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Abstract— Identifying the most appropriate effort estimation
methods is an important aspect for software project man-
agement. Within the scope of an software industry cluster
project an expert system recommending estimation methods
that best match the software development project’s charac-
teristics and context has been developed. The knowledge-
based recommender exploits an explicit knowledge base in
order to infer matching items based on the software project’s
context. The contribution of this article lies in presenting
a constraint-based reasoning mechanism for computing
recommendable items from a large set of choices and in its
application to the domain of software project management.
It discusses a recommendation model for effort estimation
methods and presents specific extensions like explanation
and repair mechanisms that proved exceptionally useful in
this application domain. The application was conceptualized
and developed in an iterative process and results from two
rounds of evaluation are reported.1

Index Terms— constraint-based recommendation, software
project management, recommender applications

I. INTRODUCTION

In today’s competitive software development environ-
ment it is of utmost importance to deliver products on
time, with the desired quality attributes and at the speci-
fied cost. Depending on the specific project, estimation of
size, effort and schedule can be done in an iterative way,
that is by primarily estimating requirements of the next
development step. However, ever increasing competition
among software companies often results in fixed-price
projects. It is thus important to estimate the effort
required, size and schedule of a specific project even in
the early stages of software development. Thus accurate
estimation methods like, for example, the Function Point
method, T-Shirt Sizing or Calibration with project-specific
data have gained increasing importance [2], [3]. Notably,
this also holds for the development of custom software
and integration projects, where functionality is primarily
extended or substituted.

Although there is a large amount of literature on
software estimation methods [2], [3], there is often no
detailed knowledge about when to apply which method.

1The article extends and further develops the work presented in [1].

To the best of our knowledge, no out of the box knowl-
edge base exists that supports the selection and priori-
tization of adequate techniques depending on a specific
project’s characteristics. Consequently, there is a need
for personalized advice, taking into account the specific
project characteristics, the availability and granularity of
comparable data and the current state of development.

In particular, the multitude of potential users, the
fact that project managers are solely aware of a small
number of relevant techniques and the availability of var-
ious techniques for diverse project settings suggests that
constructing a recommendation application for software
estimation techniques would be worthwhile. Furthermore,
harnessing a web-based recommendation system may also
considerably contribute to the widespread applicability
of software estimation techniques in today’s mainstream
software engineering projects.

However, the provision of a knowledge base for soft-
ware effort estimation is particularly challenging as there
is no formalized description of the underlying knowledge.
Instead the acquired knowledge stems from textbooks and
experienced engineers. Further, to establish the neces-
sary trust into an on-line recommendation application for
software effort estimation - as confirmed by the survey
presented herein - a transparent line of reasoning of the
proposed method has to be provided. Moreover, engineers
try to get the optimal choice out of the methods being
proposed. Consequently, the system has to provide a
flexible interaction mechanism that allows the user to
explore the solution space and trade-offs between different
methods.

Therefore, this article contributes a knowledge-based
recommendation application that allows software project
managers and engineers to select appropriate methods for
effort, size and schedule estimation. In Section II we
discuss related work, namely recommendation applica-
tions for software engineering, and Section III outlines
our novel knowledge model for software estimation tech-
niques. Notably, our model takes the cone of uncertainty
[3] into account and thus reflects the accuracy of the
different estimation methods at various stages of software
development. We further discuss two innovative exten-
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sions, an explanation facility for providing a transparent
line of reasoning and the application of model-based
reasoning techniques in order to allow users to flexibly
explore the solution space. Section IV presents our pilot
application and its user interface. Moreover, we report
on a two phase survey among our industry partners and
discuss the most notable remarks triggering improvements
of our on-line application. Finally, Section VI concludes
our article.

II. RELATED WORK

Recommendation systems for software engineering are
tools that help developers and managers to better cope
with the huge amount of information faced and a variety
of different tasks in today’s software projects. Typically
recommendation applications provide guidance for engi-
neers in a number of activities (e.g., testing, debugging,
refactoring, etc.), or to alert stakeholders of potential
issues (e.g., redundant code, conflicting requirements,
failure-inducing changes, etc.).

To the best of our knowledge no work has been done
in trying to implement a recommendation system for
software estimation techniques.

