cases OWL 2 adds
new functionality with respect to OWL 1. Some of the
new features are syntactic uses (e.g., disjoint union of
classes) while others offer new expressivity, including:

• keys;

• property chains;

• richer datatypes, data ranges;

• qualified cardinality restrictions;

• asymmetric, reflexive, and disjoint properties;
and

• enhanced annotation capabilities

OWL 2 also defines three new profiles and a new syntax
In addition, some of the restrictions applicable to OWL
DL have been relaxed; as a result, the set of RDF Graphs
that can be handled by Description Logics reasoners is
slightly larger in OWL 2.

An OWL 2 profile (commonly called a fragment or a
sublanguage in computational logic) is a trimmed down
version of OWL 2 that trades some expressive power for
the efficiency of reasoning. This document describes
three profiles of OWL 2, each of which achieves
efficiency in a different way and is useful in different
application scenarios. The profiles are independent of
each otherand the choice of which profile to use in
practice will depend on the structure of the ontologies
and the reasoning tasks at hand

• OWL 2 EL is particularly useful in applications
employing ontologies that contain very large

numbers of properties and/or classes. This
profile captures the expressive power used by
much such ontology and is a subset of OWL 2
for which the basic reasoning problems can be
performed in time that is polynomial with
respect to the size of the ontology. Dedicated
reasoning algorithms for this profile are
available and have been demonstrated to be
implementable in a highly scalable way. The EL
acronym reflects the profile's basis in the EL
family of description logics , logics that provide
only Existential quantification.

• OWL 2 QL is aimed at applications that use
very large volumes of instance data, and where
query answering is the most important reasoning
task. In OWL 2 QL, conjunctive query
answering can be implemented using
conventional relational database systems. Using
a suitable reasoning technique, sound and
complete conjunctive query answering can be
performed in LOGSPACE with respect to the
size of the data (assertions). As in OWL 2 EL,
polynomial time algorithms can be used to
implement the ontology consistency and class
expression subsumption reasoning problems.
The expressive power of the profile is
necessarily quite limited, although it does
include most of the main features of conceptual
models such as UML class diagrams and ER
diagrams. The QL acronym reflects the fact that
query answering in this profile can be
implemented by rewriting queries into a
standard relational Query Language.

• OWL 2 RL is aimed at applications that require
scalable reasoning without sacrificing too much
expressive power. It is designed to
accommodate OWL 2 applications that can trade
the full expressivity of the language for
efficiency, as well as RDF(S) applications that
need some added expressivity. OWL 2 RL
reasoning systems can be implemented using
rule-based reasoning engines. The ontology
consistency, class expression satisfiability, class
expression subsumption, instance checking, and
conjunctive query answering problems can be
solved in time that is polynomial with respect to
the size of the ontology. The RL acronym
reflects the fact that reasoning in this profile can
be implemented using a standard Rule
Language.

OWL 2 profiles are defined by placing restrictions on the
structure of OWL 2 ontologies. Syntactic restrictions can
be specified by modifying the grammar of the functional-
style syntax and possibly giving additional global
restrictions. An ontology in any profile can be written
into an ontology document by using any of the syntaxes
of OWL 2.

56 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

VIII. ONTOLOGY ENGINEERING AND RELATED TOOLS

Ontology engineering is by now an established
engineering discipline, providing the full range of
methodologies, methods, techniques, and software tools
that allow for real-world projects to be feasibly
undertaken. Ontology engineering methodologies provide
guidelines for developing, managing and maintaining
ontologies; recent surveys on ontology engineering
methodologies are available in [39]. Classical ontology
engineering is moving towards collaborative approaches
based on wikis [40] tagging [41] or casual games [42)].
Methodologies for ontology reuse [Gangemi et al. (1998);
Paslaru-Bontas (2007); Pinto et al. (2000)] or
complement the overall picture, guiding the ontology
support activities of the ontology life cycle.

