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Abstract— The foundation of the semantic web lies 
firmly on a strong foundation of Web Ontology 
Language(OWL). OWL was developed by World 
Wide Web Consortium (W3C), Web Ontology 
Working Group and has features from several 
families of representation languages. OWL also shares 
many characteristics with RDF, the W3C base of the 
Semantic Web. This paper will discuss how the 
“thought process” behind OWL can be connected to 
its older formalisms, with modifications due to the 
functionalities that OWL had to give. A smooth move 
from RDF to OWL is made possible by handling 
every possible situation of RDF in OWL. Also various 
species of OWL are discussed with their features and 
restrictions. The recent development in ontology 
engineering and the immense tool support for OWL is 
a conformance of its acceptability.

Index Terms— Ontologies, Semantic Web, 
Description Logics, Frames, RDF 

I.  INTRODUCTION 

Ontologies have become a very popular topic, not only 
in AI but also in other disciplines of computing. There 
are also efforts focused on developing ontologies in many 
other branches of science and technology. Hence 
ontologies are growing fast into a distinct scientific field 
with its  own theories, formalisms, and approaches. The 
major purpose of ontologies is not to serve as 
vocabularies and taxonomies; it is knowledge sharing and 
knowledge reuse by applications. Every ontology 
provides a description of the concepts and relationships 
that can exist in a domain and that can be shared and 
reused among intelligent agents and applications. 
Moreover, working agents and applications should be 
able to communicate such ontological knowledge. Shared 
ontologies let us build specific knowledge bases that 
describe specific situations but clearly rely on the same 
underlying knowledge structure and organization. 

OWL 2 [1] is ontology language for the Semantic 
Web, developed by the World Wide Web Consortium 
(W3C) Web Ontology Working Group. The OWL Web 
Ontology Language is intended to provide a language that 
can be used to describe the classes and relations between 
them that are inherent in Web documents and 
applications. In simpler words OWL represents 
information about categories of objects pertaining to a 
specific domain and their interdependencies—the 
“domain mode” that is often called an ontology. OWL 
can also represent information about the objects 
themselves—the sort of information that is often thought 
of as data. 

OWL is an effort in W3C’s Semantic Web activity, 
and is compatible with XML and RDF. OWL is primarily 
used to formalize a domain by defining classes and 
properties of those classes, defining individuals and assert 
properties about them, and reason about these classes and 
individuals to the degree permitted by the formal 
semantics of the OWL language. Before the development 
of OWL there was already several ontology languages 
designed for use in the Web thus OWL had to maintain a 
upward compatibility with earlier web languages to 
ensure its smooth adaptability. 

The multiple influences on OWL resulted in some 
difficult trade-offs. OWL is devised in such a way that it 
could be shown to have various desirable features, while 
still retaining sufficient compatibility with its roots. This 
paper describes some of the trade-offs and design 
decisions that had to be made by the Web Ontology 
Working Group during the design of OWL and its tool 
support After a brief introduction and quick survey of 
OWL in Section II , in Section III we present influences 
on design of OWL and  section IV  discusses different 
ontology language that preceded OWL. The issues related 
to OWL design are discussed in Section V and section VI 
gives details of how these issues were addressed .OWL 
versions are discussed in VII and section VIII discusses 
current trends in ontology engineering and tool support. 
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II.  OWL OVERVIEW 

Ontology is a term borrowed from philosophy that 
refers to the science of describing the kinds of entities in 
the world and how they are related. Informally, the 
ontology of a certain domain is about its terminology 
(domain vocabulary), all essential concepts in the 
domain, their classification, their taxonomy, their 
relations (including all important hierarchies and 
constraints), and domain axioms. According to Dragan 
Gaˇsevi´c · etal [9] I”f someone who wants to discuss 
topics in a domain D using a language L, an ontology 
provides a catalog of the types of things assumed to exist 
in D;the types in the ontology are represented in terms of 
the concepts, relations, and predicates of L”. 

Both formally and informally, the ontology is an 
extremely important part of the knowledge about any 
domain. Moreover, the ontology is the fundamental part 
of the knowledge, and all other knowledge should rely on  
it and refer to it. In the context of the Semantic Web, 
ontologies are expected to play an important role in 
helping automated processes (so called “intelligent 
agents”) to access information. Generally ontologies 
provide a number of useful features for intelligent 
systems, as well as for knowledge representation in 
general and for the knowledge engineering process. In 
particular, ontologies are expected to be used to provide 
structured vocabularies that explicate the relationships 
between different terms, allowing intelligent agents (and 
humans) to interpret their meaning flexibly yet 
unambiguously. Ontology specifies terms with 
unambiguous meanings, with semantics independent of 
reader and context. Translating the terms in ontology 
from one language to another does not change the 
ontology conceptually. Thus ontology provides a 
vocabulary and a machine-processable common 
understanding of the topics that the terms denote. The 
meanings of the terms in ontology can be communicated 
between users and applications. 
 

The OWL Web Ontology Language is a language for 
defining and instantiating Web ontologies. OWL 
ontology may include descriptions of classes, properties 
and their instances. Given such ontology, the OWL 
formal semantics specifies how to derive its logical 
consequences, i.e. facts not literally present in the 
ontology, but entailed by the semantics. These 
entailments may be based on a single document or 
multiple distributed documents that have been combined 
using defined OWL mechanism 

Terms whose meaning is defined in ontologies can be 
used in semantic markup that describes the content and 
functionality of web accessible resources [2]. Ontologies 
and ontology-based semantic markup could be used in 

– E-commerce where they can provide a common 
domain model of products on form of product ontology 
for both sellers and buyers 

– search engines, where they can help in finding pages 
that contain semantically similar but syntactically 
different words and phrases 

– Web services, where they can provide rich service 
descriptions that can help in locating suitable services. 

In order to support these and other usage scenarios, 
OWL takes the basic fact-stating ability of RDF [8] and 
the class- and property-structuring capabilities of RDF 
Schema [6] and extends them in important ways. OWL 
can declare classes, and organize these classes in a 
“subclass” hierarchy, as can RDF Schema. OWL classes 
can be specified as logical combinations (intersections, 
unions, or complements) of other classes, or as 
enumerations of specified objects, going beyond the 
capabilities of RDFS. OWL can also declare properties, 
organize these properties into a “subproperty” hierarchy, 
and provide domains and ranges for these properties, 
again as in RDFS. The domains of OWL properties are 
OWL classes, and ranges can be either OWL classes or 
externally-defined datatypes such as string or integer. 
OWL can state that a property is transitive, symmetric, 
functional, or is the inverse of another property, here 
again extending RDFS. 