The authors of [2] and [3] present more than 30 estima-
tion methods and their specific characteristics. However,
it requires lots of expertise for an engineer or project
manager to consider all the methods and then decide
which one is best suited for the current project.

The authors of [4] present a recommendation system
for project planning. This approach mainly supports
project planning by taking previous projects into account.
It can be used solely when project-specific data is avail-
able from previous projects. Additionally, this approach
requires information like cost, size and well defined user
requirements to be known. In contrast, our technique does
not necessitate project specific data, but rather makes use
of project specific data if such are available.

The authors of [5] present a survey of different recom-
mendation tools for software maintenance and develop-
ment. Based on automatic or manual queries, each tool
presented in the survey is capable of recommending what
should be done in the upcoming stage of ongoing software
development efforts.

Other works deal with improvements to developer pro-
ductivity. The authors of [6] present a recommendation
system for identifying the most appropriate functions for
implementing a specific software feature. Their approach
is based on collaborative filtering algorithms [7]. More-
over the literature reports on successful applications of
recommendation systems for detecting software conflicts,
as presented in [8], or for focusing software testing on
specific modules or components [9].

The authors of [10] provide a prototypical implemen-
tation as well and present ChangeCommander, an Eclipse
plugin that implements an approach to recommend inser-
tions of particular if-statements before calling a method.
ChangeCommander presents context change suggestions
by highlighting method invocations in the source code and
thus provides automated code adaptation support.

III. KNOWLEDGE MODEL FOR RECOMMENDATION

Knowledge-based recommender systems exploit a
knowledge base that explicitly mediates between user
requirements and the characteristics and limitations of dif-
ferent effort estimation methods in order to identify those
items that best fulfill them. An overview on knowledge-
based recommendation systems can for instance be found
in [11]–[14].

According to Adomavicius and Tuzhilin [15] a recom-
mender system in general can be defined as a function
rec(i, u) that computes a recommendation score for a
given item i and user u, expressing how useful or in-
teresting the item will be.

However, it is common practice in constraint or
knowledge-based recommenders to relax queries and
identify maximally succeeding sub-queries like done by
[16]–[18] that do not emulate a function that computes
scores for all items in the catalog but returns only a
subset of items. Moreover, in cases where a single catalog
query results in multiple recommendations, an additional
sorting mechanism is necessary because the recommender
only assigns binary recommendation scores: 1 if an item
satisfies the query conditions and 0 otherwise. As a
result, many systems employ cascading hybridization,
using a second algorithm to refine the recommendation
list by performing additional filtering and ranking [19].
For instance, the CWAdvisor system [20] uses a scheme
based on multi-attribute utility theory (MAUT) [21] and
Zanker and Jessenitschnig [22] experimented with cascad-
ing knowledge-based and collaborative recommendation
algorithms.

However, the hybridization of constraint-based recom-
mendation with another approach comes at the cost of
additional engineering as well as knowledge acquisition
and maintenance effort. Therefore, we utilize the natural
ranking scheme that is produced by comparing items with
a set of (soft) constraints on an individual basis. Thus,
we define a constraint-based recommender as follows.

Definition 1: A constraint-based recommender is a
function recγ that computes a continuous value (score)
that constitutes the assumed usefulness of a catalog item
i for a user u as modeled by a standard finite domain
constraint satisfaction problem Γ, i.e. recγ(i, u, Γ) 7→
[0 . . . 1].
A standard constraint satisfaction problem (CSP) is de-
scribed by a tuple Γ = (X, D, C) where X is a set of
variables, D a set of finite domains for the variables in
X and C a set of constraint restrictions representing a
knowledge base that defines which combinations of values
can be simultaneously assigned to variables [23]. The
knowledge base was derived by interviews with domain
experts and by studying the popular literature on this topic
[2], [3]. More concretely, the RS for advising about
effort estimation methods elicits the project’s context
like the development style or the phase the project is
currently in via a forms-based dialogue (see Table I for
the most important domain characteristics). Variables
describe the software project’s characteristics such as
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TABLE I.
PROJECT CHARACTERISTICS

