
A Hybrid Recommender System Guided by
Semantic User Profiles for Search in the

E-learning Domain

Leyla Zhuhadar and Olfa Nasraoui
Knowledge Discovery and Web Mining Lab

Department of Computer Engineering and Computer Science
University of Louisville, Louisville, KY 40292, USA

Emails: leyla.zhuhadar@wku.edu, olfa.nasraoui@louisville.edu

Abstract—Various concepts, methods, and technical
architectures of recommender systems have been integrated
into E-commerce storefronts, such as Amazon.com, Netflix,
etc. Thereby, recently, Web users have become more
familiar with the notion of recommendations. Nevertheless,
little work has been done to integrate recommender systems
into scientific information retrieval repositories, such as
libraries, content management systems, online learning
platforms, etc. This paper presents an implementation of a
hybrid recommender system to personal the user’s
experience on a real online learning repository and vertical
search engine named HyperManyMedia. This repository
contains educational content of courses, lectures,
multimedia resources, etc. The main objective of this paper
is to illustrate the methods, concepts, and architecture that
we used to integrate a hybrid recommender system into the
HyperManyMedia repository. This recommender system is
driven by two types of recommendations: content-based
(domain ontology model) and rule-based (learner’s interest-
based and cluster-based). Finally, combining the content-
based and the rule-based models provides the user with
hybrid recommendations that influence the ranking of the
retrieved documents with different weights. Our
experiments were carried out on the HyperManyMedia
semantic search engine at Western Kentucky University. We
used Top-n-Recall and Top-n-Precision to measure the
effectiveness of re-ranking based on the learner’s semantic
profile. Overall, the results demonstrate the effectiveness of
the re-ranking based on personalization.

Index Terms— recommender system, search engine, clus-
tering, personalization, semantic profile

I. INTRODUCTION

The work presented in this paper describes a hybrid
recommendation based retrieval model that can filter
information based on user needs. We believe that the
methodology for designing an efficient recommender
system, regardless of the approach used, i.e., content-
based, collaborative, or hybrid, is to incorporate the
following essential elements: contextual information, user
interaction with the system, flexibility of receiving
recommendations in a less intrusive manner, detecting the
user’s change of interest and responding accordingly,
supporting user feedback, and finally the simplicity of the

user interface. We noticed, by tracking user behavior in
our applied personalized vertical search engine,
HyperManyMedia, that using general recommendation
methods was not sufficient to make users interested in
using the recommendations provided by the system.
However, if the recommender system was tailored to the
user’s specific needs via personalization, the user got
more interested and engaged into the recommendation
process. Our finding resulted in generalizing the
personalization aspect. We considered personalization as
the main building block of the recommender system
architecture. This conclusion is noticeable in most of the
recommender systems that succeeded. Their success was
a result not of the complexity of the theoretical
methodology that has been used to design the system, but
rather of the usability and the simplicity of the
recommender system interface which guides the user
without interrupting his/her activities. In this paper, we
present an implementation of a hybrid recommender
system on a search engine frontend to a real online
learning repository named HyperManyMedia. This
repository contains educational content of courses,
lectures, multimedia resources, etc. The main objective of
this paper is to illustrate the methods, concepts, and
architecture that we used to integrate the recommender
system into the HyperManyMedia repository. This
recommender system is driven by two types of
recommendations: content-based (domain ontology
model) and rule-based (learner’s interest-based and
cluster-based). The domain ontology model which is used
to represent the learning materials, is composed of a
hierarchy of concepts and subconcepts that represent
colleges, courses, and lectures; whereas, the learner’s
ontology model represents a subset of the domain
ontology (an ontology that contains only a personalized,
pruned subset from the whole domain which consists
only of the college/courses/lectures that the learner is
interested in). Finally, combining the content-based and
rule-based recommendations provides the user with
hybrid recommendations that influence the ranking of the
retrieved documents via different weights. However,
before describing the design of our system, we first

272 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jetwi.2.4.272-281

present a comprehensive background of the origin of
recommender systems and other related work in Section
II. Then, we present various methodologies that we used
in Section III, followed with a detailed description of our
implementation and the evaluation results in Section IV.
Finally, we draw our conclusions.

II. PREVIOUS WORK

The scope of literature review in this paper concerns
recommender systems in academic repositories. More
specifically, we are interested in answering the following
question: What is the current state-of-the-Art and the
next generation of recommender systems in academic
repositories and do scientific portals, digital libraries,
and e-books repositories consider the value of
embedding recommender systems into their system?

To answer this question, we reviewed the most popular
scientific digital libraries. In addition, we investigated
some of the promising Web 2.0 digital libraries that use
recommender systems.

We believe that a few of the main services that can

benefit from the usage of recommender systems are
digital libraries. In particular, when we compare the
usability of search engines with digital libraries, we
notice that the design of search engines has changed
dramatically over the last decade. Web users can easily
search for resources using search engines. This flexibility
is provided by the simplicity of the search engines’ user
interface. However, digital libraries did not adapt to those
changes. The complexity of using a combined
methodology of Boolean operators with Metadata fields
to retrieve resources from databases is considered to be a
tedious process, especially for the new generation of Web
users who are not used to spending a long time to search
for resources. For example, many Web users now prefer
using Google Scholar to search for journal articles,
research papers, and e-books, regardless of its limitation
to provide the user with a complete access to the resource
(unless the user already set his/her digital libraries’ access
inside the advanced feature in Google Scholar), than the
digital libraries, such as ACM, IEEE Xplore or CiteSeer.
Thus it appears that the simplicity of the Google Scholar
interface surpasses the accuracy that major digital
libraries provide. However, ACM, IEEE Xplore and
CiteSeer incorporated some techniques that could be
considered as a form of recommendations (with little
success). For example, ACM Portal provides two types of
recommendations: (1) a content-based research tool
known as “find similar articles”. The mechanism used to
find similar papers involves three techniques: cluster
analysis, dictionary and thesauri. The retrieved
documents are ranked based on date, publisher, or

relevance, but there is no reference to the type of measure
used in the ACM Portal, as cited in [14], (2) behavior-
based recommendations presented as “Peer-to-Peer
readers of this article also read”. According to [14], this
recommendation is built using simple frequency counts,
and therefore fails to provide accurate recommendations.

