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Abstract— In this paper, we abstract the trust network as a
weighted digraph. A path from node A to node B represents
a transitive trust relationship. Parallel paths between a
source and a target are associated with parallel trusts
respectively. We introduce two measurements for computing
the derived trust degree from a source to a target: Max-
min trust degree and Max-mean trust degree. The Max
operator formalizes the choice among parallel paths. The
min and mean operators compute the transitive trust degree
along a path. We focus on the analysis of the complexity
of computing both kinds of trust degrees. We show that
measuring the max-min trust degree is polynomial, however,
measuring the max-mean one is NP-hard. Then we propose
a matrix-based method to compute the max-mean trust
degree, which can be done polynomially, but may produce
non-simple paths. Finally, we give a simple example of a trust
reputation network to illustrate the matrix-based method.

Index Terms— trustworthy networks, trust transitivity, mea-
surement of transitive trustworthiness, max-min trust de-
gree, max-mean trust degree, NP-hardness

I. INTRODUCTION

Since all kinds of networks are of global internet
working and ubiquitous connectivity, the study of their
trustworthiness becomes more and more important in
recent years. One always wants to know whether the
others are trustworthy or not in the same network. There-
fore, it becomes one interesting topic to compute ones’
trustworthy degree according to the provided information.

In this paper, a trustworthy network can be regarded as
a weighted digraph G = (V,E, τ) where V is the set of
nodes representing agents, E is the set of edges or arrows
which shows the direct trusts and τ is the weight function
from E to the interval [0, 1] and the value τ(u, v), for an
arrow < u, v >, is the (direct) trustworthy degree of node
u over node v. We say that u directly trusts v with the
trust degree τ(u, v). A special case is that τ(u, v) = 0.
For this case, we say that there is no direct trustworthy
relationship, or the trustworthy degree has been forgotten
in a trustworthy network. Below is a simple example of a
trustworthy network which shows the relationship among
six agents.
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Fig.1. A simple example of trustworthy network

We notice that although u does not directly trust v, it
might indirectly trusts v through other nodes. In this sim-
ple example, for instance, we can find a path connecting
node A1 and A3 through node A2. Thus, a path from node
u to node v in a trust network induces a transitive trust
of u over v. Its trustworthy degree completely depends
on weights of all edges along that path.

A. Related Work and Motivation

Some methods for measuring the transitive degree have
been proposed (see [1], [9], [12]).

As documented in [9], USDoD proposes the trusted
computer systems evaluation criteria (TCSEC) in 1985
and two years later, Burrows et al propose the logic called
as BAN-logic to represent trust. In 1993, Yahalom, Klein
and Beth develop a formalism of trust relations between
entities involved in authentication protocols ( [20]). This
trust relation is extended to the case of open networks
by Beth, Borcherding and Klein in 1994 [1]. This model
is called as BBK-scheme. Simmons and Meadows in
[17] propose a model, called as SM-model, for studying
the consequences of additional trust in shared control
schemes. Jøsang in 1996 [8] introduces two types of trust:
passionate and rational. He defines in a passionate entity
trust as the belief that it will behave without malicious
intent and exemplifies BBK-scheme and SM-model. In a
rational entity, however, he defines trust as the belief that
it will resist attacks from malicious agents and exemplifies
BAN-logic and TCSEC.

In 1997, Jøsang [9] analyses these four formal models,
BBK-sckeme, SM-model, BAN-logic and TCSEC with

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010 319

© 2010 ACADEMY PUBLISHER
doi:10.4304/jetwi.2.4.319-325



the purpose of determining their strong and weak sides.
He gives an example to show the weak side of BBK-
scheme for formalism of transitive trust: “ If you tell me
that you trust NN by 100% and I only trust you by 1% to
recommend me somebody, then I also trust NN by 100%”
by using the BBK model for computing the derived trust
V1 � V2 by the following formula,

V1 � V2 = 1− (1− V2)V1

where A trusts B by V1 and B trusts C by V2.
Almost ten years later, Jøsang, Hayward and Pope de-

scribe a method for trust network analysis using subjective
logic (TN-SL) in [12]. They think that the trust network is
consists of transitive trust relationships between people,
organisations and software agents connected through a
medium for communications and interactions. They for-
malize these transitive trust relationships through the trust
paths linking the parties together. The subjective logic
introduced by Jøsang in [8] is a logic for uncertain prob-
abilities using elements from the Dampster-Shafer theory.
In subjective logic, a quadruple ωA

