
Harold Boley
National Research Council Canada, Institute for Information Technology, Fredericton, NB, Canada

Email: Harold.Boley AT nrc.gc.ca

Abstract— POSL is a Semantic Web language for knowledge
interchange, reconciling Horn logic’s positional and F-logic’s
slotted formulas for representing facts and rules on the
Web, optionally referring to RDFS or OWL classes for
order-sorted typing. The POSL semantics directly enhances
Herbrand models for n-ary relations by accommodating
slotted clause instantiation and ground equality, further
restricted through signatures and types. Webizing uses IRIs
in the IETF form of N3 for individuals, relations, slots, and
types. Webized atoms further permit the representation of
F-logic objects and RDF descriptions as anchored slotted
facts enhanced by rules. All POSL notions are exemplified
using an e-Business use case in logistics. The online trans-
lator from POSL to OO RuleML and POSL engine OO
jDREW have enabled Semantic Web applications in business
information integration, touristic planning, and distributed
expert/symposium/wellness profile querying.

I. INTRODUCTION

This article explores the design, syntax, semantics,
implementation, and e-Business application of integrated
positional and slotted knowledge using the POsitional-
SLotted (POSL) language. POSL integrates the positional
knowledge representation supported by pure Prolog re-
lations and XML elements with the slotted knowledge
representation supported by Frame-logic (F-logic) objects
[1], [2] and RDF descriptions [3]. This facilitates inte-
grated knowledge representation, which is often needed,
particularly on the Semantic Web. Integration is done
by a cross-fertilizing reconstruction of the notions of
‘relation’ and ‘object’ from their shared components. For
example, POSL permits IRIs in the style of Notation 3
(N3) [4] for naming all language elements. POSL is a
very-high-level specification and interchange language for
relational/object-centered (e-Business) facts and rules, as
exemplified here for a logistics use case. Facts correspond
to relational tuples and rules generalize SQL views,
together constituting the deductive database foundation of
e-Business. F-logic extensions of such facts and rules pro-
ceed from relational to object-centered databases, hence to
UML and MOF (e-Business) software specification. For
F-logic objects and all other language constructs, IRIs
permit “webizing” [http://www.w3.org/DesignIssues/Webize.html],
which is central to the Semantic Web and its e-
Business use. Semantic Web rules thus in the short

Thanks to Marcel Ball for the initial POSL translators, ANTLR
grammar, and OO jDREW implementation, and to David Hirtle for the
initial RuleML XSD, Schematron, and XSLT specification. This research
was partially supported by NSERC.

term will leverage the success of Business Rules
[http://www.businessrulesgroup.org/brmanifesto.htm] and in the long
term will leverage the success of Web Services for e-
Business. Such motivation was also decisive for W3C’s
Working Group developing the Rule Interchange Format
(RIF) [5], for which RuleML and POSL were major
inputs.

Experience with the development of Semantic Web
languages such as OWL [6] and RIF has shown the many
advantages of studying expressive classes and formal se-
mantics using a ‘human-oriented’ syntax layer above the
XML level. Also, as pioneered by N3, a concise non-XML
ASCII syntax is very useful in developing knowledge
bases, which can then be parsed into some much more
tedious XML markup such as RDF/XML for (distribution
and) processing through the multitude of XML-aware
tools. The same principles underlie RIF, although its
Presentation Syntax is somewhat provisional [5]. For new
Semantic Web languages this reinforces what has been
similarly known in the Lisp community for decades – that
a structured syntax (Lisp expressions or XML elements)
and a concise syntax should be co-designed with a pair
of translators permitting smooth transitions between the
two. This article is based on the pair RuleML↔POSL,
whose evolving components are supported by translators
[http://www.ruleml.org/posl/converter.jnlp] for combining ‘deep’
(XML) markup with a ‘shallow’ (ASCII) shorthand, on-
line. These being in place, we can look at the design
issues below.

Knowledge representation (KR) languages have been
developed, with limited time and cross-fertilization, to
cover the following Semantic Web design space: Object-
centered resource instance descriptions via binary prop-
erties (RDF), taxonomies over resource classes and prop-
erties (RDFS), description logic with class-forming op-
erations and class/property axioms (OWL), as well as
derivation, integrity, transformation, and reaction rules
(RuleML). At the bottom of, or combined with, these
languages, different kinds of (binary, n-ary) ground facts
have been used besides database tuples for representing
instances. On top of, or again combined with, these
languages, query languages have been defined. Integra-
tions of various of these languages have been developed,
including the combination of object-centered descriptions
and rules (N3, OO RuleML) as well as description
logic and rules (Description Logic Programs, SWRL).
These language integrations can help with information

Integrating Positional and Slotted Knowledge on
the Semantic Web

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010 343

© 2010 ACADEMY PUBLISHER
doi:10.4304/jetwi.2.4.343-353

integration on the Web such as mapping object-centered
representations to positional ones. The POSL research
has explored this design space and introduced orthogonal
(‘decoupled’) dimensions for systematic Semantic Web
language development. The orthogonal design has al-
lowed us to incorporate most of the above notions in such
a way that they can be used and revised independently
from each other.

Two language families that predated the (Semantic)
Web, yet have been very useful for it, are positional
languages based on Horn logic such as pure Prolog (or
Datalog when based on function-free Horn logic), and
slotted languages with object-centered instance and class
descriptions plus rules as in F-logic [1], [2]. Both have
concise ASCII syntaxes, elegant semantics, and decent
computational properties. Since these positional and slot-
ted styles are often needed conjointly in the XML&RDF
Web, they have been integrated in POSL. Prolog and F-
logic can be given additional XML syntaxes, and adapted
to the Semantic Web by webizing key language elements
via URIs as well as permitting modular and distributed
knowledge bases. In POSL, the integrated XML syntax
is OO RuleML, and integrated webizing is done in the
style of N3 for all language elements. The POSL syntax
is given in appendix .