According to [2], IEEE Xplore announced the
implementation of content-based recommendations on
their portal. Nevertheless, to date, no such recommender
system is embedded into the IEEE Xplore libraries.
However, CiteSeer1 showed a promising venue for the
usage of recommender systems. The first prototype
provided the users with three different types of
recommendations: (1) link structure-based rec-
ommendation: those recommendations are based on link
citations and they can be distinguished into four types of
recommendations (recommend documents that are cited
inside the searched document, recommend documents
that cite the document, the Co-citation and the active
bibliography), (2) content-based recommendations using
(TF-IDF) similarity metrics and (3) explicit
recommendations, where the user can rank the retrieved
documents on a scale of 1 to 5. In addition, the user can
write a review or a comment about the paper. However,
the progress of this portal apparently stopped since 2006.
The success of Google Scholar is evident even though it
provides limited recommendations, e.g., finding similar
documents based on content and the ranking of those
documents may be inherited from Google’s page ranking
algorithm. Another limitation of Google Scholar is that it
does not retrieve documents that are cited inside a
specific document, but rather only the documents that cite
this specific document. As we noticed, a variety of
recommender systems portals have been implemented in
the domain of digital libraries and scientific repositories,
some of which succeeded while others failed to survive.
In the following paragraph, we discuss two significant
implementations of scientific recommender systems. The
first is the Melvyl recommender system, which has been
implemented by the California digital library2. This
system uses a simple technique to provide
recommendations to users. First, it generates a graph of
all the purchased documents in the library, then each
document is considered as a weighted node (with the
weight representing the number of purchases). Therefore,
the recommendation for a given document is based on the
neighboring nodes (documents) which are sorted
according to their edge weights. The second is
TechLens3, which is specialized for the domain of
scientific papers, it uses hybrid recommendations
combining a collaborative filtering and a content-based
approach. The system uses graph theory where each
research paper is considered as a node and the citations
inside each paper are considered as recommended nodes.
Also, the system uses a more complex collaborative
filtering (CF) technique that considers each cited paper as
an input, therefore also considering all citation papers as
recommendations. This technique is referred to as Dense
CF. Finally, the system applies a content-based
recommendation technique (TF-IDF) on the list of all

1http://citeseer.ist.psu.edu
2http://www.dlib.org/Architext/AT-dlib2query.html
3http://techlens.cs.umn.edu/tl3

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010 273

© 2010 ACADEMY PUBLISHER

recommended papers. Thus, the most similar papers are
recommended to the user. The system provides two
options: (1) Pure content-based CF (the similarity
measure is only based on two entities, the title of the
paper and the abstract, and (2) Content-based Separated-
CF, where the whole text in the papers is considered as
the final recommendations provided to the user would be
a list of sorted recommendations that combine multiple
factors based on the type that the user chose. Recently,
with the increased popularity of social tagging systems,
portals such as CiteULike4 and BibSonomy5, are
considered promising projects that use social
bookmarking to derive recommendations. [1], [5], [6], [4]
used a different approach to recommend documents based
on the user profiles, In this case by learning from implicit
feedback or past click history. Other ways to form a user
model include using data mining, such as by mining
association rules [11], or by partitioning a set of user
sessions into clusters or groups of similar sessions. The
latter groups are called session clusters [12], [10], or user
profiles [12], [10]. More recently, [13] presented a
Semantic Web usage mining methodology for mining
evolving user profiles on dynamic Websites by clustering
the user sessions in each period and relating the user
profiles of one period with those discovered in previous
periods to detect profile evolution, and also to understand
what type of profile evolutions have occurred. This latter
branch of using data mining techniques to discover user
models from Web usage data is referred to as Web Usage
Mining. A previous work that used Web mining for
developing smart E-learning systems [16] integrated Web
usage mining, where patterns were automatically
discovered from users’ actions, and then fed into a
recommender system that could assist learners in their
online learning activities by suggesting actions or
resources to a user. Another type of data mining in E-
learning was performed on documents rather than on the
students’ actions. This type of data mining is more akin to
text mining (i.e., knowledge discovery from text data)
than Web usage mining [3]. This approach helps alleviate
some of the problems in E-learning that are due to the
volume of data that can be overwhelming for a learner. It
works by organizing the articles and documents based on
the topics and also providing summaries for documents.
[7] combines Web usage mining and text-based indexing
and search in the content to provide hybrid
recommendations. [8] uses a learning algorithm to select
sequential articles based on context and user-click
feedback to recommend news articles to users. Our
approach shares some similarity with the above
techniques. It is a Hybrid recommender system which
combines Content-based recommendations with two
types of Rule-based recommendations. In Section III, we
explain our methodology, followed by the imple-
mentation section. Finally, we present our evaluations
and we conclude with our key findings.