B = (bAB , d
A
B , u

A
B , a

A
B) is

used to express the direct trust of agent A over agent B.
Here b, d and u represent belief, disbelief and uncertainty
respectively, where a, b, u ∈ [0, 1] and a + b + u = 1.
The parameter a ∈ [0, 1] is the base rate. A’s indirect
functional trust in C can then be derived. The derived trust
is defined as ωA:B

C = (bA:B
C , dA:B

C , uA:B
C , aA:B

C ), which is
the discounting operator in [12], by

bA:B
C = bABb

B
C

dA:B
C = bABd

B
C

uA:B
C = dAB + uAB + bABu

B
C

aA:B
C = aBC .

The feature of the subjective logic model is that the
trust is considered as the whole of belief, disbelief and
others. Jøsang et al points out that the effect of discount-
ing in a transitive path is to increase the uncertainty, i.e.,
to reduce the confidence in the expectation value. Since
the belief’s transition subjects to the rule of products, we
think that this transition rule makes the belief degree fall
sharply.

If A trusts B by (0.8, 0.1, 0.1) and B trusts C by
(0.7, 0.2, 0.1), then A will trust C by (0.56, 0.16, 0.28).
If we add further into our example that C trusts D by
(0.8, 0.2, 0), then A will trust D by (0.452, 0.112, 0.336).
In fact, we believe intuitively that A will trust D by the
belief degree around 0.7. We illustrate this intuition with
a security network. We assume that a link between node
A and D consists of three parts: A to B, B to C and
C to D. People often think that this link is secure if and
only if each part from A to D, e.g., part A → B, part
B → C and part C → D, are secure. In other words, the
path security degree should be the same level as the one
each part is.

This consideration leads us to propose a criteria for
transitive trust, which is called controllability.

Definition 1.1: A measurement method for transitive
trust is said to be controllable, if for any trustworthy

network G = (V,E, τ), and for any pair of nodes u and v,
whenever there exists a path p from u to v and weights of
all edges along the path p are greater than a value α, the
transitive trust degree of u over v along that path through
this measurement method is also greater than that value
α.

B. Our Contributions

The contribution of this paper is to propose two con-
trollable measurement methods, Max-min measurement
and Max-mean measurement for transitive trust. The Max
operator will choose the maximal one from parallel paths.
The min operator will define the minimal weight of all
edges along that path as the transitive trust degree. In
the mean operator, the arithmetical average of all weights
along a path denotes the transitive trust degree along this
path. In this paper, we show that measuring the max-min
trust degree is polynomial, however, measuring the max-
mean one is NP-hard. Then we propose a matrix-based
method to compute the max-mean trust degree, which can
be done polynomially, but may produce non-simple paths.

The rest of the paper is organized as follows. In Section
2, we introduce the max-min measurement and show
that it can be computed polynomially. In Section 3, we
introduce the max-mean measurement and prove that
computing the max-mean trust degree is NP-hard. Section
4 proposes the Max-Sum matrix operator to compute
the max-mean trustworthy degrees of paths. Section 5
give a simple example to illustrate the Max-Sum matrix
operator. This example is a trustworthy network with
reputation of agents and experience between agents. This
example shows that the Max-Sum matrix operator might
produce non-simple paths. The conclusions and the future
prospects are followed in section 6.

II. MAX-MINIMUM MEASUREMENT

In this section we will introduce a minimum operator,
to compute the transitive trustworthy degree along a path.
In a minimum operator, we take the minimum weight of
all edges on a path from u to v as the transitive trust
degree of u over v along that path. This degree is called
transitive minimum degree.

Definition 2.1 (Transitive minimum degree): For a
path P = u1u2 · · ·un in a trustworthy network (V,E, τ),
the transitive minimal trustworthy degree, or transitive
min degree shortly, of u1 over un along the path P ,
denoted by εu1,P,un

, is computed as follows:

εu1,P,un
= min{τ(ui, ui+1) | i = 1, . . . , n− 1}.

For parallel paths which have the same source and
target, we take the maximum of transitive min degrees
of all these paths. The maximal min degree of u over v,
denoted by ∆(u, v), is the maximum of transitive min
trustworthy degrees of all paths from u to v, i.e.,

∆(u, v) = max{εu,P,v | P is any path from u to v}.

Clearly, the following proposition is hold.
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Proposition 2.2: The Max-minimum measurement is
controllable.

Here we give a polynomial-time algorithm for comput-
ing ∆(u, v) of any nodes u and v.