Based on projects at NRC and UNB, we will exemplify
all POSL notions through an e-Business use case in
logistics. Without the POSL layer available above the
XML level, it would not have been possible to complete,
in a timely fashion, the development cycles of Web appli-
cations such as the New Brunswick Business Knowledge
Base [7] [http://www.ruleml.org/usecases/nbbizkb], eTourPlan [8]
[http://www.ruleml.org/usecases/etourplan], as well as FindX-
pRT [9] [http://www.ruleml.org/usecases/foaf/findxprt], Sympo-
siumPlanner [10] [http://www.ruleml.org/SymposiumPlanner], and
WellnessRules [11] [http://www.ruleml.org/WellnessRules].

II. THE POSITIONAL/SLOTTED SPACE FOR FACTS AND
QUERIES

Positional and slotted KR both have advantages for
various tasks in the Semantic Web, hence in POSL are
reconstructed in a design space with orthogonal dimen-
sions, also allowing for various combined and extended
forms. The arguments of n-ary relations and objects can,
independently, be ordered or unordered, keyed or unkeyed
(we always allow arguments to repeat):

unkeyed keyed
unordered basinal slotted
ordered positional notched

The ‘secondary diagonal’ (‘slash’) cells, positional =
ordered + unkeyed and slotted = unordered + keyed, are
more common, hence will be focused here; the ‘main
diagonal’ (‘backslash’) cells, basinal = unordered + un-
keyed and notched = ordered + keyed, will also be useful.

Beginning with our logistics use case, a 4-ary relation
shipment can represent the shipping of some cargo, e.g.
PCs, at a price, e.g. $47.5, from a source, e.g. the Boston

Museum of Science (BostonMoS), to a destination,
e.g. the London Science Museum (LondonSciM). The
corresponding shipment relationships (atoms) can be
represented in all notations discussed in section I, hence
are used to illustrate the POSL design space.

Positional notations have been used, intuitively, for
ordered sequences of objects: In mathematics (hence in
physics, chemistry, etc.), for n-tuples and for the argu-
ments to n-ary functions etc.; in logics, KR, database,
and programming languages, for the arguments to n-ary
functions and relations (predicates); in XML, for child
elements within a parent element; as well as in RDF, for
Sequence containers with ordered rdf:li children.

For example, our 4-ary shipment relation can use the
cargo, price, source, and destination directly as arguments,
in that order. Corresponding shipment atoms can be
represented as 4-tuples, 4-ary Datalog facts, etc.

For this, POSL uses a Prolog-like syntax, e.g. obtain-
ing the following two ground facts (constants may be
symbols, with a lower-case or upper-case first letter, or
numbers):

shipment(PC,47.5,BostonMoS,LondonSciM).
shipment(PDA,9.5,LondonSciM,BostonMoS).

Slotted notations have been used, intuitively, for un-
ordered sets of attribute-value pairs: In mathematics, for
arc-labeled graphs and finite maps; in frame and feature
logics, for molecular formulas and feature terms; in KR,
database, and programming languages, for records and
object-centered binary relations; in XML, for attributes
within start tags; as well as in RDF, for resource descrip-
tions via properties.

For example, the above positional 4-ary shipment
relation can also be conceived in a slotted manner, where
slot names such as cargo identify the roles of the
arguments and their order becomes irrelevant. Corre-
sponding shipment atoms can then be represented as
object-centered database nodes, frame logic facts, etc. by
pairing slot names such as cargo, price, source, and
dest(ination) with their slot fillers such as PC, 47.5,
BostonMoS, and LondonSciM, respectively.

For this, POSL uses an F-logic-inspired syntax, now
obtaining these facts (“name->filler” slots are separated
by a “;” infix, indicating unorderedness):

shipment(cargo->PC;
price->47.5;
source->BostonMoS;
dest->LondonSciM).

shipment(cargo->PDA;
price->9.5;
source->LondonSciM;
dest->BostonMoS).

Positional-slotted notations have also been used com-
bined, e.g., in Lisp, for obtaining the benefits of both KR
methods.

For example, the above 4-ary shipment relations can
be split and recombined in a positional-slotted manner,

344 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

where a positional part is followed by a slotted part.
The first two arguments, cargo and price, are rather
self-explaining in the positional notation, but the last two
arguments, source and destination, could be easily
confused, hence are given here explicit slot names in the
combined positional-slotted notation.

For this, POSL uses a Prolog/F-logic-combining syn-
tax, obtaining these facts (the “,” infix has precedence
over the “;” infix):

shipment(PC,47.5;source->BostonMoS;
dest->LondonSciM).

shipment(PDA,9.5;source->LondonSciM;
dest->BostonMoS).

Existing relations such as shipment may later
require enhancement by further information such as a
starttime and endtime, which may be given for
just some of its atoms. Instead of extending positional
or positional-slotted atoms by further arguments in an
ordered, positional manner, it is often preferable to
add arguments in an unordered, slotted manner. An
extension with slots allows to confine changes to the
affected atoms only, rather than positionally extending
all atoms of a relation either with proper values (e.g.,
when starttime and endtime are given) or with
null values for ‘padding’ (e.g., when starttime or
endtime are missing).

