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Abstract- The massive growth in the size and complexity of 
websites, lead to increased demand on personalization 
systems and tools which can help in providing users with 
what they want or need without them having to ask for it 
explicitly.  In this paper, we present a novel approach 
towards the discovery of target pages for shortcuts.  The 
approach is based on the Maximal Forward Reference 
algorithm.  Few changes to this algorithm are suggested to 
make it more suitable for the discovery of popular paths, 
pages and individual user behaviors in relation to the 
structural design of the sit.  The major impetus for the 
selection of Maximal Forward Reference approach in our 
research was driven by two of our own convictions.  First, 
forward traversals more realistically represent the 
navigational intentions of the user.  Second, the algorithm 
has already been proven to generate a complete set of 
maximum references from the processed log file.  The 
proposed approach aims at limiting the consolidation 
process of the MFR to the level of individual users which 
should help in providing more detailed site adaptation, 
personalization, and visualization on the user level.    

 
Index Terms- Web usage mining, user traversal patterns, site 
personalization, site adaptation, maximum forward 
traversals, web graphs. 
 

I.  INTRODUCTION 
 

With continuous growth in the size and complexity of 
websites, the issue of identifying better means for 
providing the users with highly demanded information 
with less burden is becoming too critical not to address. 
Due to increase in the size and content of websites, 
developers find it challenging to efficiently design, 
represent and organize the information in a website 
structure, while users find it difficult to access the desired 
information in a simple, friendly and time-saving manner. 
The implication is that such growth can easily result in 
having popular or rich content  pages nested deep in the 
lower levels of a website, thus making it difficult for the 
users to find or reach.  

In addition, with rapid evolution in the e-service sectors, 
e.g. e-commerce, e-business, e-learning, site owners are 
more interested than ever in making their sites 
automatically predict future navigational patterns of the 
users to improve the usability, structure, and user 
retention of their sites.  

In general terms, the two issues of site personalization 
and adaptation involve three phases. First, preparation, 
preprocessing and categorization of web server log files 

to identify various data on user navigational patterns, such 
as frequency and time for pages visited and paths 
traversed [1,2,3,4]. Second, extraction of correlations and 
relationships between and across different kinds of such 
data to determine popular hot spots in a website, better 
classify the users and the services, formulate models for 
predicting future user interests, and even allow   dynamic 
visualization of such correlations for providing high level 
models for the usability and popularity of various 
elements of the site [5,6,7]. Third, dynamically 
recommend to the site maintainers and developers actions 
to improve the structural and navigational efficiency of 
the site and to better provide the users with popular 
services [5,6,7]. 

Various commercial software solutions can be used to 
extract these correlations among data from the log files. 
These include LiveStat [10], WebTrend [33], and AnaLog 
[34]. The first solution is used to generate information on 
the popularity of each page in the site, e.g. total visits and 
total time spent. AnaLog and WebTrend are used to 
generate an abstract web site graph describing the site 
structure in terms of pages and links and user traversal 
patterns. However, statistical reports generated by these 
log file analysis software provide only data numbers on 
the frequency of page visits and time spent, and fail to 
provide information on how different structural properties 
of the site are related or can be adapted [7,8]. Hence, 
when the task is to (1) discover  popular hot spots such as 
candidate pages, within the context of the overall site, for 
navigational shortcuts or redirects, (2) determine popular 
site components which should be redesigned or 
restructured, or (3) predict future user interests, then more 
elaborating techniques are needed. The objective of this 
research is to report a novel approach towards the 
discovery of target pages for shortcuts. The approach is 
based on the Maximum Forward Reference algorithm 
reported in [6]. Few changes to this algorithm are 
suggested to make it more suitable for the discovery of 
popular paths, pages and individual user behaviors in 
relation to the structural design of the site. 

The next section summarizes important related work 
reported on determining popular structural elements of a 
website. Section 3 formulates the problem, summarizes 
the behavior of the Maximum Forward Reference 
algorithm, and suggests a modified version of the 
algorithm to cater for the discovery of shortcut pages. 
Section 4 explains in more detail the modified discovery 
process. Section 5 outlines a plan for the implementation 
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and experimental analysis of the procedure reported in 
this paper. 
 