Algorithm 1 Computing the max-min degree of s over t.
Array P records the path.

1: δ[s] = 1;
2: P [s] = s;
3: for each vertex i in V − {s} do
4: δ[i] = 0;
5: X = ∅, Y = V ;
6: while Y is not empty do
7: find the vertex u in Y with the maximum δ;
8: X = X + u, Y = Y − u;
9: for each edge (u, i) where i is in Y do

10: if (δ[i] < min{δ[u], τ(u, i)}) then
11: δ[i] = min{δ[u], τ(u, i)};
12: P [i] = u;
13: Print t;
14: repeat . Print the path in a reversed order.
15: Print P [t];
16: t = P [t];
17: until t 6= s

Theorem 2.3: In Algorithm 1, δ[t] equals ∆(s, t), i.e.,
the value of the max-min path from s to t.

Proof: Suppose the vertices moved from Y to X
are ordered by u1, u2, . . . , un. We prove the correctness
by induction on such order.

Since u1 = s, the algorithm is obviously correct for
u1. Suppose the value of the first k vertices entering X is
correct. For the k+1th vertex z, suppose the path based on
the algorithm is P = s, u1′ , u2′ , . . . , ux′ , z. If the correct
path should be P ′ = s, v1, v2, . . . , vy, z, let vp denote the
last vertex appears in P ′. If the algorithm is incorrect,
namely the length of P ′ is larger than the length of P , then
δ[z] = min {δ[ux′ ], τ(ux′ , z)} < min {δ[vy], τ(vy, z)} ≤
min {δ[vp], τ(vp, vp+1)} = δ[vp+1]. So in the k + 1th
round, instead of z, vp+1 should be added to X , which
contradicts our assumption.

Clearly, the complexity is O(V 2 + E).

Since the weights of edges represent trustworthy de-
grees between agents, the greater the weights are, the
more an agent trusts another. Therefore, we can run the
algorithm firstly and ignore those transitive trust degrees
which are lower than the given threshold. However, there
is an alternative method. In the method, we first get the
subgraph G′ from the trust graph G by deleting the edges
whose weights are lower than the given threshold. Then
the algorithm is run on the subgraph G′. The following
proposition guarantees that the two methods return the
same results.

Proposition 2.4: Given the trust graph G and the
threshold, the two methods mentioned above generate the
same results.

Proof: If the transitive trust degree graph between
nodes u and v based on the original is lower than the
threshold, then for all the parallel paths between u and
v, there exists an edge whose weight is lower than the
threshold according to the max-min algorithm. So if we
delete these edges firstly, the transitive trust degree graph
between u and v is 0.

On the other hand, if the transitive trust degree graph
between u and v is higher than the threshold, then there
exists a path that all the edges on the path are higher
than the threshold. So even if we delete the edges whose
weights are lower than the threshold first, the path above
is still saved and the transitive trust degree doesn’t change.

Under the discovery, in order to decrease the number
of edges and increase the algorithm’s efficiency, before
computing the algorithm, we may delete the edges whose
weights are lower than threshold and keep the other pairs
before computing the transitive trust degree. When the
new induced graph is sparse enough, we can get the more
efficient algorithm of time complexity (V +E) log V by
using binary heap to implement the priority queue.

This minimum operator magnifies the importance of
the minimum weight, since those weights greater than
the minimum weight do not contribute to the transitive
minimum degree any more. For example, if A trusts
B by 0.8 and B trusts C by 0.1, then A will trust C
by 0.1 according to the min operator. 0.8 contributes
nothing to the trust of A over C. So, this measurement
is conservative. If we are optimistic then we can choose
the maximum rather than minimum of the weights of all
edges along a path as the transitive trust degree. For the
same example, we can get that A trusts C by 0.8 if we
are optimistic.

In the next section we will introduce another compara-
tively mild algorithm, in which all weights will contribute
to the transitive trust.

III. MAX-MEAN MEASUREMENT

In this section we will introduce the arithmetic average
operator and analyze its complexity.

Mean operator: Mean operator means that the trust
degree of a path is calculated with the geometric or
arithmetic mean of those weights of all edges along that
path. That is, if the length of a path is m and the weight
of each arrow on this path is αi(1 ≤ i ≤ n), then the
trust degree of that path, according to the mean operator,
is either the geometrical mean (α1 ×α2 × · · · ×αn)

1
n or

the arithmetic mean 1
n (α1 + α2 + · · · + αn). These two

operators can be converted into each other through the
exponential function ex and the logarithm function lnx.
So we only consider the arithmetical mean algorithm in
this paper.