OWL can express which objects (also called 
“individuals”) belong to which classes, and what the 
property values are of specific individuals. Equivalence 
statements can be made on classes and on properties, 
disjoint statements can be made on classes, and equality 
and inequality can be asserted between individuals. 
However, the major extension over RDFS is the ability in 
OWL to provide restrictions on how properties behave 
that are local to a class. OWL can define classes where a 
particular property is restricted so that all the values for 
the property in instances of the class must belong to a 
certain class (or datatype); at least one value must come 
from a certain class (or datatype); there must be at least 
certain specific values; and there must be at least or at 
most a certain number of distinct values. For example, 
using RDFS we can 

– declare classes like StudyProgaram, Courses, and 
student; 

– state that RegularStudent is a subclass of Student; 
With OWL we can additionally 

–  RegularStudent and ParttimeStudent are disjoint 
classes; 

– RegularStudent is equivalent to Student with 
EnrollIn property value from RegularCourse 

– Instructs and HasInstructor are inverse properties 
– A StudyProgram should have minimum of 5 Courses 
– Enrollment is a functional property. 

 
The core education ontology will define concept such 

as study Programs, Courses, students and Instructors.(to 
link a study program with its courses and courses with its 
instructors)There could be a subtype of study Program 
such as Online program and Regular Program Using 
OWL logical connectors it is further possible to define 
classes  by their logical  characteristics such as  regular 
Student could be defined as student who is enrolled in 
some Regular Study Program Also OWL allows classes 
to be defined disjoint or equivalent by logical connectors 
equivalent and disjoint. For example the class Regular 
Student is equivalent to class Student will Enroll In 
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property value belonging to some regular course. Also 
the class Regular Student can be defined Disjoint to the 
class Online Student. These defined classes allow 
reasoners to automatically classify existing domain 
objects into matching types (classes). 

The above shows that OWL is quite a sophisticated 
language. OWL has both RDF/XML exchange syntax 
and an abstract frame-like syntax, and it has three named 
sublanguages. This multiplicity is the direct result of 
trying to satisfy a large number of sometimes conflicting 
influences and requirements, as will be discussed 
subsequently in this paper. 

III.  INFLUENCES ON OWL 

As mentioned above, the design of OWL has been 
subject to a variety of influences. These included 
influences from established formalisms and knowledge 
representation paradigms, influences from existing 
ontology languages, and influences from existing 
Semantic Web languages. Some of the most important 
influences on the design of OWL came, via its 
predecessor DAML+OIL, from Description Logics, from 
the frames paradigm, and from RDF. In particular, the 
formal specification of the language was influenced by 
Description Logics, the surface structure of the language 
(as seen in the abstract syntax) was influenced by the 
frames paradigm, and the RDF/XML exchange syntax 
was influenced by a requirement for upwards 
compatibility with RDF. 

The major influence on the design of OWL was the 
requirement to maintain the maximum upwards 
compatibility with existing web languages and in 
particular with RDF [3]. On the face of it this 
requirement made good sense as RDF (and in particular 
RDF Schema) already included several of the basic 
features of a class and property based ontology language, 
e.g., it allows subclass and subproperty relationships to 
be asserted. Moreover, the development of RDF preceded 
that of OWL, and it seemed reasonable to try to appeal to 
any user community already established by RDF. In order 
to provide maximum upwards compatibility, however, it 
was also thought necessary to ensure that the semantics 
of OWL ontologies was also consistent with the 
semantics of RDF. This proved to be difficult given the 
greatly increased expressive power provided by OWL. 
Each of these influences will be examined in more detail 
in the following sections. 

 
A. Description Logics 

Description Logics are a family of class-based 
(concept-based) knowledge representation formalisms 
[9]. They are characterized by the use of various 
constructors to build complex classes from simpler ones, 
an emphasis on the decidability of key reasoning 
problems, and by the provision of sound, complete and 
(empirically) tractable reasoning services. Thus an entire 
group of languages for knowledge representation, based 
on description logics, is of particular interest in the 
context of ontology representation and development. The 
semantics of the underlying concepts of these languages 

identifies them as decidable fragments of first-order 
logic. Developing a knowledge base using a description 
logic language means  setting up a terminology (the 
vocabulary of the application domain) in a  part of the 
knowledge base called the TBox, and assertions about 
named individuals (using the vocabulary from the TBox) 
in a part of the knowledge base called the ABox. The 
vocabulary consists of concepts and roles. Concepts 
denote sets of individuals. Roles are binary relationships 
between individuals. There are atomic concepts and roles 
(names of concepts and roles) and complex concepts and 
roles (terms for concepts and roles). The complex 
concepts are built using descriptions expressed in the 
corresponding description logic language and are 
assigned names in the TBox. For example, if 
StudyProgram and Course are atomic concepts and 
hasCourse d is an atomic role (a relation), part of a TBox 
defining complex concepts about relationships may look 
like this : 

 
RegularStudent ≡ Student ∩ EmrollIn.RegularCourse 
 
In fact, the TBox defines (in a general way) semantic 

relationships between individuals introduced in the ABox 
and their properties. In other words, the ABox describes a 
specific state of affairs in the world in terms of the 
concepts and roles defined in the TBox. An ABox 
corresponding to the above TBox might be 

RegularStudent(JAMES) 
An intelligent system with a knowledge base 

structured as a TBox–ABox pair can reason about its 
terminology and assertions. It can determine whether a 
description in the TBox is satisfiable (i.e., 
noncontradictory), and whether there is a subsumption 
relationship between two descriptions (i.e., one is more 
general than the other). For example, in the above TBox 
Person subsumes Woman, and both Parent and Woman 
subsume Mother. Two important reasoning tasks about 
assertions in the ABox are to determine whether the 
assertions imply that a particular individual is an instance 
of a given concept description, and whether a set of 
assertions is consistent (whether it has a model). From a 
pragmatic point of view, consistency checks of sets of 
assertions and satisfiability checks of concept 
descriptions help to determine whether a knowledge base 
is meaningful at all. Subsumption tests help to organize 
the terminology into a meaningful hierarchy of concepts 
according to their generality. Each test can be also 
interpreted as a query about objects of interest; it 
retrieves the set of individuals that satisfies the test. 

 Description Logics [4], and insights from Description 
Logic research, had a strong influence on the design of 
OWL, particularly on the formalization of the semantics, 
the choice of language constructors,  and the integration 
of data types and data values. In fact OWL DL and OWL 
Lite (two of the three species of OWL) can be viewed as 
expressive Description Logics, with an ontology being 
equivalent to a Description Logic knowledge base. Like 
OIL and DAML+OIL, OWL uses a Description Logic 
style model theory to formalize the meaning of the 
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language. This was recognized as an essential feature in 
all three languages, as it allows ontologies, and 
information using vocabulary defined by ontologies, to be 
shared and exchanged without disputes as to precise 
meaning. The need for this kind of formality was 
reinforced by experience with early versions of the RDF 
and RDFS specification, where a lack of formality soon 
led to arguments as to the meaning of language constructs 
such as domain and range constraints [10]. In order to 
avoid such problems, the meaning of RDF is now also 
defined in terms of a model theory [11]. 