The target client for ontologies build using OWL are
semantic web based applications.. For the semantic web
to become a reality, a number of frameworks have to be
built to support the ontology creation activities involved
in the process. These activities, as we envision this
process, are as follows:

Gathering: Before the extraction phase, we have to
collect documents carrying knowledge from the domain
we are interested in, process them, and end with a
suitable form to carry out the next operations. It usually
involves dealing with unstructured data in natural
language from digital archives [24, 25]. Some useful
software tools to carry out gathering tasks are: Spade8
and OntoExtract9.

Extraction:The process of extraction is based on
ontology learing .A methodology for ontology learing is
discussed in [43].A number of ontology learning tools
are available. The purpose of this kind of software is to
help the ontology engineer to explore specific domains
and extract ontology components. This requires
background knowledge for creating taxonomies of the
domain in a semi-automatic way. Learning techniques
may be applied by the knowledge engineer for this task
[26–30]. Some useful extraction software tools are:
Grubber10 and Onto- Builder11.

Organization: Once the ontology components have
been extracted from the domain, it is time to generate
formal representations of the knowledge acquired.
Ontology software tools may be useful at this stage.
Later, this knowledge may be embedded into digital
archives, e.g., web pages, to be used by software agents
or humans [31-33]. Some useful ontology software tools
are: OntoEdit12, SMORE13, and Protégé14.

Merging: Defining mapping rules to facilitate
interlingua exchange relating information from one
context to another. This activity is as important as
extraction. It can be referred to as finding commonalities
between two knowledge bases and deriving a new
knowledge base [34-35]. Some helpful software tools for
merging ontologies are: PROMPT15, and quimaera16.

Refinement: Improving the structure and content of
the knowledge by eliciting knowledge from the domain
experts. It amends the knowledge at a finer granularity
level. It is also of particular importance after merging
operations ([35-37]), for instance, when two e-commerce

agents are trying to negotiate. A number of software tools
for organizing ontology components include refinement
capabilities as well.

Retrieval: This is the ultimate semantic web goal and it
is going to take a while yet before we see smart software
applications, but when the semantic web is populated,
then those applications, e.g., semantic robots, agents, will
traverse the web looking for data for us in a knowledge-
based fashion. In the mean while, we still have to wait for
those frameworks to mature. Racer17, and KAON218 are
some promising early tools to carry out these tasks.

Practical guidelines and recommendations for
developing ontology-based applications in specific
sectors are available, for instance, in [44]; another study
reported on social and technical bottlenecks which hinder
the wide uptake of ontologies and one of its main finding
was the need for advanced technology to cope with
ontology development and maintenance especially in
rapidly changing domains [45].

IX. SUMMARY

Because of the ambitious design goals, multiple
influences, and also because of the structural
requirements constraining OWL, the development of
OWL has not been without problems. Through hard work
and compromise, these problems have largely been
overcome, resulting in a ontology language that is truly
part of the Semantic Web. It was not possible to
simultaneously satisfy all of the constraints on OWL, so
two styles of using OWL have been developed, each
suitable under different circumstances.

If an expressive ontology language with decidable
inference is the main concern, then the OWL DL style is
indicated. This style of using OWL loses some
compatibility with RDF, mostly having to do with using
classes and properties as individuals, but retains an
expressive and useful ontology language. OWL DL also
has a frame-like alternative syntax that can be used to
make working with OWL easier.. If a simpler ontology
language is the main concern, then the OWL Lite subset
of OWL DL can be used.

If, on the other hand, upward compatibility with RDF
is the main concern, then the OWL Full style is indicated.
This style extends RDF and RDFS to a full ontology
language with a well-specified entailment relationship
that extends entailment in RDF and RDFS, while
avoiding any paradoxes that might arise. However,
entailment in OWL Full is non decidable, which can be a
significant issue in some circumstances. Also, the user-
friendly alternative syntax is not adequate for OWL Full,
so RDF/XML must be used for OWL Full. These styles
of using OWL provide an ontology layer for the Semantic
Web, significantly extending the capabilities of RDF and
RDFS, and expanding the usefulness of the Semantic
Web.