Structures and plexes go beyond the Datalog
language considered so far by introducing constructor
functions. Our above three notations are also possible
for a (Prolog-like) structure applying a constructor
to arguments. For example, a binary structure can
describe a pair of stakeholders as follows (using
“[. . .]” for constructor applications): the positional
stakepair[PeterMiller,SpeedShip], the slotted
stakepair[owner->PeterMiller;shipper->SpeedShip],
and the unordered and partially unkeyed, partially keyed
stakepair[PeterMiller;shipper->SpeedShip].
Similarly, a plex can be written as the special case
of a constructorless structure, which is equivalent to
the explicit application of the constructor plex. In
the example, this changes our stakeholder pairs thus:
the Prolog-like list [PeterMiller,SpeedShip],
the F-logic-frame- or Lisp-association-list-inspired
[owner->PeterMiller;shipper->SpeedShip],
and the unordered and partially unkeyed/keyed
[PeterMiller;shipper->SpeedShip], which
are understood as plex[PeterMiller,SpeedShip],
plex[owner->PeterMiller;shipper->SpeedShip],
and plex[PeterMiller;shipper->SpeedShip],
respectively.

Empty and singleton atoms and structures (and
plexes), having neither a “,” nor a “;” infix, are neu-
tral w.r.t. the ordered/unordered distinction. Empty atoms
and structures (and plexes) are also neutral w.r.t. the
keyed/unkeyed distinction.

Let us first consider unkeyed singleton exam-
ples. In the singleton atom busy(PeterMiller),

the single argument PeterMiller occurs order-
neutrally; the atom can be used to assert the fact
that Peter Miller is busy. The singleton structure
stakeholders[PeterMiller] is an order-neutral
special case (n=1) of applying an n-ary stakeholders
generalization of the binary stakepair construc-
tor. Similarly, the singleton plex [PeterMiller]
is order-neutral, unlike its ordered and unordered bi-
nary extensions [PeterMiller,SpeedShip] and
[PeterMiller;SpeedShip], respectively.

Likewise, here are empty examples. The order- and
keying-neutral empty atom workday() can be used to
assert the fact that it is currently a workday, the order-
and keying-neutral empty structure stakeholders[]
applies the n-ary stakeholders constructor with a
degenerate arity (n=0), and the order- and keying-neutral
empty plex [] is useful as a base case in (recursive)
plex processing.

Non-ground formulas contain at least one variable
argument, interpreted as universally quantified in facts
and as existentially quantified in queries. They are
allowed for all three notations. However, variables are
not permitted as slot names in (First-Order) POSL
since there would no longer be a unique most general
unifier, so non-determinism would already arise during
the unification phase of resolution. Variables can be
named or anonymous. Named variables are prefixed
by a “?”; the anonymous variable is written as a
stand-alone “?”. For example, for the earlier positional
PC-shipment ground fact, the non-ground query
shipment(PC,?,BostonMoS,?goal) succeeds,
unifying the anonymous “?” with 47.5 and binding
?goal to LondonSciM.

Rest arguments are permitted in atoms, one for posi-
tional arguments and one for slotted arguments. Positional
arguments are separated from a positional rest by a “|”;
slotted arguments are separated from a slotted rest by a
“!”. In both cases the rest itself is normally a variable,
enabling a varying number of arguments, thus making
an atom polyadic – the fixed-arity/polyadic distinction
being orthogonal to the positional/slotted distinction. In
particular, the anonymous variable can be used as a
positional or slotted “don’t care” rest. A slotted “don’t
care” rest “!?” makes an option from F-logic’s fixed
convention: to tolerate arbitrary excess slots in either
formula (e.g., a fact), having slot names not used by
any slot of the other (“!?”-)formula (e.g., a query), for
unification.

For example, for the earlier slotted PC-shipment fact,
the query

shipment(cargo->?what;price->?;
source->BostonMoS;dest->?goal)

succeeds, binding ?what to PC and ?goal to
LondonSciM. However, the query

shipment(owner->?who;cargo->?;price->?;
source->BostonMoS;dest->?)

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010 345

© 2010 ACADEMY PUBLISHER

fails because of its excess slot named owner. Similarly,
the query

shipment(cargo->?what;
source->BostonMoS;dest->?goal)

fails because of the fact’s excess slot named price. On
the other hand, the query with the slotted “rest don’t care”
combination “!?”

shipment(cargo->?what;
source->BostonMoS;dest->?goal
!?)

again succeeds with the initial bindings, since “!?”
anonymously unifies the price slot (independently of
where it occurs in the fact).

Conversely, the earlier fact would tolerate excess query
slots such as in the above owner query after ‘opening it
up’, non-ground, via an anonymous rest:

shipment(cargo->PC;price->47.5;
source->BostonMoS;
dest->LondonSciM
!?).

If the query also contains an anonymous rest, both it
and the fact can contain excess slots, as in

shipment(owner->?who;cargo->?what;
source->BostonMoS;dest->?goal
!?)

which succeeds with the initial bindings, since the anony-
mous query rest unifies the fact’s price slot and the
anonymous fact rest unifies the query’s owner slot,
leaving the variable ?who free, and the querier agnostic
about the owner.

If anonymous rest slots are employed in all formulas,
the effect of F-logic’s implicit rest variables is obtained.
The more precise, “!”-free slotted formulas can enforce
more restricted, ‘closed-off’ unifications where needed.

In general, “|” and “!” rests can follow after zero
or more fixed positional and slotted arguments, and can
unify the zero or more remaining arguments. Before being
bound to a variable, such a polyadic rest e1, . . . , eZ or
s1 → f1; . . . ; sZ → fZ is made into a single plex
[e1, . . . ,eZ] or [s1->f1; . . . ;sZ->fZ], respectively.