III. METHODOLOGY

The methodology of designing our hybrid
recommender system is divided into two parts: (1) The
first part centers around designing the domain ontology:
First, we relied on a fine grained taxonomy that
encapsulates all the domain of Education in general, and
E-learning in specific, by borrowing an already made
taxonomy from WordNet. This attempt ended with a
great disappointment since the terminology used in
WordNet is far wider and different than what the
HyperManyMedia domain contains. As a result, two
major problems occur, the overloading of the fine grained
taxonomy during the searching process and the
ambiguity. Therefore, a decision was made to create a
hand-made ontology using a coarse-grained taxonomy. In
Section IV, we describe in detail the design of the domain
ontology. (2) The second part centers around designing
the learner’s ontology: Each learner has his or her own
ontology based on his/her preferences. The learner’s
ontology is extracted from the domain ontology and
presented as a pruned subset ontology. In Section IV, we
describe in detail the design of the learner’s ontology. In
the following sections, we describe the methodology used
to provide the learner with hybrid recommendations: (1)
Ontology Content-based, (2) Cluster-based, and (3)
Interest-based.

A. Building the HyperManyMedia Domain Ontology
Recently, a variety of knowledge-based framework ap-

plications became available that support modeling ontolo-
gies. The best known applications are Protégé6 and Al-
tova7. We used Protégé as a framework application.
Figure 1 shows the design of the HyperManyMedia
ontology in Protégé. Since our approach is based on a
search engine recommender system, the content of each
lecture is considered as a document and the
recommendation of pages is related to the degree of
matching between a learner’s query and the reverse-
indexing of the lecture (Webpage). The
HyperManyMedia search engine uses the Vector Space
Model (VSM) and the score of a query q for a document
d is computed based on the cosine similarity between the
document and the query vector. The implementation can
be described as follows: (1) Preliminary crawling and
indexing (offline): crawling and indexing the E-learning
platform that contributes to the content of the
recommendation; (2) We start by representing each of
the N documents as a term vector d = < w1, w2,...wn >,
where ݓi is the term weight for term (i), combining the
term frequency, ݐ i݂, and the Term’s Inverse Document
Frequency ܨܦܫi = log ே

௡೔
 if this term occurs in ݊௜

documents, as ݓi = ݐ i݂ log כ ே
௡೔

, and (3) Building the E-
learning Domain Ontology: Let R represent the root of

274 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure 1. Hierarchical Structure of the HyperManyMedia Ontology.

the domain which is represented as a tree, and Ci
represent a concept under R, as ܴ ൌ ௜ୀଵ׫

௡ C୧, where n is
the number of concepts in the domain. Each concept Ci
consists either of subconcepts (C୧ ൌ ׫௝ୀଵ

௠ ௝௜) or ofܥܵ
leaves which are the actual documents (C୧ ൌ ׫௞ୀଵ

௟ ݀௞௜).
We encoded the above semantic information into a tree-
structured domain ontology in OWL, based on the
hierarchy of the E-learning resources. The root concepts
are the colleges, while the sub-concepts are the courses,
and the leaves are the resources of the domain (lectures).

IV IMPLEMENTATION

A. Ontology Content-based Recommendations
The idea of a Content-based recommender system in an
E-learning platform can be summarized as follows: Given
the lectures that the learner has visited, the platform
recommends other lectures with content that is similar to
the content of the viewed lectures. We build the learner’s
ontology profile by extracting the learner interests from
the user’s profile. Let ݀ݏܿ݋ሺUiሻ ൌ ݇׫ൌ1

݈ ݀݇݅ be the
documents visited by the i

th
learner, Ui. The learner’s

ontology is considered as a subset of the E-learning
domain ontology from Section III.A. Since the activity
log of the user’s activities records the visited documents
(which are the leaves), a bottom-up pruning algorithm is
used to extract the semantic concepts that the learner is
interested in. Each learner Ui R has a dynamic semantic
representation. First, we collect the learner’s activities
over a period of time to form an initial learner profile, as

follows, let ݀ݏܿ݋ሺUiሻ ൌ ݇׫ൌ1
݈ ݀݇݅ be the documents

visited by the i
th

learner Ui, then starting from the leaves,
the bottom-up pruning algorithm searches for each
document visited by the learner in the “domain semantic
structure”, and then increments the visit count (initialized
with 0) of each visited node along with its ancestors all
the way up to the root. After back-propagating the counts

of all the documents in this way in the domain structure,
the pruning algorithm keeps only the concepts (colleges)
and sub-concepts (courses) related to the learner’s
interests along with their weighted interests (which are
the number of visits). When a learner searches for a
lecture using a specific query q, the cosine similarity
measure is used to retrieve the most similar documents d
that contain the terms in the query, as shown in equation
(1). As we mentioned in Section III, the
HyperManyMedia search engine’s scoring algorithm is
based on the VSM. For each field, the score is computed
as follows,

,ݍሺ݁ݎ݋ܿݏ ݀ሻ ൌ ,ݍሺ݀ݎ݋݋ܿ ݀ሻ ൈ ሻݍሺ݉ݎ݋ܰݕݎ݁ݑݍ ൈ ∑ሺ݂ݐ ሺݐ ݅݊ ݀ሻ ൈ
݅݀ ݂ ሺݐሻ2

ൈ .ݐ ሺሻݐݏ݋݋ܤݐ݁݃ ൈ ,ݐሺ݉ݎ݋݊ ݀ሻሻ (2)