OWL is primarily designed to be used for semantic
web applications and thus a large number of tools were
developed that facilitate the ontology development
process and subsequently use of ontology in semantic
web applications.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011 57

© 2011 ACADEMY PUBLISHER

 REFERENCES

[1] Jie Bao, Elisa F. Kendall, Deborah L. McGuinness, Peter
F. Patel-Schneider, eds. “OWL 2 Web Ontology Language:
Quick Reference Guide W3C Working Draf”, 11 June
2009, http://www.w3.org/TR/2009/WD-owl2-quick-
reference-20090611/. Latest version available at
http://www.w3.org/TR/owl2-quick-reference/ .

[2] Tim Berners-Lee. “Weaving the Web”. Harper, San
Francisco, 1999.

[3] Frank Manola and Eric Miller. “RDF primer.” W3C
Working Draft, 23 January 2003.

[4] Ian Horrocks, Ulrike Sattler, and Stephan Tobies.
“Practical reasoning for expressive description logics”,
Proc. of the 6th Int. Conf. on Logic for Programming and
Automated Reasoning (LPAR’99), number 1705 in
Lecture Notes in Artificial Intelligence, pages 161–180.
Springer, 1999.

[5] Michael K. Smith, Chris Welty, and Deborah McGuinness.
“OWL web ontology language guide”. W3C Working
Draft, 31 March 2003.

[6] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks.
“OWL web ontology language semantics and abstract
syntax” W3C Working Draft, 31 March 2003.

[7] Jeff Heflin. “Web ontology language (owl) use cases and
requirements”, W3C Working Draft, 31 March 2003.

[8] Dave Beckett. “RDF/XML syntax specification (revised)”,
W3C Working Draft, 2002.

[9] Franz Baader, Diego Calvanese, Deborah McGuinness,
Daniele Nardi, and Peter Patel-Schneider, editors. “The
Description Logic Handbook”. Cambridge University
Press, 2007.

[10] J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van
Harmelen, and I. Horrocks. “Enabling knowledge
representation on the web by extending RDF schema”.,
Proceedings of the tenth World Wide Web conference
WWW’10, pages 467–478, May 2001.

[11] Patrick Hayes. “RDF semantics”. W3C Working Draft,
2003. Available at http://www.w3.org/TR/2003/WD-rdf-
mt-20030123.

[12] Li Ma et al “Towards a Complete OWL Ontology
Benchmark”, The Semantic Web: Research and
Applications pages 125-139, June 2006.

[13] Natalya Fridman Noy, Ray W. Fergerson and
Mark A. Musen “ The Knowledge Model of Protégé-
2000: Combining Interoperability and Flexibility”,
Knowledge Engineering and Knowledge Management
Methods, Models, and Tools ,pages 69-82 ,June 2000

[14] Peter D. Karp, Vinay K. Chaudhri, and Jerome Thomere.
XOL: “An XML-based ontology exchange language”
Technical Report SRI AI Technical Note 559, SRI
International, Menlo Park (CA, USA), 1999.

[15] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M.
Erdmann, C. Goble, F. van Harmelen, M. Klein, S. Staab,
R. Studer, and E. Motta. “OIL: The Ontology Inference
Layer” Technical Report IR-479, Vrije Universiteit
Amsterdam, Faculty of Sciences, September 2000.

[16] Dan Connolly, Frank van Harmelen, Ian Horrocks,
Deborah L. McGuinness, Peter F. Patel-Schneider, and
Lynn Andrea Stein. “DAML+OIL (March 2001) reference
description”. W3C Note, 18 December 2001. Available at
http://www.w3.org/TR/2001/NOTE-daml+oil-reference-
20011218.

[17] Graham Klyne and Jeremy J. Carroll. “Resource
Description Framework (RDF): Concepts and abstract

syntax”. W3C Working Draft, 2003. Available at
http://www.w3.org/TR/2003/WD-rdf-concepts-20030123.