II.  RELATED WORK 
 

Work in the area of web site personalization and 
adaptation has been well documented and reported. 
Research on the analysis of log files, discovery of useful 
user navigational patterns, recommendations for website 
adaptation, and visualization of the popular site elements 
through web graphs has received considerable attention.  
Prior work mainly focuses on the analysis of the server 
log files, and can be classified by approaches applied to 
such analysis. Main approaches include software 
visualization models [11,12], cognitive models 
[13,14,15], statistical models such as Markov models 
[16,17,18], survey models [19,20], client-side 
navigational assistance models [23], and algorithmic 
models [21,22]. Since the work reported here is related to 
the algorithmic approach, the following discussion briefly 
outlines distinctive splits among models used in such 
approach.  

Almost all the models depend on the analysis of user 
access patterns through the application of graph-based 
theory within the context of website usability 
[5,8,21,22,24]. Web graphs are used to represent the site 
structure and user sessions. Analysis of such graphs is 
then conducted to discover (1) popular elements of the 
site, (2) opportunities for adaptation and personalization, 
(3) related clusters and classifications of users and pages 
for better efficient marketing, improved services and user 
retention, and (4) structural site components which 
require better design and organization.   

The work reported in [6] on the concept of Maximal 
Forward Reference (MFR) for characterizing user 
episodes for the mining of traversal patterns is regarded a 
pioneer effort in this area. The objective is to locate “hot” 
access pattern in an information-providing service. This 
work is based on statistically dominant paths, and a 
maximal forward reference is defined as the sequence of 
pages requested by a user up to the last page before 
backtracking.  This approach is similar to that of finding 
large item sets for association rules. The main difference 
is that in MFR the reference sequence describing user 
traversal patterns has to be consecutive references, 
whereas in the association rules it is just any 
combinations of items in a transaction. Our research 
proposes a modified version of the MFR algorithm to 
discover target pages which can   serve as candidate pages 
for the shortcuts to be placed in pages on the path leading 
to the candidate page, and hence allow personalization 
and adaptation. 

The idea of uncertainty in Web usage mining to 
discover clusters of user session profiles using robust 
fuzzy algorithms was reported in [25]. In this approach, a 
user or a page can be assigned to more than one cluster. 
After preprocessing the log data, a dissimilarity matrix is 
created and that  used by the fuzzy algorithms in order to 
cluster typical user sessions. To achieve this,  a similarity 
measure is used to takes into account both the individual 

URLs in a Web session, as well as the structure of the 
site.  

The work reported in [3],  regards Web usage mining  
as a three-phase process, consisting of preprocessing, 
pattern discovery, and pattern analysis. The prototype 
system introduced, WebSIFT, first performs intelligent 
cleansing and preprocessing for identifying users, server 
sessions, and inferring cached page references through the 
use of the referrer field, and also performs content and 
structure preprocessing.  Pattern discovery is 
accomplished through the use of general statistic 
algorithms and data mining techniques such as association 
rules, sequential pattern analysis, clustering, and 
classification. The results are then analyzed through a 
simple knowledge query mechanism, a visualization tool, 
or the information filter, that makes use of the 
preprocessed content and structure information to 
automatically filter the results of the knowledge discovery 
algorithms.  

 In a similar work [26], data mining techniques, such as 
association rules and sequential pattern discovery, are 
applied to Web log files  to customize the server 
hypertext organization dynamically. Here,  the Web usage 
mining is regarded as a two-phase process, consisting of 
the preprocessing phase where all irrelevant data are 
removed and log file entries are clustered based on time 
considerations, and the Web mining phase where data 
mining techniques are applied.  A generator of dynamic 
links uses the rules generated from sequential patterns or 
association rules, and each time the navigation pattern of 
a visitor matches a rule, the hypertext organization is 
dynamically modified.   

On the information discovery side, [27] used a 
knowledge discovery process in order to discover 
marketing intelligence from Web data by proposing an 
environment that combines existing online analytical 
mining, as well as Web usage mining approaches and 
incorporates marketing expertise; [28]  have designed a 
sequence mining system for the specification, discovery, 
and visualization of interesting navigation patterns, called 
“trails” and used concept hierarchies  along with site 
semantics as the basic method of grouping Web pages 
together, where accessed pages or paths are abstracted 
based on page content, or by the kind of service 
requested.   

Regarding self-adaptive web sites, [29]  proposed a 
framework for self-adaptive Web sites, taking into 
account the site structure except for the site usage;  [2]   
defined the notion of adaptive Web sites as sites that 
semiautomatically improve their organization and 
presentation by learning from visitor access patterns; [3] 
proposed  a framework for mining Web log files to 
discover knowledge for the provision of 
recommendations to current users based on their browsing 
similarities to previous users. The framework relies solely 
on anonymous usage data provided by logs and the 
hypertext structure of a site. After data gathering and 
preprocessing (converting the usage, content, and 
structure information contained in the various data 
sources into various data abstractions), data mining 
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techniques such as association rules, sequential pattern 
discovery, clustering, and classification are applied, in 
order to discover interesting usage patterns.  