Lucene
8
(Apache) defines each term for equation (2) as

follows [9], where tf (t in d) is the number of times term t
appears in the currently scored document d, defined as

ܵ஼௢௦௜௡௘ ൌ ௗ೅௤
||ௗ||మ·||௤||మ ൌ ∑ ௝݀ݍ௝ ට∑ ሺ ௝݀ሻଶ௠

௝ୀଵ ·ൗ௠
௝ୀଵ ∑ ሺݍ௝ሻଶ௠

௝ୀଵ (1)

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010 275

© 2010 ACADEMY PUBLISHER

tf (t in d)= frequency½, id f (t) is the inverse document
frequency (related to the number of documents in which
the term t appears), defined as ݂݅݀ሺݐሻ ൌ 1 ൅
logሺ݊ݏܿ݋ܦ݉ݑ ݍ݁ݎܨܿ݋݀ ൅ 1⁄ ሻ and coord(q,d) is a score
factor based on how many of the query terms are found in

the specified document, and queryNorm(q) is a
normalizing factor used to make scores between queries
comparable,

ሻݏݐ݄ܹ݃݅݁݀݁ݎܽݑݍ݂ܱܵ݉ݑݏሺ݉ݎ݋ܰݕݎ݁ݑݍ ൌ
1 1ݏݐ݄ܹ݃݅݁݀݁ݎܽݑݍ݂ܱܵ݉ݑݏ 2⁄⁄ (3)

The sum of squared weights (of the query terms) is
computed by the query weight object. For example, for a
Boolean query, we compute this value using,

ݏݐ݄ܹ݃݅݁݀݁ݎܽݑݍ݂ܱܵ݉ݑݏ ൌ .ݍ ሺሻ2ݐݏ݋݋ܤݐ݁݃

. ∑ ሺ݅݀ ݂ ሺݐሻ ൉
.ݐ ሺሻሻ2ݐݏ݋݋ܤݐ݁݃

t in q (4)

Where t.getBoost() is a search time boost of term t in the
query q as specified in the query text, or as set by appli-
cation calls to setBoost(), there is only multi-terms boost
access, and so the boost of a term in the query is
accessible by calling the sub-query getBoost(), and
norm(t,d) encapsulates a few (indexing time) boost and
length factors: (1) document boost, is set by calling
doc.setBoost() before adding the document to the index,
(2)field boost, is set by calling field.setBoost() before
adding the field to a document, and (3) lengthNorm
(field), is computed when the document is added to the
index in accordance with the number of tokens of this
field in the document, so that shorter fields contribute
more to the score, and LengthNorm is computed by the
Similarity class in effect at indexing. When a document is
added to the index, all the above factors are multiplied. If
the document has multiple fields with the same name, all
their boosts are multiplied together,

,ݐሺ݉ݎ݋݊ ݀ሻ ൌ .ܿ݋݀ . ሺሻݐݏ݋݋ܤݐ݁݃ ሺ݂݈݅݁݀ሻ݉ݎ݋݄ܰݐ݈݃݊݁ ·
∏ ݂ . (5) ݐ ݏܽ ݀݁݉ܽ݊ ݀ ݊݅ ݂ ݈݂݀݁݅ ሺሻݐݏ݋݋ܤݐ݁݃

When a learner searches for lectures using a specific
query q, the cosine similarity measure is used to retrieve
the most similar documents that contain the terms in the
query. In our approach, these results have been re-ranked
based on two main factors: (1) the semantic relation
between these documents and the learner’s semantic
profile, and (2) the most similar cluster to the learner’s
semantic profile (recommended cluster). Algorithm 1
maps the ranked documents to the learner semantic
profile (Category 1), where each document di, belonging
to a learner’s semantic profile, is assigned a priority
ranking (α = 5.0), and each document di belonging to the
recommended cluster (Category 2) is assigned a priority
ranking (β = 3.0), while the rest of the documents
(Category 3) have the lowest priority (γ = 1.0). The
threshold of each parameter was decided heuristically
after several trials (α = 5.0, β = 3.0, and γ = 1.0). All the
documents, in each category, are then re-ranked based on

cosine similarity to the query q. Our search engine (based
on Nutch) uses optional boosting scores to determine the
importance of each term in an indexed document, when
adding up the document-to-query term
matches in the cosine similarity. Thus a higher boosting
factor for a term will force a larger contribution from that
term in the sum. We modified the boosting score as
follows: field.setBoost() = α, in case of Category1,
field.setBoost() = β, in case of Category2, and
field.setBoost() = γ, in case of Category3. Accordingly,
all documents have been boosted and re-ranked based on
two factors. Here, we are going to introduce the first
factor and in the following section, the second factor.
Algorithm 1 maps the ranked documents to the learner’s
semantic profile (learner’s previous visited lectures) as
Category 1, where each document di, belonging to a
learner’s semantic profile, is assigned a priority ranking
(α = 5.0). This boosting score has been implemented
using field.setBoost(), the weight is only added to the
documents that the learner is interested in, based on
his/her previous activities (sessions). Since we used the
ontology to generate the user profile, we named this type
of recommendation, Ontology Content-based
Recommendations.