Context variable Description
project type e.g. new development, maintenance

or customization project
development style iterative or sequential development
project size small, medium or large depending

on development staff
development stage early or late phases of the development

process
stakeholders audience addressed by the estimate
countable items defines what can be counted in the current

project (e.g. requirements, GUI elements
or Function Points)

available historical data types of historic data that can be exploited
for the current effort estimation task

data granularity degree of detail of historic data (compare
to countable items)

development style and estimation methods’ properties like
type and granularity level of required historical data in
this application domain. Variable domains stem from
available instances in the catalog of items and restrictions
specified during the requirements elicitation dialogue.
The recommendable items and effort estimation methods
constitute the item catalog I containing a finite set of
database instances. Items are characterized by a set
of properties that correspond to the variables describing
the project context like their applicability to different
development styles, project sizes or project phases, the
required level of detail for historical data or the level of
granularity of this data. In addition, they are grouped into
method families and annotated with qualitative aspects
like the predictive accuracy of the estimations.

For the purpose of illustration we will discuss
the underlying reasoning mechanism using small
examples. For this reason we restrict the set
of variables X = XC ∪ XI , where XC =
{stage, stakeholder, countable} ascribes the project
characteristics and XI = {method, granularity} the
items.

Constraints can be either hard meaning that they always
have to be fulfilled or soft, i.e. Chard ∪ Csoft = C.
All c ∈ C are associated with a penalty value pen(c)
for situations when they cannot be fulfilled. Note that
we also assign weights to hard constraints, although
they are never relaxed, ensuring that they also influence
computed scores. Constraints are derived from domain
expertise and some examples are given in Table II.
For instance, the method T-Shirt Sizing is recommended
for early development stages and external stakeholders
(see constraint c1) but it is not applicable for internal
stakeholders (see c2) or if Function Points (’fp’) can be
counted the proposed method should also require the same
level of granularity (see c3). However, in case constraint
c3 can not be fulfilled but has to be relaxed, constraint
c4 ensures that methods exploiting data on the level of
granularity of Dutch Points (’dutch’) or features (’feat.’)
are ranked higher than those that do not. The rationale
behind constraint c4 is for instance that Function Points

Id Weight Preference rule

c1 10 If stage = ’early’ AND stakeholder = ’external’
then method = ’T-Shirt sizing’.

c2 10 If stakeholder = ’internal’
then method 6= ’T-Shirt sizing’.

c3 10 If countable = ’fp’
then granularity = ’fp’.

c4 10 If countable = ’fp’
then granularity = ’fp’ OR
granularity = ’dutch’ OR
granularity = ’feat.’ .

c5 10 If granularity = ’fp’
then countable = ’fp’.

TABLE II.
EXAMPLE CONSTRAINTS

Id Method Granularity

i1 T-Shirt Sizing none
i2 Function Points fp
i3 Dutch Points dutch

TABLE III.
EXAMPLE DATABASE OF METHODS

constitute finer granular data that allows to reconstruct
coarser granular data like Dutch Points or features (see
also Figure 1). Finally, constraint c5 is the inverse of
implication c3 ensuring that the method’s requirement for
data granularity is supported by the project’s character-
istics. For illustration purposes let us also assume an
example database of methods I as defined in Table III.
Each item ik ∈ I in Table III has to be represented by a
hard constraint that describes a conjunction of its features,
i.e. i1: method = ’T-Shirt sizing’ ∧ granularity = ’none’,
i2: method = ’Function Points’ ∧ granularity = ’fp’ and
i3: method = ’Dutch Points’ ∧ granularity = ’dutch’.

Furthermore, the knowledge-based RS takes a set
of specific requirements (SRSu) describing the project
context of user u as input. Consequently, items are
recommended as follows:

Definition 2: An item i ∈ I is recommended with
maximum score, i.e. recγ(i, u, Γ) = 1, iff SRSu∪{i}∪C
is consistent or satisfiable. If SRSu ∪ {i} ∪ C is not
consistent then the constraint set has to be relaxed and a
maximum set C ′ ⊆ C that needs to encompass all hard
constraints (Chard ⊆ C ′) has to be identified such that
SRSu ∪ {i} ∪ C ′ is consistent and that there does not
exist a set C ′′ ⊆ C and C ′ ⊆ C ′′ s.t. SRSu∪{i}∪C ′′ is
consistent. Consequently, in case of constraint relaxation
the recommendation score has to be lowered.
In practice, the recommendations are computed with
conjunctive queries on a database. Therefore, we assume
the following premises for computing recommendation
scores for an item i and user u using relational database
queries:
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1) A constraint c is applicable (app(c)), iff its condi-
tion part (cond(c)) evaluates to true, i.e. SRSu ∪
{i} ∪ {cond(c)} is consistent.