Using both kinds of rests, we give below the most
general forms of ordered/unordered, keyed/unkeyed atoms
(1) and structures (2). Here, the oi and ui arguments are
ordered and unordered, respectively, and can either be
keyed (having the form si->fi) or unkeyed (having any
other form). The positional-slotted forms are the common
special case where exactly the ui arguments are keyed
and exactly the oi arguments are unkeyed. The equation
right-hand sides show normal forms with all unordered
arguments to the right of all ordered arguments (for
positional-slotted, all slots to the right of all positionals):

r(u1; . . . ; uL; o1, . . . , oM |Vo; uL+1; . . . ; uN !Vu) =
r(o1, . . . , oM |Vo; u1; . . . ; uL; uL+1; . . . ; uN !Vu) (1)

c[u1; . . . ; uL; o1, . . . , oM |Vo; uL+1; . . . ; uN !Vu] =
c[o1, . . . , oM |Vo; u1; . . . ; uL; uL+1; . . . ; uN !Vu] (2)

The semantics of POSL clause sets will be based on
slotted (positional-slotted etc.) extensions to the positional
(here, LP [12]) notions of clause instantiation and ground
equality (for the model-theoretic semantics) as well as
unification (for the proof-theoretic semantics).

With slot names assumed to be non-variable symbols,
slotted instantiation can recursively walk through the
fillers of slots, replacing any variables encountered with
their dereferenced values from the substitution (environ-
ment).

Since POSL uses no implicit rest variables, slotted
ground equality can recursively compare two ground
atoms or structures after lexicographic sorting – w.r.t. the
slot names – of the slotted elements encountered.

Since POSL uses at most (one positional and) one
slotted rest variable on each level of an atom or structure,
slotted unification can perform sorting as in the above
slotted ground equality, use the above slotted instantiation
of variables, and otherwise proceed left-to-right as for
positional unification, but pairing up identical slot names
before recursively unifying their fillers, while collecting
excess slots on each level in the plex value of the
corresponding slotted rest variable.

III. HORN-LIKE RULES TYPED VIA RDFS OR OWL
CLASSES

On top of positional and slotted facts, and in the same
integrated manner, POSL offers Horn-like rules for infer-
ential tasks in the Semantic Web. Facts are interpretable
as clauses that are degenerated (premiseless) rules, which
in POSL can be naturally extended to clauses that are
full-blown (premiseful) rules.

Extending the logistics use case, a ternary relation
reciship can represent reciprocal shippings of
unspecified cargos at a total cost between two sites.
A Datalog rule infers this conclusion from three
premises, two shipment atoms and an add atom. The
shipment relation was defined in section II and the
add relation is based on a SWRL built-in satisfied here
iff the first argument is equal to the sum of the second
and third arguments.

Positional rules are the usual Horn rules, in POSL
written using a Prolog-like syntax, but again employing
“?”(-prefixed) variables as, e.g., in Jess, N3, and Common
Logic. In the reciship example, the following Datalog
rule is obtained (the “:-” infix, for “⇐”, has lowest
precedence):

reciship(?cost,?A,?B) :-
shipment(?,?cost1,?A,?B),
shipment(?,?cost2,?B,?A),
add(?cost,?cost1,?cost2).

The query reciship(?total,BostonMoS,?)
uses the rule to itself query the corresponding shipment
facts and call the add built-in, binding ?total to 57.0.

346 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

The rule could be chained to from the body of an-
other positional rule, e.g., reciBosLon(?total) :-
reciship(?total,BostonMoS,LondonSciM).

With types Float and Address for the head as well
as additional Product and Float types for the extra
anonymous and ?cost-named body variables, defined
as RDFS or OWL classes (e.g., as in section V), the
above reciship rule becomes fully typed as follows
(we use the N3/Turtle-like double up-arrow/hat infix “ˆˆ”
between a variable and its type, which, applied once,
holds for all of its occurrences in a clause):

reciship(?costˆˆFloat,
?AˆˆAddress,?BˆˆAddress)

:-
shipment(?ˆˆProduct,?cost1ˆˆFloat,?A,?B),
shipment(?ˆˆProduct,?cost2ˆˆFloat,?B,?A),
add(?cost,?cost1,?cost2).

Slotted rules are much like in F-logic. The reciship
relation is redefined here in a slotted manner with slot
names price, site1, and site2, where two ‘indexed’
site slots are used. Analogously, the positional add
relation could be made slotted via extra slot names sum,
addend1, and addend2:

reciship(price->?cost;site1->?A;site2->?B)
:-
shipment(cargo->?;price->?cost1;

source->?A;dest->?B),
shipment(cargo->?;price->?cost2;

source->?B;dest->?A),
add(sum->?cost;addend1->?cost1;

addend2->?cost2).

Notice that the slot name price occurs here both in
the relation shipment, for elementary costs, and in the
relation reciship, for an aggregated cost. Similarly,
while the dest slot in the shipment relation is of
type Address, a slot with the same name in a flight
relation could have type AirportCode. Such ‘overload-
ing’ is caused by slot names, except when ‘webized’
(cf. section V), being local to their relations much like
property restrictions are local to their class descriptions
in OWL.

Now, the request

reciship(site1->BostonMoS;price->?total;
site2->LondonSciM)

through

reciship(price->?total;site1->BostonMoS;
site2->LondonSciM)

the lexicographically sorted normal form, queries the
slotted rule, which itself queries corresponding clauses,
again binding ?total to 57.0. The original query could
be chained to from the body of another slotted rule, e.g.
having the head reciBosLon(price->?total).

The above rule can again use variable typing:

reciship(price->?costˆˆFloat;
site1->?AˆˆAddress;
site2->?BˆˆAddress)

:-
shipment(cargo->?ˆˆProduct;

price->?cost1ˆˆFloat;
source->?A;dest->?B),

shipment(cargo->?ˆˆProduct;
price->?cost2ˆˆFloat;
source->?B;dest->?A),

add(sum->?cost;addend1->?cost1;
addend2->?cost2).