Definition 3.1 (Transitive mean degree): For a path
P = u1u2 · · ·un in a trustworthy network (V,E, τ), the
transitive mean trustworthy degree, or transitive mean
degree shortly of u1 over un along the path P , denoted
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by εu1,P,un
, is computed as follows:

εu1,P,un =
1

n− 1

n−1∑
i=1

τ(ui, ui+1).

For parallel paths which have the same source and the
same target, we take the maximum of transitive mean
degrees of all these paths. The maximal mean degree of
u over v, by E(u, v), is the maximum of transitive mean
trustworthy degrees of all paths from u to v, i.e.,

E(u, v) = max{εu,P,v | P is any path from u to v}.

Noting that due to the fact that cycles are of no use in
computing transitive trust degrees, here we only consider
the simple paths in trust transitivity.

Similarly, we can define the minimal transi-
tive mean degree by replacing max with min in
the above formula, which is equal to min{εu,P,v |
P is any path from u to v}.

Clearly, the following is also true.
Proposition 3.2: The Max-mean algorithm has the

controllability.
Given a weighted digraph G = (V,E, τ), we want

to find the maximum transitive mean simple paths of a
graph. This problem is called the maximum mean path
problem. The dual of this problem is the minimum mean
path problem.

The maximal mean paths problem seems similar to
the maximum mean cycle problem proposed by Karp
in 1978 [15]. It has many applications in rate analysis
of embedded systems, in discrete-event system, and of
course, in graph theory (e.g., [4]–[6]). In fact the two
problems are quite different essentially. The maximum
mean cycle problem has polynomial algorithms, yet the
maximum mean path problem is NP-hard, as showed
below.

Proposition 3.3: The max-mean path problem is as
hard as the min-mean path problem.

Proof: The reduction from maximum mean path to
minimum mean path is as follows.

Given a weighted graph G = (V,E, τ) a source vertex
B, we get a new weighted digraph G′ = (V,E, τ ′) as
following:

Let Maximumweight ← 0
For (u, v) ∈ E

If τ(u, v) > Maximumweight then
Maximumweight← τ(u, v)

For (u, v) ∈ E
τ ′(u, v) = Maximumweight− τ(u, v)

Then the maximal mean path of G is exactly the
minimum mean path of G′.

Similarly, we can get the reverse-side reduction.
From above, we claim that minimum mean path and

maximum mean path are equivalently hard.
Theorem 3.4: The min-mean path problem and the

max-mean path problem are NP-hard optimization prob-
lems.

Proof: By the previous proposition, we only need to
show that the minimum mean path problem is NP-hard,

by reducing the Hamilton path problem, which is known
to be NP-Complete, to it.

Given an instance of Hamilton path problem, i.e., a
graph G with n vertices , we set all edges of G to 1 and
add one additional vertex w and a directed edge v → w
with the weight 2 to G, where v is an vertex of G. Then,
we get a new weighted digraph G′ with n + 1 vertices.
Given a vertex u in G, we claim that there is a Hamilton
Path P from u to v in the original graph G if and only
if P ′ = u→ · · · → v → w is the minimum mean path in

the new graph G′ with minimum path mean
n+ 1

n
.

IV. MATRIX-BASED COMPUTING METHOD FOR
MAX-MEAN MEASUREMENT

Due to the NP-hardness of computing the Max-mean
trust degree, we introduce a matrix-based method to
compute it. The method ,however, may produce non-
simple paths.

Given a trustworthy network G = (V,E, τ) with n
vertices, we use the matrix A = (auv)n to represent
relations between vertices with weights in such a way
that

auv =

{
τ(u, v), if < u, v >∈ E
0, otherwise.

we assume that τ(u, v) 6= 0 for each edge (u, v) in this
weighted digraph, i.e., auv 6= 0 if u directly trusts v and
that auv = 0 if u does not directly trust v. We assume
that auu = 0 for each node u of G.

Based on this matrix A, we define a series of matrices
Sk = (skuv)n for max-mean degree inductively as S1 =
A and Sk = A ] Sk−1 in which, for any k ≥ 2,

skuv =

{
0, u = v
max{aur ⊕ sk−1rv | 1 ≤ r ≤ n}, otherwise

where

a⊕ b =

{
0, min{a, b} = 0
a+ b, otherwise

The matrix Sk is computed through sum ⊕ and max-
imum, called Max-Sum operator, similar to the ordinary
sum-product operator of matrices.