2) A constraint c is satisfied (sat(c)), iff it is either not
applicable or its consequent part (cons(c)) evaluates
to true, i.e. SRSu ∪ {i} ∪ {c} is consistent.

3) If all constraints are satisfied, item i will receive
the highest possible recommendation score (see
Definition 2).

4) If any c ∈ Chard is not satisfiable in SRSu ∪{i}∪
{c} the item i cannot be recommended and thus
receives the lowest possible recommendation score.

5) The recommendation score constitutes the relative
share of weights of those constraints that are appli-
cable and satisfied compared to all applicable ones.

Formally, a constraint-based recommendation function
can be computed as follows:

recγ(i, u, Γ)=

{
score(i, u, Γ) : ∀c ∈ Chard sat(c)
0 : else

score(i, u, Γ)=
1∑

∀c∈C
app(c)

pen(c)
×

∑

∀c∈C
app(c)∧sat(c)

pen(c)

Additional assumptions can be made to improve the
efficiency of score computation. First, the condition part
of an implication constraint does not contain variables
describing product properties and therefore the applica-
bility of a constraint can be decided on the basis of the
user’s requirements (i.e. the user model) alone. Second,
in most situations the consequent part of a constraint only
contains variables describing the catalog of items allowing
the satisfaction of constraints to be precomputed at design
time. In practical problems, nearly all consequent parts of
constraints contain only variables describing the product
catalog. Therefore, the satisfaction of a constraint can
be computed once using the relational selection operator
δ on catalog I . Thus, c is satisfied with respect to a
specific item i ∈ I iff i ∈ δ[cons(c)](I). Therefore, our
implementation precomputes recommendation scores by
executing a query for every c ∈ C once during the startup
of the system and stores a binary constraint/item matrix in
memory comparable to [18]. This removes the restriction
of having to compute maximally succeeding subqueries
in situations where a query fails, allowing us to compute
sets of applicable and satisfied constraints in linear time.
Recommendation scores are then derived from these sets
by traversing over all items and summing up the weights
of applicable constraints and as well as those that are both
applicable and satisfied.

If the user’s specific requirements are SRSu =
{r1, r2, r3} with r1: stage = ’early’ r2: stakeholder
= ’external’ r3: countable = ’none’ we can compute
recommendation scores for all items in I . Based on SRSu

only constraint c1 is applicable that is only satisfied for
i1 but not for i2 and i3. Therefore recγ(i1, u, Γ) = 1,
recγ(i2, u, Γ) = 0 and recγ(i3, u, Γ) = 0.

Figure 1. Dependencies among granularity levels of historic data and
countable items

IV. IMPLEMENTATION

The knowledge base consists of around 50 different
constraints, some of which are rather obvious like If
the project follows development style X then the method
should be applicable to development style X. However,
matching the historic data requirements of estimation
methods with the granularity of the available historic data
and the countable items of the current project data is more
complex. Figure 1 sketches the assumed dependencies
between different classes of countable elements for de-
riving software estimates. The directed edges indicate an
informal containment hierarchy. For instance if one can
compute Function Points (FP) then - in principle - Dutch
Points (being only a subset of FP elements) or method-
level features may also be computed. Therefore, only
estimation methods that are applicable to the figuratively
greatest common divisor or lowest granularity of the
available historic data and the countable data in the
current project must be selected.

The implementation is based on a generic recommen-
dation framework [24], [25] that can be instantiated in
different application domains. Figure 2 depicts a sample
dialogue page that requires the user to specify the current
project phase and informs him/her of the variability that
can be expected in effort estimation methods at this
point. After each user input the system computes and
displays the intermediate results and their ranking in order
to make the user aware of the impact of the different
characteristics of the project context. Figure 3 further
depicts the WikiWeb that we used for visualizing the
diverse methods. The sidebar lists all available methods
- thus the system provides an overview on the available
methods. By clicking onto a specific method the WikiWeb
provides a description and explanation of this method in a
uniform structure. As outlined in Section V, our test users
reported that the WikiWeb together with the community
portal improved the practical applicability considerably.
In addition, the system supports two additional features
that we will highlight in the following.