Another advantage of formalizing the meaning of the 
language in this way is that automated reasoning 
techniques can be used to check the consistency of 
classes and ontologies, and to check entailment 
relationships. This is crucial if the full power of 
ontologies is to be exploited by intelligent agents, and the 
ability to provide such reasoning support was a key 
design goal for OWL. 

B.  Frames Paradigm 

In frame based languages, each class is described by a 
frame. The frame includes the name of the class, 
identifies the more general class (or classes) that it 
specializes, and lists a set of “slots”. A slot may consist 
of a property-value pair or a constraint on the values that 
can act as slot “fillers” (in this context, value means 
either an individual or a data value). This structure was 
used in the OIL (Ontology Interface Language), with 
some enrichment of the syntax for specifying classes and 
slot constraints so as to enable the full power of a 
Description Logic style language to be captured. In 
addition, property frames were used to describe 
properties, e.g., specifying more general properties, range 
and domain constraints, transitivity and inverse property 
relationships. A class frame is semantically equivalent to 
a Description Logic axiom asserting that the class being 
described by the frame is a subclass of each of the classes 
that it specializes and of each of the property restrictions 
corresponding to the slots. As well as a richer slot syntax, 
OIL also offered the possibility of asserting that the class 
being described by the frame was exactly equivalent to 
the relevant intersection class, (i.e., that they were 
mutually subsuming). A property frame is equivalent to a 
set of axioms asserting the relevant sub property 
relationships, range and domain constraints etc.]. 

The traditional frame-based languages lacked precise 
characterization of their semantics. Moreover, 
discrimination between different types of knowledge 
embedded in a frame system was not clear. As a result, 
every frame-based system behaved differently from the 
others (which were developed using different frame-
based languages), in many cases despite virtually 
identical-looking components and even identical 
relationship names [Baader et al., 2003]. As a 
consequence, different systems could not interoperate and 
share knowledge. Later frame languages introduced more 
formal semantics, retaining the hierarchical concept 
structures and ease of representation and simultaneously 
improving the efficiency of reasoning and the 
representational rigor. Another disadvantage of frame-

based languages is inadequate way in which they deal 
with procedural knowledge. The way they do this is 
usually to use some limited arithmetic, plus calling 
procedures and functions written in a procedural 
language and attached to slot facets. The procedural 
knowledge encoded in this other language is not 
represented in a frame-based way – it is hard-coded in the 
corresponding function/procedure. As a consequence, the 
resulting systems can only reason with that knowledge, 
but not about it. 

In the Semantic Web context, where users with a wide 
range of expertise might be expected to create or modify 
ontologies, readability and general ease of use are 
important considerations for an ontology language. In the 
design of OIL, one of the languages on which OWL is 
based; these requirements were addressed by providing a 
surface syntax based on the frames paradigm. Frames 
group together information about each class, making 
ontologies easier to read and understand, particularly for 
users not familiar with (Description) Logics. The frames 
paradigm has been used in a number of well known 
knowledge representation systems including the Prot´eg´e 
ontology design tool [13] and the OKBC knowledge 
model [8]. The design of OIL was influenced by XOL 
[14]—a proposal for an XML syntax for OKBC Lite (a 
cut down version of the OKBC knowledge model). 

The formal specification and semantics of OWL are 
given by an abstract syntax   [13] that have been heavily 
influenced by frames in general and by the design of OIL 
in particular. In the abstract syntax, axioms are compound 
constructions that are very like an OIL-style frame. For 
classes, they consist of the name of the class being 
described, a modality of “partial” or “complete” 
(indicating that the axiom is asserting a subclass or 
equivalence relationship respectively), and a sequence of 
property restrictions and names of more general classes. 
Similarly, a property axiom specifies the name of the 
property and its various features. The frame style of the 
abstract syntax makes it much easier to read (compared to 
the RDF/XML syntax), and also easier to understand and 
to use. Moreover, abstract syntax axioms have a direct 
correspondence with Description Logic axioms, and they 
can also be mapped to a set of RDF triples. 

C.  RDF Syntax 

The third major influence on the design of OWL was 
the requirement to maintain the maximum upwards 
compatibility with existing web languages and in 
particular with RDF [3]. On the face of it this 
requirement made good sense as RDF (and in particular 
RDF Schema) already included several of the basic 
features of a class and property based ontology language, 
e.g., it allows subclass and sub property relationships to 
be asserted. Moreover, the development of RDF preceded 
that of OWL, and it seemed reasonable to try to appeal to 
any user community already established by RDF. It may 
seem easy to meet this requirement simply by giving 
OWL an RDF based syntax. In order to provide 
maximum upwards compatibility, however, it was also 
thought necessary to ensure that the semantics of OWL 
ontologies was also consistent with the semantics of 
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RDF. This proved to be difficult given the greatly 
increased expressive power provided by OWL. This will 
be discussed in more detail in Section 5. 

IV.  OWL PREDECESSORS 

OWL came into existence after development of RDFS, 
SHOE, OIL, DAMLONT and DAML+OIL and was soon 
adapted by W3C as standard for ontology description. 
DAML+OIL in particular was a major influence on 
OWL, and members of Web Ontology working group 
emphasized that the design of OWL should be based on 
DAML+OIL. DAML+OIL in turn were heavily 
influenced by the OIL language, with additional influence 
from work on DAML-ONT and RDFS.  

A. Simple HTML Ontology Extensions 

One of the first attempts at defining an ontology 
language for deployment on the Web was SHOE [16]. 
SHOE is a frame-based language with an XML syntax 
that could be safely embedded in existing HTML 
documents. SHOE used URI references for names, an 
important innovation (see Section 7) that was 
subsequently adopted by DAML-ONT and DAML+OIL. 
Giving the authors the ability to embed knowledge 
directly into HTML pages, making it also simple for user 
agents and robots to retrieve and store knowledge, was 
the goal of the so-called Simple HTML Ontology 
Extension (SHOE). This approach allows authors to add 
semantic content to web pages, relating the context to 
common ontologies that provide contextual information 
about the domain [16]. Most web pages with SHOE 
annotations tend to have tags that categorize concepts; 
therefore there is no need for complex inference rules to 
perform automatic classification [20]. This approach 
extends HTML with a set of object-oriented tags to 
provide structure for knowledge acquisition. It associates 
meaning with content by committing web pages to 
existing ontologies. These ontologies permit the 
discovery of implicit knowledge through the use of 
taxonomies and inference rules, allowing information 
providers to encode only the necessary information into 
their web pages. An ontology tag delimits the machine-
readable portion of the ontology.  