Positional-slotted rules use at least one positional and
one slotted relation as the conclusion or some of the
premises, or use at least one positional-slotted relation
as the conclusion or some of the premises. For instance,
to avoid the ‘indexed’ slot conventions/assumptions in
the slotted rule above, a positional-slotted rule can be
positional for the conclusion and the add premise, and
can be slotted for the shipment premises:

reciship(?cost,?A,?B) :-
shipment(cargo->?;price->?cost1;

source->?A;dest->?B),
shipment(cargo->?;price->?cost2;

source->?B;dest->?A),
add(?cost,?cost1,?cost2).

The semantics of slotted and positional-slotted clause
sets can be defined on top of the semantic basis for atoms
and structures in section II. Since on the level of clauses
all three notations have the same interpretation, the
treatment in section II naturally extends to slotted (and
positional-slotted) generalizations of positional (LP [12])
clauses. The further semantic treatment via Herbrand
models and resolution proof theory directly follows the
one for the positional notation [12]. The semantics of
typing (sorts) could be given directly but can also be
reduced to the unsorted case in a well-known manner:
All occurrences of a sorted variable are replaced by
their unsorted counterparts plus a body-side application
of a sort-encoding unary predicate to that variable
(sorted facts thus become unsorted rules); moreover, the
definition of the unary predicate reflects the subsumption
relations of the sort taxonomy via rules.

The implementation of POSL for slotted and
positional-slotted clauses, called OO jDREW, has
followed the semantics via an extension of the Java-
based jDREW interpreter [13]; it is available via Java Web
Start and for full download [http://www.jdrew.org/oojdrew]. In
OO jDREW, as in sorted Prologs, the implementation
of typing was performed directly (without the above
reduction) using RDFS as the Web taxonomy language
to define the sort lattice via subClassOf.

All the applications of POSL mentioned in section I
have used its OO jDREW implementation.

IV. SIGNATURES

POSL uses optional signature declarations, particu-
larly to help with knowledge base integration in Web-
distributed development. Signatures can equip arguments

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010 347

© 2010 ACADEMY PUBLISHER

with slots and types, which, as will be shown in section V,
may refer to classes defined in a Web taxonomy language
such as RDFS or OWL DL.

A signature declaration has the form of a fact except
that an “*” instead of a “.” is used as the terminator.
For any relation, zero or more signature declarations
are permitted, which conjointly constrain the relation’s
applicability.

For our positional facts, a signature can be declared
to specify their arity (implicitly, 4) and argument types
(“?ˆˆ” is used as a type ‘prefix’) as follows:

shipment(?ˆˆProduct,?ˆˆFloat,
?ˆˆAddress,?ˆˆAddress)*

For the slotted and positional-slotted facts, signatures
can be declared thus (all or some “,” infixes are replaced
by “;”):

shipment(cargo->?ˆˆProduct;
price->?ˆˆFloat;
source->?ˆˆAddress;
dest->?ˆˆAddress)*

shipment(?ˆˆProduct,
?ˆˆFloat;
source->?ˆˆAddress;
dest->?ˆˆAddress
!?)*

The left-hand, slotted signature gives slots and filler
types to all of its arguments (no excess slots will be
tolerated because of the absence of “!?”). The right-hand,
positional-slotted signature specifies its positional as well
as its slotted arguments (without “|?” not tolerating ex-
cess positional arguments but with “!?” tolerating excess
slots). In both signatures the same type ?ˆˆAddress
now occurs in two differently named ‘roles’, for the
source and dest slots.

Signature declarations are also allowed for a relation
defined by a clause set containing rules, for the heads of
which they again specify slot names and argument types,
as for facts. Signatures that themselves have the form of
rules, where all signature rules of a relation must unify
and succeed, are currently not allowed.

The semantics of POSL signatures is that of filters over
a candidate model’s ground facts having the same relation
name: Only ground facts unifying, order-sorted, with all
of their signatures will stay in the model.

V. WEBIZING INDIVIDUALS, RELATIONS, SLOTS,
AND TYPES

The POSL language elements of individuals (and con-
structors), relations, slots, and types can be webized, and
generally can be endowed with IRIs. Different occur-
rences of the same language element can thus be disam-
biguated by giving them different IRIs. Since it concerns
language elements wherever they occur, POSL webizing
is orthogonal to the positional/slotted distinction.

First, we distinguish two kinds of character sequences
that have the form of IRIs in the POSL KR lan-
guage: An active IRI, meant to identify a resource
(the usual case), is enclosed in a pair of angular
brackets, <. . .>, following IETF’s generic URI syn-
tax [http://gbiv.com/protocols/uri/rev-2002/rfc2396bis.html] and N3
[http://www.w3.org/2000/10/swap/Primer]; a passive IRI, meant to
stand for itself as a string (the unusual case), is enclosed
in a pair of double quotes, ". . .", exactly as other strings
in POSL or in other languages. XML namespace prefixes
and local names as well as general QNames can then be
expressed via variables bound to active IRIs (although
XML applications like XSLT and RDF use ". . ." or
even ’. . .’ for what is here called active IRIs). While
whitespace (e.g., any line-break) is ignored in (e.g., long)
active IRIs, it of course counts in strings.

A symbolic POSL language element occurrence
can be associated with an active IRI via symbol-
IRI juxtaposition, generalizing a wide-spread
convention for user-email association as in "Fred
Bird"<mailto:sales@sphip.com>. A POSL
element such as the string individual "Fred Bird"
can also be entirely replaced by an IRI, as in the
stand-alone <mailto:sales@sphip.com>.

Webized individuals employ active IRIs in place of,
or in addition to, individual-constant symbols. For ex-
ample, SpeedShip can be associated with an active
IRI for the intended speed shipping company’s home-
page <http://sphip.com> to obtain the following
webized individual:

SpeedShip<http://sphip.com>

Our 4-ary positional shipment fact from section II
can now be extended by a shipping company as the first
argument of a 5-ary fact using one of three options.