A. Transparent line of reasoning

Figure 4 depicts an exemplary result page of the system
that summarizes the project context, recommends a spe-
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Figure 2. Sample question

Figure 3. Results page

Figure 4. Results page

Figure 5. Sketch of PBFSM

cific method like T-Shirt Sizing including an explanation
text and also outlines why another method like Function
Points is not applicable in this case. This explanation
facility is implemented by a predicate-based finite state
machine (PBFSM) comparable to the one presented in
[26]. While in [26] states constitute different steps in
the interaction process with the user, here each state
is attached with a phrase that can become part of the
explanation for a recommended item. Transitions between
states are associated with logical conditions. Furthermore,
there exists a single designated entry state and an end
state. Figure 5 depicts an example for the state-graph,
where the explanation facility has to compute a valid
path connecting the entry and the end state where for a
given user and a given recommended item all specified
conditions of the transitions have to be satisfied. An
explanatory text is therefore sequentially composed from
the phrases that are attached to the states along such a
valid path. For instance, given that the user searched
for a method that is applicable for external stakeholders
(stakeholder = ’external’) and the recommended method
is ’T-Shirt Sizing’ the valid path in our example state-
graph is outlined by bold-faced transitions.

B. Flexible exploration of the solution space

The automated computation of repair alternatives for
the formulated project characteristics (SRS) is another
feature that promises high utility in this application
context. Repair actions for user input to recommender
systems in order to avoid empty result sets have been pro-
posed by Felfernig et al. [12]. However, in this article a
different application scenario for computing model-based
repair actions is sketched that arose from the feedback of
users: Flexibly exploring the solution space by requesting
a next better alternative for a given recommendation. For
instance, method A is recommended but the user would
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be interested to use method B because it can deliver
more precise estimation results or is already known to
the user beforehand. A model-based repair mechanism
can consequently propose what input the user would have
to modify in order to get a recommendation for method
B.

Let’s assume the knowledge base consists of the con-
straints enlisted in Table II, i.e. KB = {c1, c2, c3, c4}.

Furthermore, KB has to be consistent with any item
from I , i.e. ∀k {ik} ∪KB needs to be consistent.

Given a set of initial user requirements SRS =
{r1, r2, r3} with r1: stage = ’early’ r2: stakeholder =
’external’ r3: countable = ’none’ and a preferred item
ipref the repair task is to identify a set of repaired user
requirements SRSrep such that SRSrep ∪ {ipref} ∪KB
is consistent [12].

A conflicting subset of user requirements SRSCS ⊆
SRS for a given item preference ipref and KB leads
consequently to SRSCS ∪ ipref ∪KB being inconsistent.
A conflict set SRSCS is minimal iff there does not exist
a conflict set SRSCS′ such that SRSCS′ ⊂ SRSCS .

A diagnosis is a subset of user requirements ∆ ⊆ SRS
that has to be removed such that SRS\∆∪{ipref}∪KB
is consistent. Similarly, a diagnosis ∆ is minimal iff there
is no diagnosis ∆′ where ∆′ ⊂ ∆.

In our example domain, SRS lead to item i1 being rec-
ommended, but if the user would like to apply the Func-
tion Points method instead, i.e. ipref = i2, the minimal
conflict sets SRSCS1 = {r1, r2} and SRSCS2 = {r3}
can be computed for instance by the QUICKXPLAIN
algorithm [27]. Applying Reiter’s hitting set algorithm
[28] will consequently return two minimal diagnoses ∆k

notably ∆1 = {r1, r3} and ∆2 = {r2, r3}. The system
will therefore propose the user to ensure that countable =
′fp′ and that either variable stage has to be unequal
to ′early′ or stakeholder 6=′ external′. Thus the
explicit knowledge representation of a constraint-based
recommender allows the application of general problem
solving strategies and model-based reasoning techniques.