B. Cluster-based Recommendations
A total corpus consisting of around 7,424 documents

(lectures), was divided into 4,888 English documents and
2,536 Spanish documents. In both cases, we
experimented with partitional algorithms, direct K-way
clustering (similar to K-means), and repeated bisection or
Bisecting K-Means with all criterion functions. We also
experimented with graph-partitioning-based clustering
algorithms [15]. First, for clustering English documents,
we compared different hierarchical algorithms for the
English corpus consisting of 4,888 documents using the
clustering package Cluto [15]. The best clustering method

8
http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/search/Si

milarity.html

276 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

TABLE I.
ENGLISH CLUSTERS DESCRIPTIVE FEATURES

Cluster 0 angle 4.20% prime 3.10% line 2.60% distance 2.60%
Cluster 1 terms 2.60% child 2.40% means 2.10% stuttering 1.60%
Cluster 2 called 1.50% war 1.40% sort 1.20% people 1.00%
Cluster 3 flood 5.80% water 1.40% building 1.40% elevation 1.40%
Cluster 4 audit 4.40% board 3.40% internal 2.90% management 2.40%
Cluster 5 zero 3.80% grams 3.00% fraction 2.80% hundred 2.50%
Cluster 6 material 4.30% materials 1.80% process 1.50% type 1.40%
Cluster 7 time 2.50% times 1.90% rainfall 1.80% storm 1.50%
Cluster 8 voice 2.10% vocal 1.90% speech 1.40% pitch 1.30%
Cluster 9 class 5.50% java 4.20% method 4.00% methods 3.30%
Cluster 10 price 7.30% market 4.40% cost 2.60% product 2.50%
Cluster 11 mean 2.10% basically 2.10% five 1.90% data 1.80%
Cluster 12 income 4.70% accounting 3.80% balance 3.60% statement 2.90%
Cluster 13 data 7.10% system 2.80% database 2.80% server 2.60%
Cluster 14 children 2.60% child 2.00% program 1.70% time 1.50%
Cluster 15 course 6.60% assignments 5.80% class 1.90% topic 1.90%
Cluster 16 equal 4.10% zero 3.30% look 2.80% negative 2.60%

Cluster 18 game 9.30% theorem 7.30% muhamet 5.20% ergin 5.20%
Cluster 19 transport 4.60% waves 3.70% environment 3.30% concentration 3.10%
Cluster 20 poem 2.20% read 1.60% look 1.30% little 1.20%
Cluster 21 information 6.00% systems 5.70% technology 5.10% organizational 3.60%
Cluster 22 test 2.40% child 1.60% score 1.60% words 1.40%
Cluster 23 five 4.30% times 4.00% example 2.90% nine 2.80%
Cluster 24 deviance 7.10% social 6.60% deviant 3.60% identity 2.90%
Cluster 25 square 9.50% squared 6.80% equal 4.20% times 3.00%
Cluster 26 western 1.50% online 1.50% literature 1.50% course 1.40%
Cluster 27 times 5.00% equal 3.60% minus 3.40% zero 2.70%
Cluster 28 game 5.70% player 2.50% strategic 2.30% strategy 2.10%
Cluster 29 time 1.50% product 1.30% look 1.20% example 1.10%
Cluster 30 angle 8.60% equal 5.80% triangle 3.80% proposition 3.60%
Cluster 31 lecture 11.60% global 2.40% population 1.90% species 1.80%
Cluster 32 metal 2.90% formula 2.70% name 2.60% minus 2.30%
Cluster 33 market 11.70% markets 8.90% competition 8.80% strategy 7.60%
Cluster 34 transportation 6.70% land 3.10% planning 2.80% transit 2.50%
Cluster 35 time 3.40% value 2.60% markets 2.10% resources 1.70%
Cluster 36 transportation 6.70% land 3.10% planning 2.80% transit 2.50%
Cluster 37 time 3.40% value 2.60% markets 2.10% resources 1.70%

TABLE II.
SPANISH CLUSTERS DESCRIPTIVE FEATURES

Cluster 0 desagradables 33.30% aborrecible 33.30% repugnancia 33.30% accionistas 0.00%
Cluster 1 ciclo 7.40% dep 4.00% global 3.40% azufre 3.00%
Cluster 2 contabilidad 4.20% balance 4.10% pasivo 3.20% contable 1.90%
Cluster 3 precios 5.70% producci 2.60% fijaci 2.20% discriminaci 2.00%
Cluster 4 product 8.60% design 7.10% hill 7.10% mcgraw 7.10%
Cluster 5 programa 2.00% coordenadas 1.80% gui 1.60% pdb 1.60%
Cluster 6 teorema 11.60% conocimiento 11.60% espesamiento 11.10% trade 9.40%
Cluster 7 conservaci 7.40% masa 7.30% difusi 6.20% volumen 5.60%
Cluster 8 ajuste 20.70% ruido 17.30% persistente 7.80% stico 6.00%
Cluster 9 patente 2.20% stephen 1.80% patentes 1.40% invenciones 1.30%