SHOE focuses on the problem of maintaining 
consistency as the ontologies evolve. In [21] the use of 
SHOE in a real world internet application is described. 
Tools for annotating pages, information gathering 
tasks,and querying are provided. SHOE also placed 
emphasis on the fact that ontologies would be tightly 
interlinked and subject to change. Consequently, SHOE 
included a number of directives which allowed importing 
of other ontologies, local renaming of imported constants, 
and stating versioning and compatibility information 
between ontologies. This line of thinking has influenced 
the extra-logical vocabulary of OWL that is designed to 
partially deal with such issues. SHOE was of lesser 
influence on the syntactic and semantic design of OWL 
since it was not based on RDF, and did not come with a 
formal semantics 

B.  DAML-ONT 

In 1999 the DARPA Agent Markup Language 
(DAML) program3 was initiated with the aim of 
providing the foundations of a next generation 
“semantic” Web [19]. As a first step, it was decided that 
the adoption of a common ontology language would 
facilitate semantic interoperability across the various 
projects making up the program. RDFS (which had 
already been proposed as a W3C standard) was seen as a 
good starting point, but was not sufficiently expressive to 
meet DAML’s requirements. A new language called 
DAML-ONT was therefore developed that extended RDF 
with language constructors from object-oriented and 
frame-based knowledge representation languages. 
DAML-ONT was tightly integrated with RDFS, and 
while this was useful from a compatibility viewpoint, it 
led to some serious problems in the design of the 
language. Like RDFS, DAML-ONT suffered from an 
inadequate semantic specification, and it was soon 
realized that this could lead to disagreements, both 
amongst humans and machines, as to the precise meaning 
of terms in DAMLONT ontology. Moreover, DAML-
ONT property restrictions had, like those of RDFS, 
global rather than local scope, and while this was 
reasonable for the domain and range constraints provided 
by RDFS, global cardinality constrains, for example, are 
difficult to understand and of doubtful utility—in fact it 
seems likely that this would have been recognized as a 
design flaw if the semantics of the language had been 
adequately formalized. 

C.  DAML-ONT 

At around the same time that DAML-ONT was being 
developed, a group of (largely European) researchers 
with aims similar to those of the DAML researchers had 
designed another Web oriented ontology language called 
OIL (the Ontology Inference Layer) [12]. OIL was the 
first ontology language to combine elements from 
Description Logics, frame languages and web standards 
such as XML and RDF. OIL placed a strong emphasis on 
formal rigor, and the language was explicitly designed so 
that its semantics could be specified via a mapping to the 
SHIQ description logic [23]. The structure of the 
language was, however, frame-based, using compound 
class “definitions” in the style described in Section  3.2. 
OIL had both XML and RDF syntaxes, but although the 
RDF syntax was designed to maintain compatibility with 
RDFS, it did not concern itself with the precise details of 
RDF semantics, which had not at that time been formally 
defined. 

D.  DAML +OIL 

It became obvious to both the DAML-ONT and OIL 
groups that their objectives could best be served by 
combining their efforts, the result being the merging of 
DAML-ONT and OIL to produce DAML+OIL. The 
development of DAML+OIL was undertaken by a 
committee largely made up of members of the two 
language design teams, and rather grandly titled the Joint 
US/EU ad hoc Agent Markup Language Committee.5 
The merged language has a formal semantics given by its 
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own DL style model theory instead of via a translation 
into a suitable DL. The DL derived language constructors 
of OIL were retained in DAML+OIL, but the frame 
structure was largely discarded in favour of DL style 
axioms, which were more easily integrated with RDF 
syntax. Influenced by DAML-ONT, DAML+OIL is more 
tightly integrated with RDF. DAML+OIL, however, only 
provided a meaning for those parts of RDF which were 
consistent with its own syntax and DL style model 
theory. This did not seem to be too much of a problem 
given that RDF did not at that time have a formally 
specified meaning of its own, but was the cause of 
serious difficulties when DAML+OIL was used as the 
basis for OWL. 

 

V CHALLANGES FOR OWL 

The multiple influences on OWL have actually created 
number of chanllages for its developers. For example it  a 
tradeoff between RDF/XML as the official OWL syntax 
and having an redable and more user friendly syntax. 
Some of these problems arise from a need to maintain a 
upward compatibility to OWL predecessors. 

A.  Syntactic challanges 

For a number of reasons, including maintaining 
connections to frames and Description Logics, OWL 
should have an easy-to-read syntax that can be easily 
understood and easily created. However, it was a 
requirement of OWL that it use XML as its normative 
syntax, and, moreover, use XML in the same way as it is 
used in RDF [8]. This requirement had already been 
addressed by OIL and, later, by DAML+OIL: OIL has 
both an RDF/XML and XML syntax [15], while 
DAML+OIL has only an RDF/XML syntax [9]. Taken 
just as a syntax for OWL, RDF in the form of RDF/XML 
has a number of problems. These problems can be 
overcome, but they do make OWL more complex that it 
might otherwise be. 

One problem is that RDF/XML is extremely verbose. 
Compare for example, information about a class as it 
would be given in a Description Logic syntax 

Student = Person ∩>1 enrolledIn 
(a Student is a Person who is enrolledIn at least 1 

thing), with how it would most naturally be written using 
the OWL RDF/XML syntax 

<owl:Class rdf:ID="Student"> 
<owl:intersectionOf rdf:parsetype="Collection"> 
<owl:Class rdfs:about="Person" /> 
<owl:Restriction> 
<owl:onProperty rdf:resource="enrolledIn" /> 
<owl:minCardinality rdfs:datatype="&xsd;Integer"> 
1 
</owl:minCardinality> 
</owl:Restriction> 
<owl:intersectionOf> 
</owl:Class> 
 
 

Another problem is that RDF breaks everything down 
into RDF triples [17] This means that many OWL 
constructs, such as property restrictions, have to be 
encoded as several triples. OWL generally uses an 
encoding similar to that used by DAML+OIL. For 
example, an OWL value restriction that would be written 
in Description Logic syntax as 9child.person (the class 
whose instances have some child that is a person) is 
encoded as two RDF triples something like 

:x owl:onProperty ex:child . 
:x owl:someValuesFrom ex:Person . 
where _:x is a syntactic placeholder for the restriction 

as a whole. 
 A third problem is that all RDF triples are 

independent. This means, for example, that as far as RDF 
is concerned there is no requirement that the two above 
triples must always occur together. Similarly, there is no 
requirement that there not be extra triples, so adding  

:x owl:onProperty ex:friend . 
:x owl:allValuesFrom ex:Doctor . 

to the above two triples cannot be ruled out in RDF.  
A fourth problem is that RDF triples are all accessible. 