V. EVALUATION

We performed a two step qualitative evaluation phase
considering the intermediate and the final version of
the system. In order to evaluate the initial version of
our recommendation application we presented it’s basic
rationale and purpose to our industry partners during a
workshop. Afterwards we provided them the prototype
installation alongside with a qualitative online question-
naire for making their own experience with the system
and for collecting their feedback. The panel of evalua-
tors consisted of 7 software project practitioners (project
managers, software engineers and IT consultants) from a
mix of small and medium-sized as well as big companies.
The qualitative evaluation primarily addressed utility and
usability issues [29], [30] related to the task of recom-
mending estimation techniques. Table IV outlines the
most significant questions that are categorized into four

groups: general questions, dialogue related questions,
perceived quality of results and usability and usefulness.

The survey’s main aim was to evaluate (1) the per-
ceived practical applicability and usefulness of the system
for mainstream software engineering projects, (2) the
completeness of the catalog of methods and the com-
prehensiveness of the recommendation approach, (3) the
correct characterization of a software project’s context,
and (4) the plausibility and traceability of the given
recommendations. Although, the panel considered the
intermediate system basically as useful and usable, they
noted several intricacies. The most notable remarks and
suggestions for further improvements from our evaluation
panelists have been discussed in more detail in [1]. Next,
we summarize shortly how we addressed them:

Recommendations are not precise enough: We consid-
ered this issue by re-designing parts of our knowl-
edge base. Particularly, we focused on those methods
that belong to the same family of methods. For each
pair of methods within the same family or group we
identified discriminating features and preconditions
for their application and updated our knowledge base
accordingly.

Lack of concrete examples and Web 2.0 functionality: In
order to address this issue, we integrated a WikiWeb
with community features such as commenting of
methods (see Section IV).

Incomplete and inaccurate characterization of the
project: We addressed this shortcoming by extending
the scope of questions, e.g., we explicitly considered
development from scratch and maintenance of exist-
ing software applications.

The system fails to explain why a specific method is
chosen: According to our panel evaluators, solely
enlisting the applied constraints as done by the first
version of the system does not explain why a specific
method is the most adequate one. We therefore
integrated a newly developed explanation component
as described in Subsection IV-A.

Having thoroughly revised and extended the intermedi-
ate version of the recommendation system [1] as outlined,
we initiated a second round of evaluation with the same
evaluation panelists. In the following we summarize the
most notable statements of our panelists.
(1) Practical applicability: Table V lists a few com-

ments w.r.t. the applicability of our recommen-
dation application in everyday work and Table VI
outlines some respondents’ replies to the question
on the system’s perceived usability and usefulness.
For instance, one participant pointed out that - in
his opinion - recommendation applications are not
adequate for software project effort estimation as
one typically applies a couple of methods rather than
solely a single method. Admittedly, current recom-
mendation system technology focuses on proposing
a ranked list of items and only few works address the
issue of bundling recommendations like for instance
[31]. However, the most recent revision of the
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Questionnaire

General questions
What exactly is the subject of estimation (costs, time, resources)?
Which effort estimation methods do you know and which of them do you apply?
For which kind of company are you working and what is your position?

Dialogue related questions
Are the terms used for the conversation of the recommender system comprehensible?
Which of the terms used require further clarification?
Is the characterization of the project context complete? If not, which impact factors would you like to
be considered in addition?

Perceived quality Do you miss some methods for the specific project context you have characterized?

of obtained results
Is the documentation of the recommended methods adequate?
In which situations is the number of recommended methods insufficient or too big?
Are the proposed recommendations plausible? If not, what would be a plausible explanation?

Perceived usability Would you use the recommendation system for your everyday work? If not, propose what would need
to be improved?

and usefulness Which actions would increase the perceived (1) trust and (2) usefulness in the provided recommendation
application?

TABLE IV.
THE MOST RELEVANT QUESTIONS FROM THE ONLINE QUESTIONNAIRE FOR THE EVALUATION .2

Would you use the recommendation system for your everyday work?
“It is quite interesting to get known to novel methods due to this
application. However, most of the time we use a well-known method
together with a well established process.”
“I will use this recommendation application in any case.”
“Probably, recommendation applications are less suited for software
effort estimation. Those who do estimations on a regular basis
know their methods quite well. Moreover, the number of methods
is manageable. However, there is a need to establish conditions when
a specific method can be applied.”
“In particular, when one is required to estimate large projects with
numerous uncertainties, it is a major benefit to apply several effort es-
timation techniques. In these cases, I plan to use the recommendation
application. A further improvement is the traceability: I can see why
a specific method has been recommended.”
“In my opinion, the recommendation application is asking the ’right’
questions and the recommendations are well explained. However, it is
not very likely that I will use the recommendation application, because
- when applied to our specific project contexts - the system always
recommends the expert judgement method.”