Cluster 10 juego 6.20% juegos 5.90% nash 4.90% prueba 2.40%
Cluster 11 subastas 10.10% equivalencia 8.20% subasta 4.60% licitaci 4.60%
Cluster 12 colas 16.20% nacimiento 6.50% muerte 6.50% sistemas 5.20%
Cluster 13 arrays 3.50% lista 2.60% array 1.40% elemento 1.40%
Cluster 14 interpretaci 83.60% hoy 9.20% objetivos 6.50% los 0.60%
Cluster 15 software 3.40% ide 1.90% requisitos 1.80% desarrollo 1.70%
Cluster 16 red 2.70% fibra 2.40% paquetes 2.40% redes 2.30%
Cluster 17 navegador 4.40% html 3.50% server 3.30% mime 2.90%
Cluster 20 kang 11.50% arnold 9.80% james 9.80% barnett 9.80%
Cluster 21 reacciones 10.90% reacci 4.30% concentraciones 4.20% concentraci 3.20%
Cluster 22 xml 4.20% web 2.50% corba 1.60% servidor 1.10%
Cluster 23 transporte 10.30% suelo 3.40% planificaci 3.20% teor 2.90%
Cluster 24 nike 1.70% reputaci 1.60% industria 1.40% empresas 1.30%
Cluster 25 pasajeros 9.10% mortalidad 8.90% desarrollados 6.80% vuelos 5.30%
Cluster 26 hilo 6.30% hilos 4.20% eventos 2.00% deeventos 1.60%
Cluster 27 desplazamiento 7.90% colas 7.10% servidores 6.50% ciudad 3.80%
Cluster 28 productividad 19.20% primaria 11.80% lecturas 4.20% ecolog 3.60%
Cluster 29 amortizaci 13.00% fiscal 5.00% gasto 4.30% impuestos 4.30%
Cluster 30 replicador 22.00% ess 10.30% din 6.90% evolutiva 6.80%

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010 277

© 2010 ACADEMY PUBLISHER

Figure 2. Semantic Terms Recommendations.

for the English corpus, which produced the highest
Purity = 0.959 and with the lowest Entropy = 0.05, was
the Agglomerative Method, with Number of Clusters= 38,
using Clustering Criterion Function and Cosine
Similarity Measures as inter-object similarity measure, as
shown in equation (1). Table I shows the descriptive
features in each cluster (those features that we added to
the ontology). Second, for clustering Spanish documents
we also compared different hierarchical algorithms for
the Spanish corpus consisting of 2,536 documents. The
best clustering method for this corpus, which produced
the highest Purity = 0.927 and with the lowest Entropy =
0.140, was the Agglomerative Method, with Number of
Clusters = 50, using Clustering Criterion Function and
Cosine Similarity Measures as inter-object similarity
measure. Table II and Table III show the descriptive
features in each cluster (those features that we added to

the ontology). We consider extracting the most similar
(recommended) cluster Ci = BestCluster, which is
summarized by the Top n keywords (significant or
frequent terms) to modify the learner’s semantic ontology
and adding the cluster’s terms as semantic terms under
the concepts (parent nodes) that these documents belong
to, as a Rule-based recommendation. In Algorithm 1, we
defined this rule as Category 2, where each document di
belonging to the recommended cluster is assigned a
priority ranking (β = 3.0). This boosting score has been
implemented using field.setBoost(). When a learner
searches for lectures using a specific query q, the cosine
similarity measure is used to retrieve the most similar
documents that contain the terms in the query. Those
documents are re-ranked based on the weighting factor β.
Also, we name this type of recommendation, Cluster-
based Recommendations.

TABLE III.
SPANISH CLUSTERS DESCRIPTIVE FEATURES CONT.

Cluster 31 mercados 5.10% poder 4.50% segmentos 4.10% marketing 4.00%
Cluster 32 lotka 10.70% nichos 9.20% competencia 7.50% xplique 5.40%
Cluster 33 integraci 2.30% organizativos 1.60% negocio 1.60% tecnolog 1.50%
Cluster 34 ondas 17.00% onda 7.50% fluido 1.90% dispersi 1.80%
Cluster 35 etiqueta 6.70% desviado 3.70% desviaci 3.20% negar 2.30%
Cluster 36 juego 5.20% juegos 4.00% estrat 2.80% jugador 2.00%
Cluster 37 gen 7.30% mendel 7.10% mutantes 4.20% genes 3.70%
Cluster 38 aritm 11.50% operadores 7.30% estructuras 5.70% control 3.50%
Cluster 39 duraderas 5.30% recurso 5.00% ventajas 3.60% podemos 2.40%
Cluster 40 consultas 1.80% bases 1.70% filas 1.60% datos 1.60%
Cluster 41 memoria 2.10% java 1.90% clases 1.90% clase 1.80%
Cluster 42 cognitivo 6.30% decisi 5.90% aprobarla 5.60% conocimientos 5.60%
Cluster 43 nodo 9.60% nodos 5.60% sub 3.00% rboles 2.70%
Cluster 44 aparcamiento 5.50% transporte 4.50% viajes 3.00% mit 2.60%
Cluster 45 lagos 2.60% especie 2.60% norte 2.50% avi 2.10%
Cluster 46 dise 3.10% especificaciones 2.90% necesidades 2.70% piz 1.80%
Cluster 47 contestar 3.30% redacte 1.70% feedback 1.60% quejaslea 1.40%
Cluster 48 poblaci 3.80% densidad 3.60% fecundidad 3.40% edades 2.60%
Cluster 49 huella 12.00% ecol 10.40% demogr 10.00% poblaci 5.10%

278 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure 3. Average Percentage of Improvement in Top-n Precision.

Figure 4. Average Percentage of Improvement in Top-n Recall.

Our current ontology consisting of ~40,000 lines of code,
and it can be downloaded from URL

9
.