(1) The individual symbol SpeedShip itself can be
used, as we did with BostonMoS etc. before webizing:

shipment(SpeedShip,PC,47.5,
BostonMoS,LondonSciM).

(2) The active IRI can be employed in place of the
individual symbol, as practiced in RDF, N3, and other
Web KR languages:

shipment(<http://sphip.com>,...).

(3) The webized individual symbol can be employed, as
defined in RuleML:

shipment(SpeedShip<http://sphip.com>,...).

The same options exist for slotted facts, as exemplified
with the most general option (3), enriched by webized
BostonMoS and LondonSciM individuals:

shipment(shipper->SpeedShip<http://sphip.com>;
cargo->PC;
price->47.5;
source->BostonMoS<http://www.mos.org/

info/contact.html>;

348 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

dest->
LondonSciM<http://www.sciencemuseum.org.uk/

visitors/location.asp>).

Notice that the new positional first argument caused all
former arguments to shift by one, while the new slotted
argument was added without affecting the interpretations
of the existing slotted or any positional arguments (thus
better supporting argument inheritance and distributed
knowledge development).

Webized relations employ active IRIs in place of, or
in addition to, symbolic relation names. For example,
the 4-ary and 5-ary positional shipment relations can
be uniquely distinguished via IRIs pointing to different
signatures:
shipment<http://trans.org/rels/pos/shipment#4>
shipment<http://trans.org/rels/pos/shipment#5>

These webized relations can now be used unambigu-
ously as follows (the shipment symbol in front of the
IRIs could be omitted):
shipment<http://trans.org/rels/pos/shipment#4>

(PDA,9.5,LondonSciM,BostonMoS).
shipment<http://trans.org/rels/pos/shipment#5>

(SpeedShip,PC,47.5,BostonMoS,LondonSciM).

Similarly, 4-ary, 5-ary, and polyadic slotted shipment
relations could be distinguished via IRIs pointing to
different signatures or, for the latter case, to RDFS-
like subPropertyOf information (polyadicity is rep-
resented by an “X”):

<http://trans.org/rels/slot/shipment#4>
<http://trans.org/rels/slot/shipment#5>
<http://trans.org/rels/slot/shipment#X>

Sample uses will be demonstrated in section VI-B.

Webized slots employ active IRIs in place of, as
pioneered by RDF, or in addition to, symbolic slot names.
For example, the shipment slots may be drawn from
IRIs containing fragmentid’s with the original slot names,
except for the charge fragmentid, for which the local
slot name price is kept:
shipment(<http://trans.org/slots/shipment#shipper>

->SpeedShip;
<http://trans.org/slots/shipment#cargo>

->PC;
price<http://ebizguide.org/slots#charge>

->47.5;
<http://track.org/slots/movement#source>

->BostonMoS;
<http://track.org/slots/movement#dest>

->LondonSciM).

Webized types use an IRI reference to an RDFS or
OWL class. For example, the Product type can be
associated with an IRI for the corresponding OWL class:

Product<http://www.daml.org/services/owl-s/
1.0/ProfileHierarchy.owl#Product>

Using this for typing the anonymous variable of our
positional rule in section III, a primitive from XML
Schema Datatypes for its cost-like variables, and a
webized Address type, we obtain the following Web-
typed rule:

reciship(?costˆˆFloat<http://www.w3.org/TR/2001/
REC-xmlschema-2-20010502/#float>,

?Aˆˆ<http://ebizguide.org/types#Address>,
?Bˆˆ<http://ebizguide.org/types#Address>)

:-
shipment(?ˆˆProduct<http://www.daml.org/services/

owl-s/1.0/ProfileHierarchy.owl#Product>,
?cost1ˆˆFloat<http://www.w3.org/TR/2001/

REC-xmlschema-2-20010502/#float>,
?A,?B),

... .

A semantics of webizing, for IRI grounding (or anchor-
ing), has been based on a notion of IRI equality via string
rewriting for normalization [14].

VI. ANCHORED ATOMS FOR OO KNOWLEDGE
REPRESENTATION

Webizing is also possible for entire atoms, as a way of
associating them with Object IDentifiers (OIDs). Gener-
ally, fact atoms can be anchored by an OID (a symbolic
name or an active IRI, possibly prefixed by a symbolic
name) as a special ‘zeroth’ argument separated from
further arguments by a single up-arrow/hat infix “ˆ”:
relation(oidˆarg1...argN). Anchoring uniformly extends
relations to objects.

For example, Fig. 1 shows how the earlier 4-ary posi-
tional and slotted facts (see “%” comments) can now be
anchored using variously webized versions of names like
s1 and s2.

In the same way, rule head and body atoms can
be webized, e.g. for deriving and querying specifically
identified facts.

For example, Fig. 2 shows how the positional and
slotted rules from section III can now be anchored using
versions of the name r1 for the aggregated shipping cost
derivation from the queried reciprocal s1 and s2 facts.

A. F-logic Objects, Nestings, And Restricted ∧-
Composition

Anchored, slotted facts correspond to object descrip-
tions in F-logic, where POSL relations correspond to F-
logic classes. For example, the slotted s1 fact (*) of
Fig. 1 corresponds to this F-logic object:

s1[cargo->PC,price->47.5,
source->BostonMoS,
dest->LondonSciM]:shipment.

Notice that POSL puts the relation name, shipment,
in front of parentheses, as in conventional relational
notation, extended with the Object IDentifier, s1,
in a special argument position, while F-logic object
descriptions put the OID in front of brackets,
“:”-separated from the class name (F-logic signatures
again put the class in front of the brackets).