[18] Frank van Harmelen, Ian Horrocks, and Peter F. Patel-
Schneider. “A model theoretic semantics for DAML+OIL
“(March 2001). W3C Note, 18 December 2001. Available
at http://www.w3.org/TR/2001/NOTE-daml+oil-model-
20011218.

[19] Paul V. Biron and Ashok Malhotra. “XML Schema Part 2:
Datatypes. W3C Recommendation, 2001”. Available at
http://www.w3.org/TR/2002/WD-xmlschema-

[20] J. Heffin, J. Hendler, “Dynamic ontologies on the web”,
American Association For Artificial Intelligence
Conference, AAAI Press, California, 2000, pp. 251–254.

[21] J. Heffin, et al., “Applying ontology to the web: a case
study”, Engineering Applications of Bio-Inspired Artificial
Neural Networks

[22] I. Horrocks, “DAML+ OIL: a reasonable web ontology
language”, Lecture Notes in Computer Science (LNCS),
Vol. 2287, Springer-Verlag, Berlin, 2002, pp. 2–13.

[23] Ian Horrocks and Ulrike Sattler,” Ontology reasoning in
the SHOQ(D) description logic”.Proc. of the 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2001), pages 199–
204, 2001.

[24] D. Elliman, JRG Pulido, “Automatic derivation of on-line
document ontologies”, presented at the Int. Workshop on
Mechanisms for Enterprise Integration: From Objects to
Ontologies (MERIT 2001), the 15th European Conference
on Object Oriented Programming, Budapest, Hungary
June, 2001.

[25] JRG. Pulido, et al., “Identifying ontology components
from digital archives on the semantic web”, IASTED
Advances in Computer Science and Technology (ACST),
2006.

[26] T. Quan, et al., “Automatic generation of ontology of
scholarly semantic web, in: S. McIlraith (Ed.), The
Semantic Web ISWC 2004: Third International Semantic
Web Conference, Lecture Notes in Computer Science
(LNCS), Vol. 3298, Springer, 2004, pp. 726–740.

[27] S. Legrand, JRG Pulido, “A hybrid approach to word sense
disambiguation: Neural clustering with class labeling”,
Workshop on Knowledge Discovery and Ontologies, 15th
European Conference on Machine Learning (ECML) and
8th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD), Pisa,
Italy, 2004, pp. 127.

[28] M. Ehrig, S. Staab, QOM—quick ontology mapping, in: S.
McIlraith (Ed.), The Semantic Web—ISWC 2004: Third
International Semantic Web Conference, Lecture Notes in
Computer Science (LNCS), Vol. 3298, Springer, 2004, pp.
683–697.

[29] A. Maedche, V. Zacharias, “Clustering ontology-based
metadata in the semantic web”, T. Elomaa (Ed.), Principles
of Data Mining and Knowledge Discovery: Sixth European
Conference, PKDD 2002, Lecture Notes in Computer
Science (LNCS), Vol. 2431, Springer, 2002, pp. 348–360.

[30] A. Maedche, S. Staab, “Ontology learning for the
semantic web”, IEEE Intell. Syst. 16 (2) (2001) 72–79.

[31] M. Vargas, et al., “MnM: Ontolgy driven semi-automatic
and automatic support for semantic markup”, A. Gómez,
V. Benjamins (Eds.), Knowledge Engineering and
Knowledge Management. Ontologies and the Semantic
Web: 13th International Conference, EKAW 2002, Lecture
Notes in Computer Science (LNCS), Vol. 2473, Springer,
2002, pp. 379–391.

58 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

[32] J. Goldbeck, et al.,”New tools for the semantic web”, iA.
Gómez, V. Benjamins (Eds.), Knowledge Engineering and
Knowledge Management. Ontologies and the Semantic
Web: 13th International Conference, EKAW 2002, Lecture
Notes in Computer Science (LNCS), Vol. 2473, Springer,
2002, pp. 392–400.