B. Interest-based Recommendations
We provide the learner with semantic term recommen-

dations based on his/her visited concepts. We consider
this type of recommendation as Rule-based. Since the
ontology represents concepts and relationships, proper-
ties, functions and rules among these concepts. For each
query q submitted by a learner, a semantic mapping
between the query and the learner’s semantic profile
brings all the concepts/subconcepts/cluster-based-
recommended terms. This framework allows the learner
to navigate through the semantic structure of his/her
query, as shown in Figure 2 by clicking on one of the

recommended terms. For more detail on modeling a
learner’s interests, refer to our previous work [18], [17].
The effect of this action is to add the selected term to the
query and repeat the search. Therefore the search is
finally personalized via a query expansion using the
recommended term that is selected. We name this type of
recommendation, Interest-based Recommendations.

The difference between Content-based
recommendations and Interest-based recommendations
(Rules-based recommendations) is that in the latter, the
user is provided with recommendations not only based on
his/her profile, as in Content-based recommendations, but

9
http//lucene.apache.org/java/2_4_0/api/org/apache/lucene/search/Si

milarity.html
10

http//://hypermanymedia.wku.edu

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010 279

© 2010 ACADEMY PUBLISHER

in addition, the user is provided with recommendations
based on an extended ontology by using the First Order
Logic. In this case, we defined the following entities:
has_College, has_Course, has_Language, has_Lecture,
has_Professor, sub_Class_Of.

In addition, each entity has different characteristics
(Functional, Description), for example, we illustrate the
characteristics of Entity = has_College: (Description:
College, Equivalent classes: Colegio, Superclasses:
Thing, Members: Accounting, Architecture_and
Manufacturing, Biology, etc., Disjoint: Sub classes). Two
most important definitions used in our ontology design
are the following: (1) Equivalent classes: Equivalent
classes equal to ≡ relation, to mention some of these
entities (College ≡ Colegio, Engineering ≡ Ingenieria,
English ≡ Ingles,..., Social Work ≡ Trabajo Social,
Chemistry ≡ Quimica, etc.) and (2) Sub_Class_Of:
Related to the hierarchy design of our domain: <Clus-
ter_descriptive features is−a sub_Class_Of Lecture>, etc.

V. EXPERIMENTAL ANALYSIS

Several evaluation metrics have been introduced in the
literature, such as Recall, Precision, F-measure,
Harmonic Mean, E-Measure, User-Oriented Measure
(coverage, novelty), expected search length, satisfaction,
frustration, etc. The most widely used ones in evaluating
search engines have been Top-n Recall and Top-n
Precision. Top-n Recall is the number of relevant
retrieved documents among the top n retrieved documents
divided by the total number of relevant documents, and
Top-n Precision is the number of relevant retrieved
documents within the top n divided by n. For example,
starting with the top 50 results and going down to the top
10 search results: n = 50, 40, 30,...,10, e.g., at n = 50, the
top-50 search results are used for recall computing the
precision. Therefore, we used Top-n-Recall and Top-n-
Precision to measure the effectiveness of re-ranking
based on the learner’s semantic profile (testing set). For
the evaluation, we used our own semantic search engine

10

to evaluate each query, and compute the Top-n-Precision
and Top-n-Recall for normal search and for personalized
semantic search for each learner. The problem with
evaluating a real search engine is that you cannot
compare results obtained with different datasets. First,
using a different dataset will return results not related to
the content of the repository and in this case, our own
search engine evaluation’s results will definitely be better
on our dataset. Second, from an architectural stands point,
we cannot compare our search engine results with another
search engine because the only search engine that we are
aware of that has an architecture that supports the
integration of semantics is the one we used, Nutch.

Figure 3 shows the Average Percentage of
Improvement in Top-n Precision, whereas, Figure 4
shows the Average Percentage of Improvement in Top-n
Recall for the personalized search over the normal
search, with three sizes of queries (1, 2, and 3 keywords).
We used keyword queries extracted from the logs that
users typed the most for searching content. For each

length of query, we used the Top-100 most used queries.
The personalized semantic search shows an improvement
in precision that varies between 5-25 %. This
improvement is noticeable between the top-30 and top-50
search results for single-keyword and two-keywords
queries. The recall results show a noticeable
improvement in recall between top-20 and top-40. Also,
we can summarize the impact of the query size by
noticing that Precision is better when the size of a query
was 1 or 2; whereas, Recall starts with a better results for
queries of size 2 till Top-20, then both queries of size 1, 2
converge almost to the same results. Overall, these results
show the effectiveness of the re-ranking based on the
learner’s semantic profile.

VI CONCLUSION

In this paper, we presented a hybrid recommender
engine to personalize search in the E-learning domain.
This engine is driven by multi-ontology models: ontology
content-based recommendations (domain ontology
model), and ontology rule-based recommendations
(cluster-based and interest-based). We illustrated the
methods, concepts, and architecture to integrate a
recommendation engine into an E-learning search system.
We demonstrated the design of the HyperManyMedia
ontology using the Protégé framework. In this context,
this ontology is composed of a hierarchy of concepts and
sub-concepts that represents colleges, courses, and
lectures. Also, we described the implementation of Rule-
based recommendations by using clustering techniques to
extract descriptive features from clusters, those features
have been added to the domain ontology under the related
concepts using the Protégé framework. In addition, we
implemented a semantic mapping between the query and
the learner’s semantic profile to present the user’s
interest. Finally, each type of these recommendations
influenced the re-ranking of the retrieved documents with
different factors. Our experiments were carried out on the
HyperManyMedia semantic search engine at Western
Kentucky University. We used Top-n-Recall and Top-n-
Precision to measure the effectiveness of re-ranking
based on the learner’s semantic profile. Overall, the
search results showed the effectiveness of the re-ranking
based on personalization.