By applying mathematical induction on k, we can
easily check that skuv = 0 implies that there is no paths of
length k from u to v. In Max-Sum operators, we always
set skuu = 0 so that self-cycles will not participate in
the next computation step, since we have stated that we
are interested in simple paths. But, the above procedure
still can not remove all cycles in the result (see the next
section).

For Sk, the elements can be greater than 1. We intro-
duce a matrix T k = Sk/k, i.e.,

tkuv = skuv/k.

Thus, tkuv falls down into the interval [0, 1].
Let Mmean = T 1 ∨ T 2 ∨ · · · ∨ Tn−1. Then matrix

Mmean is the matrix of maximal mean transitive trust-
worthy degrees.
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V. SIMULATION

In the paper1, Chen, Zhang and Zhu introduce model
the trustworthy networks as double-weighted digraphs,
which is different to the one presented here. In their
model, there are two key notions: reputation and direct
trust. The reputation describes the node’s social evalu-
ation, and the direct trust describes the experience of
one node over another. Here, we keep the trustworthy
networks as one-weighted digraphs, while we call double-
weighted digraphs as trust-reputation networks.

A trust-reputation network consists of four components
V , E, γ and ε. V denotes the set of vertices. These
vertices can be agents or entities etc.. E is a subset of
V × V representing arrows or edges. These arrows show
the direction of trust. γ is a mapping from V to the
interval [0, 1]. The value γ(v) represents the reputation
(or social) degree of vertex v, which is usually defined by
other vertices within this network. ε is a mapping from
the set E to the interval [0, 1]. If e = (u, v) is an arrow
then ε(e) defines the experience (or direct) degree of u
over v. This degree is often defined by u’self according
to its experience with v.

Both the security network and recommending network
can be modeled as such trust reputation networks. Fig. 2
is a simple example.

Fig.2. A simple trust reputation network.

In Fig.2, there are six agents (A1, A2, · · ·A6) in the
business network. A1 has experiences with A2 and A6, A2

has experiences with A3, and so on. Every agent puts his
reputation public (for example, A1’s reputation is 0.7, that
means his service gets 70% of satisfaction). In addition,
each agent gives his experience degree for the past trades
over the others (For example, A1 thinks the service of
A2 with 20% of satisfaction). Reputation and experiences
become the basis of a new trade. For example, when A1

wants to trade with A6, he will do an overall consideration
of the reputation of A6 and his experience with A6 rather
than only his personal experience with A6. If A1 wants to
do a business with A5, then he could evaluate A5 firstly
by A1 → A2 → A3 → A5 and A1 → A6 → A5.

For the convenience of calculation, actually we can
induce a trust reputation network into an edge-weight
digraph G(V,E, τ) by assigning edges combinations of
the reputation values of nodes and the trust values of

1Yixiang Chen, Min Zhang and Hong Zhu. A Model of Trustworthy
Networks, Manuscript, East China Normal University, August, 2007.

edges. For example, for every edge e = (u, v) we define
the product τ(e) = γ(v)×ε(e) and the linear combination
τ(e) = α1 × γ(v) + α2 × ε(e) with the coefficients
(α1, α2) such that α1 + α2 = 1. We can adjust the
values of the coefficients α1 and α2 to show which one is
important for this combination. For example, if we take
α1 = 3/4 and α2 = 1/4 then we express the idea that
the reputation is more important than the experience. In
addition, α1 = α2 = 1/2 represents the reputation and the
trust are equally important. Actually, Fig. 1 is the induced
trustworthy digraph-(3/4, 1/4) from Fig. 2.

Based on figure 1, the min operator tells us that the
transitive trust degree of A1 over A5 along the path
A1A6A5 is 0.63, whilst one along the path A1A2A3A5
is 0.5. According to the Max-min measurement method,
A1’s transitive trust degree over A5 is 0.63.

In the following, we will illustrate how to compute the
max-mean trust degrees of Fig. 1 by the matrix based
method.