[33] J. Fernandez, R. Martinez, “A cooperative tool for
facilitating knowledge management”, Expert Syst. Appl.
18 (2000) 315–330.

[34] J. Euzenat, “An API for ontology alignment”, S. McIlraith
(Ed.), The Semantic Web ISWC 2004: Third International
Semantic Web Conference, Lecture Notes in Computer
Science (LNCS), Vol. 3298, Springer, 2004, pp. 698–712.

[35]] R. Eijk, et al., “On dynamically generated ontology
translators in agent communication”, Int. J. Intell. Syst. 16
(2001) 587–607.

[36] N. Sugiura, et al.,“Towards on-the-Xy ontology-
constructionfocusing on ontology quality improvement”,
C. Bussler, et al. (Eds.), The Semantic Web: Research and
Applications: First European Semantic Web Symposium,
ESWS 2004, Lecture Notes in Computer Science (LNCS),
Vol. 3053, Springer, 2004.

[37] A. Maedche, S. Staab, “Measuring similarity between
ontologies”, A. Gomez, R. Benjamins (Eds.), Knowledge
Engineering and Knowledge Management. Ontologies and
the Semantic Web: 13th International Conference, EKAW
2002, Lecture Notes in Computer Science (LNCS), Vol.
247, pp. 251–263, Springer, 2002.

[38] M. Hatala, G. Richards, Value-added metatagging:
Ontology and rule based methods for smarter metadata, in:
M. Schroeder, G. Wagner (Eds.), Rules and Rule Markup
Languages for the Semantic Web: Second International
Workshop, RuleML 2003, Lecture Notes in Computer
Science (LNCS), Vol. 2876, pp. 65–80, Springer, 2003.

[39] Sure, Y., Tempich, C., Vrandecic, D.. “Ontology
Engineering Methodologies”. Semantic Web technologies:
Trends and Research in Ontology-based Systems, 171-87,
Wiley 2006.

[40] Tempich, C., Simperl, E., Pinto, S., Luczak, M., Studer, R.
”Argumentation-based Ontology Engineering”, IEEE
Intelligent Systems, 22(6):52-59, 2007.

[41] Braun, S., Schmidt, A., Walter, A., Nagyp, G., Zacharias,
V. “Ontology Maturing: a Collaborative Web 2.0
Approach to Ontology Engineering,”, Proceedings of the
Workshop on Social and Collaborative Construction of
Structured Knowledge (CKC 2007) at the 16th
International World Wide Web Conference
(WWW2007),2007.

[42] Siorpaes, K., Hepp, M. , “Games with a purpose for the
semantic web”. IEEE Intelligent Systems, 23(3):50-60,
2008.

[43] Simperl, E., Tempich, C. “ A Methodology for Ontology
Learning”, P. Buitelaar and P. Cimiano (editors) Bridging
the Gap between Text and Knowledge – Selected
Contributions to Ontology Learning and Population from
Text, IOS Press 2007.

[44] Mochol, M., Simperl, E “ Practical guidelines for building
semantic eRecruitment applications” Proceedings of
International Conference on Knowledge Management
(iKnow'06), Special Track: Advanced Semantic
Technologies (AST2006).

[45] Hepp M. “ Possible ontologies: How reality constrains the
development of relevant ontologies”, IEEE Internet
Computing, 11(1):90-96. 2007.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2011 59

© 2011 ACADEMY PUBLISHER

Call for Papers and Special Issues

Aims and Scope
Journal of Emerging Technologies in Web Intelligence (JETWI, ISSN 1798-0461) is a peer reviewed and indexed international journal, aims at

gathering the latest advances of various topics in web intelligence and reporting how organizations can gain competitive advantages by applying the
different emergent techniques in the real-world scenarios. Papers and studies which couple the intelligence techniques and theories with specific web
technology problems are mainly targeted. Survey and tutorial articles that emphasize the research and application of web intelligence in a particular
domain are also welcomed. These areas include, but are not limited to, the following:

• Web 3.0
• Enterprise Mashup
• Ambient Intelligence (AmI)
• Situational Applications
• Emerging Web-based Systems
• Ambient Awareness
• Ambient and Ubiquitous Learning
• Ambient Assisted Living
• Telepresence
• Lifelong Integrated Learning
• Smart Environments
• Web 2.0 and Social intelligence
• Context Aware Ubiquitous Computing
• Intelligent Brokers and Mediators
• Web Mining and Farming
• Wisdom Web
• Web Security
• Web Information Filtering and Access Control Models
• Web Services and Semantic Web
• Human-Web Interaction
• Web Technologies and Protocols
• Web Agents and Agent-based Systems
• Agent Self-organization, Learning, and Adaptation

• Agent-based Knowledge Discovery
• Agent-mediated Markets
• Knowledge Grid and Grid intelligence
• Knowledge Management, Networks, and Communities
• Agent Infrastructure and Architecture
• Agent-mediated Markets
• Cooperative Problem Solving
• Distributed Intelligence and Emergent Behavior
• Information Ecology
• Mediators and Middlewares
• Granular Computing for the Web
• Ontology Engineering
• Personalization Techniques
• Semantic Web
• Web based Support Systems
• Web based Information Retrieval Support Systems
• Web Services, Services Discovery & Composition
• Ubiquitous Imaging and Multimedia
• Wearable, Wireless and Mobile e-interfacing
• E-Applications
• Cloud Computing
• Web-Oriented Architectrues

Special Issue Guidelines

Special issues feature specifically aimed and targeted topics of interest contributed by authors responding to a particular Call for Papers or by
invitation, edited by guest editor(s). We encourage you to submit proposals for creating special issues in areas that are of interest to the Journal.
Preference will be given to proposals that cover some unique aspect of the technology and ones that include subjects that are timely and useful to the
readers of the Journal. A Special Issue is typically made of 10 to 15 papers, with each paper 8 to 12 pages of length.

The following information should be included as part of the proposal:
• Proposed title for the Special Issue
• Description of the topic area to be focused upon and justification
• Review process for the selection and rejection of papers.
• Name, contact, position, affiliation, and biography of the Guest Editor(s)
• List of potential reviewers
• Potential authors to the issue
• Tentative time-table for the call for papers and reviews

If a proposal is accepted, the guest editor will be responsible for:
• Preparing the “Call for Papers” to be included on the Journal’s Web site.
• Distribution of the Call for Papers broadly to various mailing lists and sites.
• Getting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors should be

informed the Instructions for Authors.
• Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact

information.
• Writing a one- or two-page introductory editorial to be published in the Special Issue.

Special Issue for a Conference/Workshop
A special issue for a Conference/Workshop is usually released in association with the committee members of the Conference/Workshop like general

chairs and/or program chairs who are appointed as the Guest Editors of the Special Issue. Special Issue for a Conference/Workshop is typically made of
10 to 15 papers, with each paper 8 to 12 pages of length.

Guest Editors are involved in the following steps in guest-editing a Special Issue based on a Conference/Workshop:
• Selecting a Title for the Special Issue, e.g. “Special Issue: Selected Best Papers of XYZ Conference”.
• Sending us a formal “Letter of Intent” for the Special Issue.
• Creating a “Call for Papers” for the Special Issue, posting it on the conference web site, and publicizing it to the conference attendees.

Information about the Journal and Academy Publisher can be included in the Call for Papers.
• Establishing criteria for paper selection/rejections. The papers can be nominated based on multiple criteria, e.g. rank in review process plus the

evaluation from the Session Chairs and the feedback from the Conference attendees.
• Selecting and inviting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors

should be informed the Author Instructions. Usually, the Proceedings manuscripts should be expanded and enhanced.
• Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact

information.
• Writing a one- or two-page introductory editorial to be published in the Special Issue.

More information is available on the web site at http://www.academypublisher.com/jetwi/.