REFERENCES

[1] M. de Gemmis, G. Semeraro, P. Lops, and P. Basile. A

Retrieval Model for Personalized Searching Relying on
Content-based User Profiles.

[2] G. Grenier. Path to document recommendation services:
Technologies that enabled the development of on-line
information systems. In Presentation held at the ACS
National Meeting, volume 230, 2005.

[3] K. Hammouda and M. Kamel. Data mining in e-learning.
E-Learning Networked Environments and Architectures: A
Knowledge Processing perspective", series: Advanced

280 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

Information and Knowledge Processing, Springer Book
Series, 2007.

[4] T. Joachims. Optimizing search engines using clickthrough
data. Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 133–142, 2002.

[5] T. Joachims, L. Granka, B. Pan, H. Hembrooke, F.
Radlinski, and G. Gay. Evaluating the accuracy of implicit
feedback from clicks and query reformulations in web
search. 2007.

[6] T. Joachims and F. Radlinski. Search engines that learn
from implicit feedback. Computer, 40(8):34–40, 2007.

[7] M.K. Khribi, M. Jemni, and O. Nasraoui. Automatic
Recommendations for E-Learning Personalization Based
on Web Usage Mining Techniques and Information
Retrieval. Educational Technology and Society, 2009.

[8] Lihong Li, Wei Chut, John Langford, and Robert E.
Schapire. A contextual-bandit approach to personalized
news article recommendation. In WWW2010. Yahoo! Labs,
2010.

[9] [10] B. Mobasher, R. Cooley, and J. Srivastava. Automatic
personalization based on web usage mining.
Communications of the ACM, 43(8):142–151, 2000.

[10] B. Mobasher, R. Cooley, and J. Srivastava. Automatic
personalization based on web usage mining.
Communications of the ACM, 43(8):142–151, 2000.

[11] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effective
personalization based on association rule discovery from
web usage data. In Proceedings of the 3rd international
workshop on Web information and data management, page
15. ACM, 2001.

[12] O. Nasraoui, R. Krishnapuram, and A. Joshi. Mining web
access logs using a fuzzy relational clustering algorithm
based on a robust estimator. Eighth International World
Wide Web Conference, Toronto, Canada, 1999.

[13] O. Nasraoui, M. Soliman, E. Saka, A. Badia, and R.
Germain. A Web Usage Mining Framework for Mining
Evolving User Profiles in Dynamic Web Sites. IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, pages 202–215, 2008.

[14] A.W. Neumann. Recommender Systems for Information
Providers: Designing Customer Centric Paths to
Information. Springer Verlag, 2009.

[15] M. Rasmussen and G. Karypis. gcluto: An interactive
clustering, visualization, and analysis system. CSE/UMN
Technical Report: TR# 04, 21, 2008.

[16] O.R. Zaiane. Building a recommender agent for e-learning
systems. Computers in Education, 2002. Proceedings.
International Conference on, pages 55–59 vol.1, 3-6 Dec.
2002.

[17] Leyla Zhuhadar, Olfa Nasraoui, and Robert Wyatt.
Automated discovery, categorization and retrieval of
personalized semantically enriched e-learning resources.
International Conference on Semantic Computing, 0:414–
419, 2009.

[18] Leyla Zhuhadar, Olfa Nasraoui, and Robert Wyatt. Dual
representation of the semantic user profile for personalized
web search in an evolving domain. In Proceedings of the
AAAI 2009 Spring Symposium on Social Semantic Web,
Where Web 2.0 meets Web 3.0, pages 84–89, 2009.

Leyla Zhuhadar received the Ph.D. de-
gree in Computer Engineering and
Computer Science from the University of
Louisville, Louisville, in 2009.
Currently, she is a Research Scientist at
Western Kentucky University and an
Adjunct Assistant Professor at the

Department of Computer Engineering and Computer
Science (CECS), at the University of Louisville. Her
research interests are in Knowledge Acquisition from the
Web, Information Retrieval, Ontology Engineering,
Semantic Web, Metadata for Accessible Learning
Objects. She designed and implemented two working
research platforms in the e-learning domain,
HyperManyMedia and the Semantic Repository. She is a
member of IEEE, IEEE Women in Engineering, IEEE
Computer Society, IEEE Education Society, the ACM,
SIGKDD, SIGACCESS, SIGIR, Web Intelligence
Consortium (WIC), and the AIED.

Olfa Nasraoui is the founding Director of
the Knowledge Discovery and Web Mining
Laboratory, at the University of Louisville,
where she is also an Associate Professor of
Computer Engineering and Computer Science
and the Endowed Chair of e-Commerce. She
received the Ph.D. degree in Computer

Engineering and Computer Science from the University of
Missouri, Columbia, in 1999. From 2000 to 2004, she was an
Assistant Professor at the University of Memphis. Her research
interests include data mining, Web mining, stream data mining,
and computational intelligence. She is a member of IEEE, IEEE
Women in Engineering, and in the last 10 years, has been active
in the SIGKDD community, notably by organizing the
WebKDD workshop on Web Mining and by serving as Vice-
Chair on Data Mining conferences, including KDD 2009,
ICDM 2009, and WI 2009. She is a recipient of a US National
Science Foundation Faculty Early Career Development
(CAREER) Award, and a Best Paper Award in the Artificial
Neural Networks in Engineering Conference. She has published
more than 100 publications, and acquired close to $2M in
funding for research from NSF, NASA and other agencies.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010 281

© 2010 ACADEMY PUBLISHER