In our previously reported work [30] along with the 
work reported by [31] on the discovery of popular pages 
as candidates for shortcuts, several optimization and 
heuristics based techniques were suggested. Both 
approaches utilized the web graph and searched for 
specific connectivity features in the web graph to identify 
the shortcuts. Although being novel, both approaches, 
optimization and heuristics based, suffered one major 
shortcoming, namely being   rigid in the criteria for a 
page to satisfy to be a candidate for a shortcut. For 
example, in our previous work mentioned above, two 
heuristics were used to define the target pages for the 
shortcuts. First, the page must receive large number of 
visits and no links should  follow out from it. Second, 
target pages should be reached through heavily traversed 
paths.  

The formal experimental analysis of the above heuristic 
based approach is yet to be completed. However, the 
manual observational analysis of the web graph for the 
synthetic site used in the experiment tend to point out 
some degree of rigidity in the second part of the first 
heuristic as well as in the second heuristic. This 
observational analysis to be shortly published clearly 
indicates that by requiring  target pages for the shortcuts 
to be the leaf nodes on the heavily visited paths exclude 
large number of popular pages with high visit frequency 
which are not terminal nodes in the web graph, i.e. links 
were  following out from them.   In regard to the second 
heuristic, the observational analysis shows the existence 
of several pages with high visit frequency that can be 
reached through several lightly traversed paths. Hence, 
the analysis provided us with useful insights into the 
usefulness of the approach, but also   indicated the need 
for the heuristics to be refined. 
  

III.  PROBLEM FORMULATION 
 

As mentioned earlier, when the web sites are evolved, 
their complexity tends to increase, the need for site 
adaptation and personalization arises, and the requirement 
for an efficient site maintenance and restructuring 
becomes more pressing. The merit of the work reported in 
this paper is to present a modified version of the 
Maximum Forward Reference (MFR) algorithm [6] for 
the discovery of target pages with high popularity to 
provide the users with shortcut links to these pages. The 
main goal is twofold (1) reduce the navigational burden 
on the users, and (2) support a decent visualization 
environment to facilitate adaptation, personalization, and 
structural redesign of a web site. 

In the MFR algorithm, visit sequences for each user are 
regarded as one single traversal of the path until a 
backtracking is encountered. Hence, only consecutive 
forward references are recorded as a traversal of a path. 
Backward references are mainly regarded as transient 
actions as opposed to navigational interests. On a 
backtracking, the forward reference path is terminated. 

The resulted path is termed a maximum forward 
reference.  

As an illustrative example, suppose the traversal log 
contains the following path for a user {A, B, C, D, C, B, 
E, G, H, G, W, A, O, U, O, V}, as shown in the simple 
web graph of figure 1. The MFR algorithm will produce 
the following set of forward references for this user 
{ABCD, ABEGH, ABEGW, AOU, AOV}. Duplicate 
traversals of the same paths are pruned from the set. 
However, for the discovery of the target pages, the visit 
frequency of the duplicate paths needs to be added to the 
overall frequency count of the path, otherwise it will be 
difficult to keep track of popular paths with high visits 
needed to determine target pages for the shortcuts. For 
example, if a user visits the path ABCD four times, the 
path in the MFR set will be shown only once, thus will 
not reflect how popular that path is. Therefore, the 
frequencies should be added to the visit counter for the 
path.  
 

 
 

Figure 1. Maximum Forward References 
 

Next, the MFR algorithm processes sets of all the users 
and produces an overall set of non-intersecting sects by 
pruning all partial paths found in the sets. This step may 
be very useful in pointing out some very popular 
structural elements of the site, but it further masks out 
information needed to determine popularity of individual 
paths for the shortcuts. Since the final superset 
consolidates all subsequences into the containing 
sequences,  and clustering or classifying pages or users 
tend to become a challenging task as well. To adequately 
detail such shortcomings, let us consider the following 
MFR sets for three hypothetical users navigating the same 
web graph shown in figure 1. 
 
U1: {ABCD, ABEGH, ABEGW, AOU, AOV} 
U2: {ABC, ABEG, ABE, AO} 
U3: {AB, ABEGH, AOU} 
 

Next, re-occurring partial sequences among all the sets 
are pruned by intersecting MFRs for each user and then 
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of the procedure. It is worth noting that we yet to 
implement the algorithm for the experimental purposes. 
Thus, the following steps describe the functional 
characteristics of the modified approach. 