This means that circular and other unusual structures 
cannot be ruled out. For example, there is no problem in 
RDF with collections of triples like 

:x owl:onProperty ex:child . 
:x owl:allValuesFrom :x . 
These issues are not addressed in OIL, which provides 

no guidance as to what should happen for collections of 
triples that don’t match the syntax productions of the 
language. DAML+OIL take a different approach, 
allowing unusual constructions but declining to give them 
a DAML+OIL meaning. OWL has roughly followed the 
DAML+OIL solution, but with several modifications. 

 

B.  Semantic Challanges 

Once issues of syntax have been addressed, issues 
related to meaning still remain. RDF provides a meaning 
for every triple, so if OWL is to be considered to be an 
extension of RDF, the meaning that OWL provides for 
triples needs to be an extension of this RDF meaning. 
This was not as much of an issue when OIL and 
DAML+OIL were designed, as the meaning of RDF was 
not very well specified. OIL in particular does not bother 
to relate the RDF meaning of its RDF/XML syntax to the 
OIL meaning of this syntax—the RDF/XML syntax for 
some OIL constructs does more-or-less line up with the 
RDF meaning of these constructs but this is by no means 
the case for all such constructs. For example, OIL has a 
special property  (oil:hasSlotConstraint) used to relate a 
class to its slots, but the RDF meaning [11] of this 
property, namely the standard meaning assigned to any 
RDF triple is ignored by the OIL semantics. 

DAML+OIL do a better job of abiding by the RDF 
meaning of its syntax. The DAML+OIL model theory 
[18] includes a semantic condition for triples that is close 
to the RDF meaning (as defined at that time) for triples. 
Further, DAML+OIL uses the built-in RDF and RDFS 
vocabulary to a greater extent than does OIL, and uses it 
in a way generally compatible with the RDF or RDFS 
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meaning (as defined at that time) for this vocabulary. For 
example DAML+OIL uses rdfs:subClassOf to relate 
classes to superclasses, including DAML+OIL 
restrictions, whereas OIL uses oil:hasSlotConstraint in 
some of these situations. Even when DAML+OIL was 
being developed, however, there were some aspects of 
the meaning of RDFS that could not be reconciled with 
the appropriate meaning in DAML+OIL. In particular, 
RDFS [5] then had an unusual meaning for domains and 
ranges of properties. Only a single range was permitted 
for properties and multiple domains were treated 
disjunctively. For example, 

ex:foo rdfs:domain ex:Person . 
ex:foo rdfs:domain ex:Rock . 

would allow both people and rocks to participate in the 
foo property. This disjunctive reading of domains caused 
problems for the DAML+OIL semantics so a choice was 
made to change this to a conjunctive reading and allow 
multiple domains and ranges, both with a conjunctive 
reading. As part of its clean-up of the RDF and RDFS 
semantics, the RDF Core working group has decided to 
make this change, eliminating a problem for OWL. While 
cleaning up problems with RDF and RDFS, the RDF 
Core working group also decided to put RDF on a firmer 
semantic ground. It did this by providing a model theory 
for RDF and RDFS, along with a standard treatment of 
inference for RDF and RDFS. This has meant that there 
is now more meaning provided for RDF and RDFS that 
OWL has to be compatible with. In particular, all the 
triples that are used to encode the OWL syntax now have 
RDF meaning, and this RDF meaning has to be taken into 
account by OWL if the semantics of OWL are to be fully 
compatible with those of RDF and RDFS. Neither OIL 
nor DAML+OIL provided a standard theory of inference. 
This was common in the formalisms that influenced OIL 
and DAML+OIL.  

Frames generally provided an interface to the internal 
data structures in lieu of any other inferences or even 
queries. Description Logics do provide a formal theory of 
querying, but this is somewhat different from a standard 
theory of inference. The difference is that Description 
Logic querying could have been defined for DAML+OIL 
in a way that would have helped to hide the RDF 
meaning of triples. For example, asking whether an 
individual belonged to a class could add the syntax used 
to specify the class to the premises of the query. 
However, a standard theory of inferencing cannot do this. 
The effects of this change can be seen in a simple 
example. Given the following information 

ex:John rdf:type ex:Student . 
ex:John rdf:type ex:Employee . 

it would have been fairly easy to arrange it so that asking 
whether John belonged to the intersection of student and 
employee first ensured that this intersection existed and 
then asked whether John belonged to it. However, turning 
this into an entailment requires the above information to 
entail 

_:c owl:intersectionOf _:l1 . 
_:l1 rdf:first ex:Student . 
_:l1 rdf:rest_ :l2 . 

_:l2 rdf:first ex:Employee . 
_:l2 rdf:rest rdf:nil . 
ex:John rdf:type _:c . 

which, because of the RDF meaning ascribed to all 
triples, requires the existence of the triples that encode 
the syntax. OWL thus has had to develop a method that 
augments the new RDF semantics just enough to support 
the above inferences without being too strong. 

C.  Expresive Power 

Because many things were expected of, there were 
many demands for expressive power going beyond that 
generally provided by Description Logics. For example, 
many users wanted to be able to associate information 
with classes and properties and to make classes belong to 
other classes, as is possible in RDF. Similarly, there were 
many demands for expressive power going beyond RDF 
and RDFS. For example, many users wanted to be able to 
provide local typing for property values, as is possible in 
Description Logics. OWL had to be designed to 
somehow allow these sorts of expressivity while still 
retaining connections to its roots.  When DAML+OIL 
was developed, the only datatype supported by RDF was 
literals: roughly undifferentiated values given as strings. 
DAML+OIL thus had to provide its own solution for 
datatypes, and did so by allowing the use of XML 
Schema datatypes [19]. However, any reasonable solution 
to datatyping that uses only RDF syntax needs help from 
RDF (i.e., an extension to RDF syntax), and thus the 
DAML+OIL solution remained incomplete. Recently 
RDF has added its own version of datatyping, similar to, 
but different from, the DAML+OIL solution. OWL has 
thus needed to move from DAML+OIL data typing to 
RDF data typing. 