A. Max-Sum Matrix operator

According to Max-Sum matrix operator and Figure 1,
we have

S1 =


0 0.50 0 0 0 0.75
0 0 0.60 0 0 0
0 0 0 0 0.63 0

0.68 0 0 0 0 0
0 0 0 0.68 0 0

0.65 0 0 0 0.63 0



S2 =


0 0 1.10 0 1.38 0
0 0 0 0 1.23 0
0 0 0 1.31 0 0
0 1.18 0 0 0 1.43

1.36 0 0 0 0 0
0 1.15 0 1.31 0 0



S3 =


0 1.90 0 2.06 1.73 0
0 0 0 1.91 0 0

1.99 0 0 0 0 0
0 0 1.78 0 2.06 0
0 1.86 0 0 0 2.11

1.99 0 1.75 0 2.03 0



S4 =



0 0 2.50 2.41 2.78 0
2.59 0 0 0 0 0

0 2.49 0 0 0 2.74
0 2.58 0 0 2.41 0
0 0 2.46 0 0 0

0
2.55

2
0 2.71 2.38 0



S5 =



0 3.30 0 3.46 3.13 0
0 0 0 0 0 3.34
0 0 0 0 0 0
0 0 3.18 0 3.46 0
0 3.26 0 0 0 0

0 0
3.15

2
3.06 3.43 0


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In these matrices, the notation
α

2
means that there are

two paths and the largest sum is α. For example, in the

matrix S4, s46,2 =
2.55

2
shows that there are two paths

of length 4 from node A6 to A2 and the maximal sum is
1.38. These paths can be recorded. In fact, these two paths
are A6A1A6A1A2 and A6A5A4A1A2. Their weight sums
are 2.49 and 2.55, respectively. Transitive mean degrees
of A6 over A2 along these two paths are 0.623 and 0.638,
respectively. The maximum mean degree is 0.638 and its
corresponding path is the second one: A6A5A4A1A2. The
other path includes a cycle A6A1A6A1. This algorithm
does not remove this cycle. So, this algorithm does
not guarantee removing all non-simple paths. But it is
polynomial.

Here is the matrices T k defined by Sk/k before.

T 1 =


0 0.50 0 0 0 0.75
0 0 0.60 0 0 0
0 0 0 0 0.63 0

0.68 0 0 0 0 0
0 0 0 0.68 0 0

0.65 0 0 0 0.63 0



T 2 =


0 0 0.55 0 0.69 0
0 0 0 0 0.62 0
0 0 0 0.66 0 0
0 0.59 0 0 0 0.72

0.68 0 0 0 0 0
0 0.58 0 0.66 0 0



T 3 =


0 0.63 0 0.69 0.58 0
0 0 0 0.64 0 0

0.66 0 0 0 0 0
0 0 0.59 0 0.69 0
0 0.62 0 0 0 0.70

0.66 0 0.58 0 0.68 0



T 4 =


0 0 0.63 0.60 0.70 0

0.65 0 0 0 0 0
0 0.62 0 0 0 0.69
0 0.65 0 0 0.60 0
0 0 0.62 0 0 0
0 0.64 0 0.68 0.60 0



T 5 =


0 0.66 0 0.69 0.63 0
0 0 0 0 0 0.67
0 0 0 0 0 0
0 0 0.64 0 0.69 0
0 0.65 0 0 0 0
0 0 0.63 0.61 0.69 0


The matrix Mmean, i.e., the matrix of maximal mean

transitive trustworthy degrees, is

Mmean =


0 0.66 0.63 0.69 0.70 0.75

0.65 0 0.60 0.63 0.62 0.67
0.66 0.62 0 0.66 0.63 0.69
0.68 0.65 0.64 0 0.69 0.72
0.68 0.65 0.62 0.68 0 0.70
0.66 0.64 0.63 0.68 0.69 0


The matrix tells us that this digraph in Figure 1 is

connected. That means, any pair of vertices has transi-

tively trustworthy. The maximal average transitive trust
degree of Au over Av is the value muv of matrix Mmean.
For instance, A1 trusts A4 with the maximal average
transitive trust degree of 0.69 and the corresponding path
is A1A6A5A4.

VI. CONCLUSIONS AND FUTURE PROSPECTS

In this paper, we abstract the trustworthy network as
weighted digraphs and the transitive trustworthy relation-
ship as the paths in the weighted digraph. We propose two
algorithms, Max-min algorithm and Max-mean algorithm,
to measure the transitive trustworthiness. In the paper, we
prove that the Max-Mean algorithm is NP-hard. Recently,
Zhu, Wang and Zhou shew that it is impossible to find
an approximately optimal solution which is close to the
exactly optimal solution to the Max-mean path problem in
polynomial time2. Of course, we can use some heuristics
to deal with the max-mean path problem, as what we pro-
posed in this paper. It is valuable that these measurements
can be used to solve practice issues (e.g., [18], [21]).
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