 
Step 1: Process the log file for data preparation, 

cleaning, and session identification using widely accepted 
conventions reported in [4]. 

Step 2:  Generate a traversal log containing for each 
visited link a pair (s, d), where s denotes the initial start 
page and d denotes the destination page on the visit path. 
We intend to use the procedure reported in [32] to 
generate this log which is called referer log.  

Step 3:  From the referer log, generate the MFR sets for 
individual users using the MFR algorithm described in 
[6]. 

Step 4: Consolidate partial paths for individual users 
with their parent paths in each MFR set, while adding 
path frequencies of the pruned subsequences to their 
super sequences. The resulting MFR set for each user 
should have no duplicate paths. However, the overall visit 
counters for the paths and pages would still retain 
information on the navigational patterns of the user. For 
example, if the MFR set for a user is {ABC, ABC, ABC, 
ABC, ABCD}, then after pruning, the set would contain 
only {ABCD}, but the frequency counters would show 5 
visits for pages B and C and hence 5 traversals for the 
path ABC and one traversal for the path ABCD. As a 
result, navigational patters for individual users are clearly 
retained. If, however, the consolidation process is further 
applied to all the MFR sets for all the users, then the 
popularity of pages and paths would still be maintained 
but the behavior of individual users would not be easily 
inferred.  

One of the criteria for the shortcuts as reported in [29, 
30] is the number of users interested in a page and not 
only number of visits to that page. It is possible to 
discover a page with high visit frequency, but with 
interest from a few visitors. For example, let us consider 
the following two MFR sets for U1 {ABC, ABC, ABC, 
ABC, ABCD} and U2 {ABE, AOU}, using our example 
web graph. After the initial pruning process, we would 
have U1 {ABCD} and U2 {ABE, AOU}. With the 
second consolidation process, the resulting super MFR set 
would be {ABCD, ABE, AOU}. From the visit counters, 
we can still find out the overall popularity of page C, but 
it would be difficult to associate these visits with either of 
these two users. We know that C was mainly visited by 
user U1, but from the final MFR set it is not easy to 
determine that. 

Step 5:  Determine the supporting thresholds (ST) for 
identifying the target pages for shortcuts. This step is 
intended to provide site designers with means to analyze 
various navigational patters of users in close relation with 
the structural elements of the site. When used in a visual 
environment, such patterns should greatly assist the 
designers to experiment with various support thresholds 
for the redesign and personalization purposes. Following 
is the proposed set of such thresholds to be used for the 
discovery of shortcuts. It is worth noting that these 

thresholds are derived from our extensive academic and 
professional experience with the design and adaptation of  
web applications. Once the formal experimental analysis 
is completed, we should be in a better position to reflect 
on these support thresholds.  
 

T1 (pn): visits (pn) >= vsupport (pn) 
T2 (pn): users (pn) >= usupport (pn) 
T3 (pn): depth (pn) >= dsupport (pn) 

 
Threshold T1 determines the support for the total visit 

frequency of the target page on a popular path. This 
threshold covers both the popularity of the page and the 
path.  For example, setting the visit frequency for a target 
page  to 10  implies that all page on the path to the target 
page would have a visit frequency >= 10. Threshold T2 
determines the support for the number of different users 
visited the page, and T3 determines the support for the 
depth of the page on a visited path or in the web graph. 
To give an illustrative example on the application of these 
thresholds, let us consider a situation where we need to 
find target pages at dsupport=3. The process is as follows: 

 
a) From all the pruned MFR sets, determine the set of 

paths with depth >= dsupport, call it the Candidacy 
Set (CS).  

b) Since users are expected to traverse similar paths, CS 
is expected to include duplicate paths or subpaths. 
Hence, we need to perform exactly what the original 
MFR algorithm does, namely to generate the MFS 
superset, call it the Candidacy Superset, which 
consolidates all the MFR sets for all the users into one 
non-intersecting set where all the subsequences are 
pruned. However, to retain the information about 
different users visiting similar paths, we need to 
maintain a counter for each duplicate path or subpath 
found in different MFR sets. This will help us in 
determining the usupport threshold when looking for 
the target pages.   

c) From Candidacy Superset, identify the set of pages 
with depth >= dsupport, call it the Target Set (TS). 

d) For each page in TS, test the values for the remaining 
thresholds. 

e) Determine the set of pages whose thresholds 
conditions are satisfied, call it Shortcut Set (SS). 