 

D.  Computational challanges 

One aspect of OWL that distinguishes it from RDF and 
RDFS is that it supports a rich set of inferences. Some of 
these inferences are quite obvious, such as the example 
given above about students and employees, and thus 
appear to be easy to compute. Other inferences supported 
by OWL, however, are quite complex, requiring, e.g., 
reasoning by cases and following chains of properties. 
Taking all the representational desires for OWL together 
would have created formalism where key inference 
problems were undecidable. For example, allowing 
relationships to be asserted between property chains 
(such as saying that an uncle is precisely a parent’s 
brother) would make OWL entailment undecidable. 9 In 
addition, some aspects of RDF, such as the use of classes 
as instances, interact with the rest of OWL to create 
computational difficulties, taking OWL beyond the range 
of practical algorithms and implemented reasoning 
systems. OWL has thus had to provide a solution for 
these computational issues while still retaining upwards 
compatibility with RDF and RDFS. 
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VI  SOLUTION 

The Web Ontology working devoted a lot of efforts in 
overcoming the basic tensions underlying the above 
problems. The difficulty lay not in each problem in 
isolation, but in the combination of all the above 
problems and the constraints placed on the design of 
OWL. It would have been much easier, for example, to 
meet all the above requirements if only OWL could have 
used an extension of the RDF syntax. If this had been 
allowed, OWL could have added new, natural syntax for 
its constructs whose semantics would not have been 
required to carry along an RDF triple meaning. 
Nevertheless a viable solution has been found that 
satisfies all the above requirements. Or, actually, it is 
more accurate to say that three solutions have been found, 
each of which satisfies almost all of the above 
requirements.  
OWL DL: If friendly syntax or decidable inference is 
considered of primary importance, then OWL DL, a 
version of OWL with decidable inference that can be 
written in a frame or Description Logic manner, is 
appropriate. 
OWL Lite: If an even-simpler syntax and more tractable 
inference is considered of primary importance, then OWL 
Lite, a syntactic subset of OWL DL, is appropriate. 
OWL Full: If compatibility with RDF and RDFS is 
considered of primary importance, then OWL Full, a 
syntactic and semantic extension of RDFS, is appropriate. 
The next section provides a more-detailed description of 
these versions (species) of OWL, and explains how the 
problems described above have been overcome. 

Each of these sublanguages is an extension of its simpler 
predecessor, both in what can be legally expressed and in 
what can be validly concluded. The following set of 
relations hold. Their inverses do not.  

• Every legal OWL Lite ontology is a legal OWL 
DL ontology.  

• Every legal OWL DL ontology is a legal OWL 
Full ontology.  

• Every valid OWL Lite conclusion is a valid 
OWL DL conclusion. 

• Every valid OWL DL conclusion is a valid 
OWL Full conclusion. 

 

A.  Readability 

As shown by the examples above, OWL is not very 
readable when written as RDF/XML or even as RDF 
triples. Part of this problem is that RDF/XML is 
extremely verbose, but the major part of the readability 
problem is the encoding of OWL constructs into 
RDF/XML or RDF triples. In part to address this 
problem, an abstract syntax was created for OWL, along 
with a mapping from abstract syntax to RDF graphs. This 
abstract syntax is closer to the syntax of OIL than of 

DAML+OIL, but without OIL’s extreme emphasis on 
readability. In this abstract syntax the Student example 
above would be written 
Class(Student complete 
Person 
restriction(enrolledIn minCardinality(1))). 

    OWL DL was then defined as the syntactic subset of 
OWL induced by the translation from the abstract syntax 
to RDF graphs. That is, an RDF graph is an OWL DL 
ontology just when it is the translation of some ontology 
in the abstract syntax. Users and tools that are more 
interested in readability than in RDF/XML can use this 
abstract syntax internally, or even externally for 
presentation to users, reserving the RDF/XML syntax for 
purposes of exchange between applications.  

B.  Handling Malformed Graphes 

Because OWL Full allows arbitrary RDF graphs, it 
must be able to handle malformed OWL syntax. (OWL 
DL does not suffer from this problem as it is defined in 
terms of the necessarily well-formed RDF graphs that can 
be generated from the abstract syntax.) OWL uses an 
extension of the DAML+OIL solution: only triples that 
together form well-formed OWL constructs are given an 
extra meaning, so 
:x owl:onProperty ex:child . 
by itself does not have any special OWL meaning. To 
handle the cases of too many triples, OWL again uses the 
DAML+OIL solution of picking out all the well-formed 
subsets and giving them OWL meaning. This has unusual 
consequences—for example 
 
_:x owl:onProperty ex:child . 
_:x owl:someValuesFrom ex:Person . 
_:x owl:onProperty ex:friend . 
_:x owl:allValuesFrom ex:Doctor . 
ends up equating the extension of four different OWL 
restrictions (all possible combinations of the two 
properties with the two classes), which is almost certainly 
not what was intended by the user. This solution, 
however, maintains monotonicity, and the (possibly) non-
intuitive meaning is a minor problem given that such 
malformed constructions can easily be avoided. 

VII.  OWL 

This section describes how the solutions outlined 
above have been incorporated in the final design of the 
OWL language. For various reasons, described in the 
preceding sections, there are two styles of using OWL. In 
the first style, embodied in OWL DL and OWL Lite, only 
certain constructions are allowed, and these constructions 
can only be combined in certain ways. The benefits of 
staying within these limitations include decidability of 
inferences and the possibility of thinking of OWL in a 
more-standard fashion, essentially as an expressive 
Description Logic. In the second style, embodied in OWL 
Full, all RDF graphs are allowed. The benefits of this 
expansive style include total upward compatibility with 
RDF and a greater expressive power. Even the more-
limited versions of OWL have some differences from 
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standard Description Logics. These differences move 
these versions of OWL from the formal Description 
Logic world to the Semantic Web world. 

– OWL uses URI references as names, and 
constructs these URI references in OWL to use 
qualified names as shorthands for URI references, 
using,  for example, the qualified name owl:Thing 
for the URI reference 
http://www.w3.org/2002/07/owl#Thing. 

– OWL gathers information into ontologies, which 
are generally stored as Web documents written in 
RDF/XML. Ontologies can import other ontologies, 
adding the information from the imported ontology 
to the current ontology.  

– Even the DL/Lite style of using OWL allows 
RDF annotation properties to be used to attach 
information to classes, properties, and ontologies, 
such as owl:DeprecatedClass. These annotations are 
RDF triples, and are therefore required to carry a full 
semantic weight. They cannot be treated as informal 
comments without a formal meaning. This partly 
breaks down the firm Description Logic distinction 
between individuals, on the one hand, and classes 
and properties, on the other.  

– OWL uses the facilities of RDF datatypes and 
XML Schema datatypes to provide datatypes and 
data values. 

– The DL and Lite versions of OWL have a frame-like 
abstract syntax, whereas RDF/XML is the official 
exchange syntax for all of OWL. 

A.  OWL as  Description Logic

OWL DL—the Description Logic style of using 
OWL—is very close to the SHOIN(D) Description Logic 
which is itself an extension of the the influential 
SHOQ(D) Description Logic [23] (extended with inverse 
roles and restricted to unqualified number restrictions). 
OWL DL can form descriptions of classes, datatypes, 
individuals and data values. OWL DL uses these 
description-forming constructs in axioms that provide 
information about classes, properties, and individuals. 