TABLE V.
EXAMPLE RESPONSES.2

Which actions would increase the perceived (1) trust and (2) usefulness
of the recommendation application?
“The recommendation application would be more usable if it would
support inverse search as well, meaning that for a specific method and
a coarsely specified project context the recommendation application
should list the exact preconditions for applying this method.”
“The overview on the responses being provided could be structured in
a better way.”
“In order to improve the quality of the recommendations, the rec-
ommendation application should also incorporate experience that has
been collected over time.”

TABLE VI.
EXAMPLE RESPONSES.2

effort estimation recommender already proposes a set
of at least two suitable methods from two distinct
families of methods. Furthermore, although the
number of estimation methods is fairly manageable
for experienced engineers that perform effort esti-
mation on a regular basis, flexible mechanisms for
navigating the potential solution space are important.
For instance, understanding what parameters of the
project context would have to be changed in order

to be able to apply an alternative estimation method
is a practical requirement. Notably, the example
on applying repair mechanisms (see Subsection IV-
B) with constraint-based recommendation addresses
this aspect. Another perspective in the context of
practical applicability has been pointed out, namely
that particularly in large projects the adoption of
several estimation methods reduces uncertainties and
risks. Therefore this test user confessed to employ
the recommendation system in his/her upcoming
projects.

(2) Completeness and comprehensiveness: The panel
participants reported that the description of the meth-
ods for effort estimation in the WikiWeb improved
the usability of the recommendation application con-
siderably as some of them have been partly unknown
beforehand.

(3) Characterization of project context: Most evalua-
tors considered the characterization of the project
context as satisfactory after the revisions. However,
one project manager noted the explicit considera-
tion of distributed software development projects,
whereas another one raised the (yet unconsidered)
issue of re-usability and third party software. More-
over, a test user pointed out to consider the degree
of experience of the team.

(4) Traceability of recommendations: According to
our test users the provision of the explanation
feature strongly supports the traceability of
recommendations and thus encourages trust in the
provided recommendation and advice.

To summarize the qualitative survey confirmed the utility
and usability of the recommendation systems for software
project effort estimation. Regarding (2) completeness
and comprehensiveness and (4) traceability of recom-
mendations the results showed that evaluators have been
completely satisfied. Furthermore, the (3) characterization
of the project context is considered to be complete -
issues like re-usability and bearing in mind third party
software would further enlarge the scope of applicabil-
ity. Regarding (1) practical applicability, our test users
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explicitly pointed out the usefulness for large software
development projects and - in line with our novel repair
extension presented herein - suggested a feature that al-
lows for finding out the prerequisites for the next powerful
estimation method. 2

VI. DISCUSSION AND CONCLUSION

This paper contributed a knowledge-based recommen-
dation application to the domain of selecting appropri-
ate effort estimation methods for software project man-
agement. Unlike to the mainstream applications in e-
commerce domains we applied the idea of online recom-
mendation for supporting software engineers and software
project managers in selecting appropriate effort estimation
methods. Besides of establishing awareness for the topic
of software estimation (which is particularly important
for fixed price projects), the applied research presented
herein introduces a novel approach for recommendation
of software effort estimation methods. Most notably,
our online recommendation application reasons on hard-
as well as soft constraints representing explicit domain
knowledge. Besides the recommendation model itself,
this article introduces specific extensions like a trans-
parent line of reasoning by providing explanations for
recommended items and flexible interaction opportunities
by offering repair mechanisms for initial user input.

As there is no formalized body of knowledge on soft-
ware effort estimation (we primarily relied on textbooks
and experience) we iteratively developed the knowledge
base. For ensuring its practical applicability we conducted
two primarily qualitative evaluation phases among a panel
of industry practitioners. The article finally reports on the
essential outcomes from these surveys and thus provides
insights to the problem domain of establishing a recom-
mendation system for software engineering professionals.
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