 
To show a complete example of the procedure described 

in this paper, let us consider the following initial MFR 
sets for five hypothetical users: 
 

U1:{AB,AB,ABC,ABCD,ABEG,ABEGH, BEGH} 
U2:{AOV, AOU, ABCD, ABC, ABEG, ABEG} 
U3:{ABEGH, ABEGH, ABEGW, ABEGH} 
U4:{AOU, AOV, AOV, ABCD, ABEG} 
U5:{ABEGH, ABEG, ABEGW} 

 
The consolidated MFR sets would look as follows: 

 
U1: {ABCD, ABEGH} 
U2: {AOV, AOU, ABCD, ABEG} 
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visit frequency less than 10 were excluded from being 
considered as candidates for the target pages. The 
justification is that in our judgment a popularity of less 
than 10 in a large website does not indicate a heavily 
visited path or page. 

 
Table 1: Discovery of target pages at Depth = 3 

 
Visit Frequency Support Target Pages Found 

vsupport >= 10 27 
vsupport >= 20 12 
vsupport >= 30 9 

 
From table 1, we can see that when dsupport is set to 3 

a total of  27 pages were identified to have a visit 
frequency of 10 and more. For a visit frequency of 20 and 
more, 12 pages were identified, and for a visit frequency 
of 30 and more 9 pages were identified. Since pages with 
visit frequency of 10 and above already include in its 
count pages with vsupport >= 20 and vsupport >= 30, it 
can be concluded that when dsupport = 3, a total of 27 
pages are identified to be target pages for the shortcuts. 
This figure represents 77% of the pages at level 3 of the 
web tree.  Table 2 shows the results for dsupport=4. As 
mentioned erlier, there were a total of 58 pages found at 
level 4 in the web tree of the site. With a total of 36 pages 
identified as target pages, which include pages for all 3 
values of vsupport, 62% of the pages at level 4 are found 
to be target pages. This outcome is no surprise since 
during navigation, users surfing academic sites tend to 
visit pages at higher and middle levels more frequently 
while trying to reach pages at lower levels in the website. 
Table 3 shows that as the  depth increases, number of 
target pages   tends to decrease. When dsupport=5, out of 
79 pages only 20 (25%) pages were identified for the 
shortcuts for all three vsupport values. Overall, across 200 
pages making up the test website, a total of 83 pages were 
identified for the shortcuts, representing 41% of the web 
tree.   
 

Table 2: Discovery of target pages at Depth = 4 
 

Visit Frequency Support Target Pages Found 
vsupport >= 10 36 
vsupport >= 20 16 
vsupport >= 30 9 

 
Table 3: Discovery of target pages at Depth = 5 

 
Visit Frequency Support Target Pages Found 

vsupport >= 10 20 
vsupport >= 20 8 
vsupport >= 30 4 

 
 

VI.  CONCLUSION AND FUTURE WORK 
 

In this research, we have introduced a modified 
version of the MFR algorithm which identifies target 
pages for the shortcuts within the context of the overall 

website.  The main objective of the research is twofold: 
(1) allow site developers to efficiently optimize the design 
and structure of their websites, and (2) reduce the 
navigational burden on the users. The preliminary 
evaluation of the modified procedure has shown to be 
very useful in identifying popular spots in a website in 
close relation to the overall structure of the site.  

To better generalize the initial findings reported in this 
paper, we plan to conduct few more simulated 
experiments in the near future.  The effort would involve 
simulating various website structures by using different 
distribution algorithms [36], namely the uniform, normal 
and triangular distributions with different parameters. We 
will generate various websites with different number of 
web pages and different links from each page. Various 
navigational patterns of the users will be simulated using 
the above three distribution algorithms with different 
parameters. This step will provide us with a decent referer 
log needed to run  the modified  MFR  procedure  
explained in this paper for the discovery of shortcuts in 
relation to various support thresholds and structural 
properties of the simulated site. 

Since visualization is among the core requirements of 
our research, the planned system should allow the site 
designers and the experimenters to visually analyze 
various visit scenarios against different support 
thresholds. This feature should enable them to graphically 
represent a website and to determine various popular 
structural spots for better personalization and adaptation. 
We plan to implement the system using Java platform. 
The processed log file, the referer log, and the MFR sets 
will be stored in a relational DBMS that can support the 
communication through JDBC/ODBC driver. 
Visualization features are to be provided by VGJ library, 
including the visual display of the website graph, which is 
to be described using the GML format. 
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