B.  Semantics for OWL DL 

A formal semantics, very similar to the semantics 
provided for Description Logics, is provided for this style 
of using OWL. Full details on this model theory can be 
found in the OWL Semantics and Abstract Syntax [6]. 

Because OWL includes datatypes, the semantics for 
OWL is very similar to that of Description Logics that 
also incorporate datatypes, in particular SHOQ(D). 
However, the particular datatypes used in OWL are taken 
from RDF and XML Schema Datatypes [19]. Data values 
such as "44" ^^ xsd:integer thus mean what they would 
mean as XML Schema data values.  

The semantics for OWL DL does include some 
unusual (for Description Logics) aspects. Annotations are 
given a simple separate meaning, not shown here, that 
can be used to associate information with classes, 
properties, and individuals in a manner compatible with 
the RDF semantics. Ontologies also live within the 
semantics and can be given annotation information. 

Finally, owl:imports is given a meaning that involves 
finding the referenced ontology (if possible) and adding 
its meaning to the meaning of the current ontology. What 
makes OWL DL a Semantic Web language, therefore, is 
not its semantics, which are quite standard for a 
Description Logic, bu t instead the use 

of URI references for names, the use of XML Schema 
datatypes for data values, and the ability to connect to 
documents in the World Wide Web. 

C.  OWL Lite 

OWL DL is related to SHOIN(D), a very expressive 
Description Logic. This Description Logic is somewhat 
difficult to present to naive users, as it is possible to build 
complex boolean descriptions using, for example, union 
and complement. SHOIN(D) is also difficult to reason 
with, as key inference problems have NExpTime 
complexity, and somewhat difficult to build even non-
reasoning tools for, because of the complex descriptions. 
For these reasons, a subset of OWL DL has been 
identified that should be easier on all the above metrics; 
this subset is called OWL Lite. OWL Lite prohibits 
unions and complements, restricts intersections to the 
implicit intersections in the frame-like class axioms, 
limits all embedded descriptions to concept names, does 
not allow individuals to show up in descriptions or class 
axioms, and limits cardinalities to 0 or 1. These 
restrictions make OWL Lite similar to the Description 
Logic SHIF(D). Like SHIF(D), key inferences in OWL 
Lite can be computed in worst case exponential time 
(ExpTime), and there are already several optimized 
reasoners for logics equivalent to OWL Lite. This 
improvement in tractability comes with relatively little 
loss in expressive power—although OWL Lite syntax is 
more restricted than that of OWL DL it is still possible to 
express complex descriptions by introducing new class 
names and exploiting the implicit negations introduced 
by disjointness axioms. Using these techniques, all OWL 
DL descriptions can be captured in OWL Lite except 
those containing either individual names or cardinalities 
greater than 1. 

D.  OWL Full as RDF Extension 

OWL DL and OWL Lite are extensions of a restricted 
use of RDF and RDFS, because, unlike RDF and RDFS, 
they do not allow classes to be used as individuals, and he 
language constructors cannot be applied to the language 
itself. For users who need these capabilities, a version of 
OWL that is upward compatible with RDF and RDFS has 
been provided; this version is called OWL Full. In OWL 
Full, all RDF and RDFS combinations are allowed. For 
example, in OWL Full, it is possible to impose a 
cardinality constraint on rdfs:subClassOf, if so desired. 
OWL Full contains OWL DL, but goes well outside the 
standard Description Logic framework. The penalty to be 
paid here is two-fold. First, reasoning in OWL Full is 
undecidable (because restrictions required in order to 
maintain the decidability of OWL DL do not apply to 
OWL full). Second, the abstract syntax for OWL DL is 
inadequate for OWL Full, and the official OWL 
exchange syntax, RDF/XML, must be used. 
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E.  OWL 2 and OWL 1 

Like OWL 1, OWL 2 is designed to facilitate ontology 
development and sharing via the Web, with the ultimate 
goal of making Web content more accessible to 
machines. The RDF-Based Semantics assigns meaning 
directly to RDF graphs and so indirectly to ontology 
structures via the Mapping to RDF graphs. The RDF-
Based Semantics is fully compatible with the RDF 
Semantics, and extends the semantic conditions defined 
for RDF. The RDF-Based Semantics can be applied to 
any OWL 2 Ontology, without restrictions, as any OWL 
2 Ontology can be mapped to RDF. "OWL 2 Full" is used 
informally to refer to RDF graphs considered as OWL 2 
ontologies and interpreted using the RDF-Based 
Semantics. OWL 2 has a very similar overall structure to 
OWL 1.Almost all the building blocks of OWL 2 are 
present in OWL 1, albeit possibly under different names. 

The central roles of RDF/XML, the role of other 
syntaxes, and the relationships between the Direct and 
RDF-Based semantics (i.e., the correspondence theorem) 
have not changed. More importantly, backwards 
compatibility with OWL 1 is maintained and all OWL 1 
Ontologies remain valid OWL 2 Ontologies, with 
identical inferences in all practical cases OWL 2 adds 
new functionality with respect to OWL 1. Some of the 
new features are syntactic uses (e.g., disjoint union of 
classes) while others offer new expressivity, including: 

• keys; 

• property chains; 

• richer datatypes, data ranges; 

• qualified cardinality restrictions; 

• asymmetric, reflexive, and disjoint properties; 
and 

• enhanced annotation capabilities 

OWL 2 also defines three new profiles and a new syntax 
In addition, some of the restrictions applicable to OWL 
DL have been relaxed; as a result, the set of RDF Graphs 
that can be handled by Description Logics reasoners is 
slightly larger in OWL 2. 

An OWL 2 profile (commonly called a fragment or a 
sublanguage in computational logic) is a trimmed down 
version of OWL 2 that trades some expressive power for 
the efficiency of reasoning. This document describes 
three profiles of OWL 2, each of which achieves 
efficiency in a different way and is useful in different 
application scenarios. The profiles are independent of 
each otherand the choice of which profile to use in 
practice will depend on the structure of the ontologies 
and the reasoning tasks at hand  

• OWL 2 EL is particularly useful in applications 
employing ontologies that contain very large 

numbers of properties and/or classes. This 
profile captures the expressive power used by 
much such ontology and is a subset of OWL 2 
for which the basic reasoning problems can be 
performed in time that is polynomial with 
respect to the size of the ontology. Dedicated 
reasoning algorithms for this profile are 
available and have been demonstrated to be 
implementable in a highly scalable way. The EL 
acronym reflects the profile's basis in the EL 
family of description logics , logics that provide 
only Existential quantification.  