F-logic’s nesting shorthand for object descriptions
is reflected by n-ary anchored POSL facts through the
following left-to-right-normalizing equations:

r(oidrˆ...; s->q(oidqˆ . . .); ...). =
r(oidrˆ...; s->oidq; ...). q(oidqˆ . . .). (3)

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010 349

© 2010 ACADEMY PUBLISHER

shipment(s1ˆPC,47.5,BostonMoS,LondonSciM). % positional
shipment(<http://sphip.com/event#s2>ˆPDA,9.5,LondonSciM,BostonMoS).
shipment(s1ˆcargo->PC;price->47.5; % slotted

source->BostonMoS;dest->LondonSciM). % (*)
shipment(s2<http://sphip.com/event#s2>ˆ...).

Figure 1. Anchored facts.

reciship(<http://sphip.com/rule#r1>ˆ?cost,?A,?B) :- % positional
shipment(s1ˆ?,?cost1,?A,?B),
shipment(s2ˆ?,?cost2,?B,?A),
add(?cost,?cost1,?cost2).

reciship(r1ˆprice->?cost;site1->?A;site2->?B) :- % slotted
shipment(s1<http://sphip.com/event#s1>ˆ % (**)

cargo->?;price->?cost1;source->?A;dest->?B),
shipment(s2ˆcargo->?;price->?cost2;source->?B;dest->?A),
add(sum->?cost;addend1->?cost1;addend2->?cost2).

Figure 2. Anchored rules.

For example, the PC of our s1 fact (*) can be defined
as an embedded object with an OID s3 carrying its own
value and weight slots:

shipment(s1ˆcargo->PC(s3ˆvalue->2500.0;
weight->17.5);

price->47.5;
source->BostonMoS;
dest->LondonSciM).

According to transformation (3), this shorthand normal-
izes to two anchored, slotted facts:

shipment(s1ˆcargo->s3;
price->47.5;
source->BostonMoS;
dest->LondonSciM).

PC(s3ˆvalue->2500.0;weight->17.5).

While the nested version defines the s3 object within
the s1 object, the unnested version clarifies that the
OID s3 is on the same definition level as s1. Since this
allows (possibly undesired) external access to such an
OID, section VI-B will show how it can be localized as
an anonymous/blank node.

F-logic’s ∧-composition shorthand in POSL is re-
stricted to (non-empty) independent groups of object slots
only, i.e. an anchored rule is decomposable if it can
be partitioned (without loss of generality, after possible
reordering of its slots and body premises) into subrules
that do not share variables in the head, the body, or cross-
wise:

r(oidˆs1->f1; ...; si->fi; si+1->fi+1; ...; sN->fN)
:-

b1, ..., bj , bj+1, ..., bP. =
r(oidˆs1->f1; ...; si->fi) :- b1, ..., bj. (4)
r(oidˆsi+1->fi+1; ...; sN->fN) :- bj+1, ..., bP.

if 1 ≤ i ≤ N − 1 ∧ 0 ≤ j ≤ P

∧ vars({f1, ..., fi}) ∩ vars({fi+1, ..., fN}) = {}
∧ vars({b1, ..., bj}) ∩ vars({bj+1, ..., bP }) = {}
∧ vars({f1, ..., fi}) ∩ vars({bj+1, ..., bP }) = {}
∧ vars({fi+1, ..., fN}) ∩ vars({b1, ..., bj}) = {}

This restriction is similar to the one used for indepen-
dent ∧-parallelism [15], which for the Web’s distributed
object definitions captures those parts of objects that can
be defined independently from other parts. POSL’s inde-
pendent ∧-decomposition permits maximum distribution
of rule-defined objects and seems to resolve an issue with
F-logic’s frame notation mentioned in SWSL discussions
[16].

For example, the slotted s1 fact (*) is ground, hence
is fully decomposable into four facts using three appli-
cations of (4), exactly reflecting F-logic’s shorthand (the
decomposed facts can be ∧-connected within a rulebase
or, if s1 is globally unique, across distributed rulebases):

shipment(s1ˆcargo->PC).
shipment(s1ˆprice->47.5).
shipment(s1ˆsource->BostonMoS).
shipment(s1ˆdest->LondonSciM).

On the other hand, this s4 fact is non-ground and two
slots share a variable:

sightseeingflight(s4ˆpassenger->?x;
price->100;
source->?z;dest->?z).

Hence, s4 is decomposable only in a restricted manner.
Maximally two applications of (4) produce three facts:

sightseeingflight(s4ˆpassenger->?x).
sightseeingflight(s4ˆprice->100).
sightseeingflight(s4ˆsource->?z;dest->?z).

The following refinement into an s5 rule makes the
other two slots dependent, with co-occurring variables in
a relation call:

sightseeingflight(s5ˆpassenger->?x;price->?y;
source->?z;dest->?z) :-

ticket(?pronumberˆpassenger->?x;price->?y).

350 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

Therefore, s5 is maximally decomposable into just
two clauses with a single application of (4), where the
only body premise is kept for the first clause, while the
(implicitly true) empty body is given to the second clause:

sightseeingflight(s5ˆpassenger->?x;price->?y)
:-
ticket(?pronumberˆpassenger->?x;price->?y).

sightseeingflight(s5ˆsource->?z;dest->?z).

Finally, the slotted reciship rule (**) of Fig. 2 is
not decomposable by (4) at all, since there is no variable-
disjoint partition of its body calls and every head variable
also occurs in the body.

B. RDF Descriptions, Blank Nodes, And Rules

RDF descriptions can now be conceived as anchored
slotted facts, in the absence of rdf:type using the null
relation.