• OWL 2 QL is aimed at applications that use 
very large volumes of instance data, and where 
query answering is the most important reasoning 
task. In OWL 2 QL, conjunctive query 
answering can be implemented using 
conventional relational database systems. Using 
a suitable reasoning technique, sound and 
complete conjunctive query answering can be 
performed in LOGSPACE with respect to the 
size of the data (assertions). As in OWL 2 EL, 
polynomial time algorithms can be used to 
implement the ontology consistency and class 
expression subsumption reasoning problems. 
The expressive power of the profile is 
necessarily quite limited, although it does 
include most of the main features of conceptual 
models such as UML class diagrams and ER 
diagrams. The QL acronym reflects the fact that 
query answering in this profile can be 
implemented by rewriting queries into a 
standard relational Query Language.  

• OWL 2 RL is aimed at applications that require 
scalable reasoning without sacrificing too much 
expressive power. It is designed to 
accommodate OWL 2 applications that can trade 
the full expressivity of the language for 
efficiency, as well as RDF(S) applications that 
need some added expressivity. OWL 2 RL 
reasoning systems can be implemented using 
rule-based reasoning engines. The ontology 
consistency, class expression satisfiability, class 
expression subsumption, instance checking, and 
conjunctive query answering problems can be 
solved in time that is polynomial with respect to 
the size of the ontology. The RL acronym 
reflects the fact that reasoning in this profile can 
be implemented using a standard Rule 
Language.  

OWL 2 profiles are defined by placing restrictions on the 
structure of OWL 2 ontologies. Syntactic restrictions can 
be specified by modifying the grammar of the functional-
style syntax and possibly giving additional global 
restrictions. An ontology in any profile can be written 
into an ontology document by using any of the syntaxes 
of OWL 2.  
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VIII.  ONTOLOGY ENGINEERING AND RELATED TOOLS 

Ontology engineering is by now an established 
engineering discipline, providing the full range of 
methodologies, methods, techniques, and software tools 
that allow for real-world projects to be feasibly 
undertaken. Ontology engineering methodologies provide 
guidelines for developing, managing and maintaining 
ontologies; recent surveys on ontology engineering 
methodologies are available in [39]. Classical ontology 
engineering is moving towards collaborative approaches 
based on wikis [40] tagging [41] or casual games [42)]. 
Methodologies for ontology reuse [Gangemi et al. (1998); 
Paslaru-Bontas (2007); Pinto et al. (2000)] or 
complement the overall picture, guiding the ontology 
support activities of the ontology life cycle. 

The target client for ontologies build using OWL are 
semantic web based applications.. For the semantic web 
to become a reality, a number of frameworks have to be 
built to support the ontology creation activities involved 
in the process. These activities, as we envision this 
process, are as follows: 

Gathering: Before the extraction phase, we have to 
collect documents carrying knowledge from the domain 
we are interested in, process them, and end with a 
suitable form to carry out the next operations. It usually 
involves dealing with unstructured data in natural 
language from digital archives [24, 25]. Some useful 
software tools to carry out gathering tasks are: Spade8 
and OntoExtract9. 

Extraction:The process of extraction is based on 
ontology learing .A methodology for ontology learing is 
discussed in  [43].A number of ontology learning tools 
are available. The purpose of this kind of software is to 
help the ontology engineer to explore specific domains 
and extract ontology components. This requires 
background knowledge for creating taxonomies of the 
domain in a semi-automatic way. Learning techniques 
may be applied by the knowledge engineer for this task 
[26–30]. Some useful extraction software tools are: 
Grubber10 and Onto- Builder11.  

Organization: Once the ontology components have 
been extracted from the domain, it is time to generate 
formal representations of the knowledge acquired. 
Ontology software tools may be useful at this stage. 
Later, this knowledge may be embedded into digital 
archives, e.g., web pages, to be used by software agents 
or humans [31-33]. Some useful ontology software tools 
are: OntoEdit12, SMORE13, and Protégé14. 

Merging: Defining mapping rules to facilitate 
interlingua exchange relating information from one 
context to another. This activity is as important as 
extraction. It can be referred to as finding commonalities 
between two knowledge bases and deriving a new 
knowledge base [34-35]. Some helpful software tools for 
merging ontologies are: PROMPT15, and quimaera16. 

Refinement:  Improving the structure and content of 
the knowledge by eliciting knowledge from the domain 
experts. It amends the knowledge at a finer granularity 
level. It is also of particular importance after merging 
operations ([35-37]), for instance, when two e-commerce 

agents are trying to negotiate. A number of software tools 
for organizing ontology components include refinement 
capabilities as well. 

Retrieval: This is the ultimate semantic web goal and it 
is going to take a while yet before we see smart software 
applications, but when the semantic web is populated, 
then those applications, e.g., semantic robots, agents, will 
traverse the web looking for data for us in a knowledge-
based fashion. In the mean while, we still have to wait for 
those frameworks to mature. Racer17, and KAON218 are 
some promising early tools to carry out these tasks.  

Practical guidelines and recommendations for 
developing ontology-based applications in specific 
sectors are available, for instance, in [44]; another study 
reported on social and technical bottlenecks which hinder 
the wide uptake of ontologies and one of its main finding 
was the need for advanced technology to cope with 
ontology development and maintenance especially in 
rapidly changing domains [45].  

IX.  SUMMARY 

Because of the ambitious design goals, multiple 
influences, and also because of the structural 
requirements constraining OWL, the development of 
OWL has not been without problems. Through hard work 
and compromise, these problems have largely been 
overcome, resulting in a ontology language that is truly 
part of the Semantic Web. It was not possible to 
simultaneously satisfy all of the constraints on OWL, so 
two styles of using OWL have been developed, each 
suitable under different circumstances. 

If an expressive ontology language with decidable 
inference is the main concern, then the OWL DL style is 
indicated. This style of using OWL loses some 
compatibility with RDF, mostly having to do with using 
classes and properties as individuals, but retains an 
expressive and useful ontology language. OWL DL also 
has a frame-like alternative syntax that can be used to 
make working with OWL easier.. If a simpler ontology 
language is the main concern, then the OWL Lite subset 
of OWL DL can be used. 

If, on the other hand, upward compatibility with RDF 
is the main concern, then the OWL Full style is indicated. 
This style extends RDF and RDFS to a full ontology 
language with a well-specified entailment relationship 
that extends entailment in RDF and RDFS, while 
avoiding any paradoxes that might arise. However, 
entailment in OWL Full is non decidable, which can be a 
significant issue in some circumstances. Also, the user-
friendly alternative syntax is not adequate for OWL Full, 
so RDF/XML must be used for OWL Full. These styles 
of using OWL provide an ontology layer for the Semantic 
Web, significantly extending the capabilities of RDF and 
RDFS, and expanding the usefulness of the Semantic 
Web.  

OWL is primarily designed to be used for semantic 
web applications and thus a large number of tools were 
developed that facilitate the ontology development 
process and subsequently use of ontology in semantic 
web applications. 
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