If we assume that our 5-ary slotted fact in section V,
by virtue of the shipper slot and other ones, can only
be a shipping relationship, we might omit an rdf:type
for shipments, obtaining the following RDF:

<rdf:RDF
xmlns:rdf=
"http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:s="http://trans.org/slots/shipment#"
xmlns:p="http://ebizguide.org/slots#"
xmlns:m="http://track.org/slots/movement#">
<rdf:Description about=

"http://sphip.com/event#s1">
<s:shipper rdf:resource="http://sphip.com"/>
<s:cargo>PC</s:cargo>
<p:charge>47.5</p:charge>
<m:source rdf:resource=

"http://www.mos.org/info/contact.html"/>
<m:dest rdf:resource=

"http://www.sciencemuseum...location.asp"/>
</rdf:Description>
</rdf:RDF>

This can be represented as a corresponding POSL fact
without a relation name, using webizing also for slot
names and individuals (but not using its analog to names-
pace prefixes, explained in the online POSL document
[http://www.ruleml.org/submission/ruleml-shortation.html]):

(<http://sphip.com/event#s1>ˆ
<http://trans.org/slots/shipment#shipper>->

<http://sphip.com>;
<http://trans.org/slots/shipment#cargo>->PC;
<http://ebizguide.org/slots#charge>->47.5;
<http://track.org/slots/movement#source>->

<http://www.mos.org/info/contact.html>;
<http://track.org/slots/movement#dest>->

<http://www.sciencemuseum...location.asp>).

Symbolic and webized individuals are represented in the
same manner here, so that a symbolic name like PC
can later be replaced by a blank node or an IRI for its
product catalog entry, without changing anything about
the enclosing slot.

To increase type-safeness, the webized
polyadic relation name from section V,
<http://trans.org/rels/slot/shipment#X>,
can now be introduced into the above RDF description
as an rdf:type:

<rdf:RDF
...
<rdf:Description about=

"http://sphip.com/event#s1">
<rdf:type
rdf:resource=
"http://trans.org/rels/slot/shipment#X"/>

...
</rdf:Description>

</rdf:RDF>

Such a resource type is considered here as a relation-
ship type directly applicable, as a relation name, to the
arguments of the corresponding POSL fact:

<http://trans.org/rels/slot/shipment#X>
(<http://sphip.com/event#s1>ˆ
...).

The arity of this POSL fact could be
fixed using the webized 5-ary relation name
<http://trans.org/rels/slot/shipment#5>
from section V instead, thus ‘closing’ this slotted KR.

RDF blank nodes are used for OIDs local to the cur-
rent document. For example, the earlier shipping descrip-
tion can be refined by referring to a local cargo descrip-
tion using the blank node identifier PeterMillerPC as
follows:

<rdf:RDF
...
<rdf:Description about=

"http://sphip.com/event#s1">
...

<s:cargo rdf:nodeID="PeterMillerPC"/>
...

</rdf:Description>
<rdf:Description rdf:nodeID="PeterMillerPC">
<p:value>2500.0</p:value>
<p:weight>17.5</p:weight>

</rdf:Description>
</rdf:RDF>

Based on the RDF semantics of [3] and its development
in [2], this can be represented as the below module of
two facts connected by an existential variable, in POSL
replaced by a Skolem constant PeterMillerPC. Mod-
ules, like N3’s contexts, TRIPLE’s models, and F-logic’s
scoped formulas, are enclosed using “{. . .}”, and Skolem
constants, whose scope is global to clauses but local to
modules, are prefixed by an “ ” and usable, e.g., as slot
fillers and OIDs:

{
(<http://sphip.com/event#s1>ˆ
...
<http://trans.org/slots/shipment#cargo>->

_PeterMillerPC;
...).

(_PeterMillerPCˆ
<http://ebizguide.org/slots#value>->2500.0;
<http://ebizguide.org/slots#weight>->17.5).

}

A module can have a constructor, which may be pa-
rameterized, TRIPLE-like [17]. Across different modules,
our Skolem constants, even when equally named, denote
different objects. Within any module, our Skolem con-
stants obey a unique name assumption: differently named

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010 351

© 2010 ACADEMY PUBLISHER

constants denote different objects.
Such module-scoped, unique Skolem constants can also

be generated by the New Skolem constant primitive (writ-
ten as a stand-alone “ ”), where all occurrences “ ”, “ ”,
. . . are semantically replaced by fresh constants 1, 2,
. . . , skipping any (finite) subsequences of positive integers
that are already used as OIDs in the local module. With
the above assumption, all occurrences denote different ob-
jects. The model theory for such (New) Skolem constants
in rules has been developed on top of an anonymous-
domain-augmented Herbrand universe by [2].

For anchored unification (where all Skolem constant
occurrences skocon may result from dereferencing “?”-
variables), any:
skocon succeeds with itself; skocon succeeds with

a free variable ?logvar (or a stand-alone “?”), binding
?logvar to skocon; “ ” succeeds with a free variable
?logvar (or a stand-alone “?”), binding ?logvar to the
skocon generated by “ ” (rather than to “ ” itself).

While the above constructs were introduced for slotted
representations with RDF blank nodes, they can be
similarly used for positional representations.

RDF-like rules can then be directly defined in POSL
to process such facts.

For example, the earlier slotted rule can be modified
to query untyped facts, inferring, as new “ ”-anchored
atoms, the OIDs and aggregated cost of any reciprocal
shippings (webized slot names are abridged here using
symbolic names):

reciship(_ˆforthtrip->?oid1;backtrip->?oid2;
price->?cost;site1->?A;site2->?B) :-

(?oid1ˆshipper->?;cargo->?;price->?cost1;
source->?A;dest->?B),

(?oid2ˆshipper->?;cargo->?;price->?cost2;
source->?B;dest->?A),

add(sum->?cost;addend1->?cost1;addend2->?cost2).

Notice that the ?oid1/?oid2 variables occur in two
roles: to the left of “ˆ”, as proper OIDs, and to the right
of “ˆ”, as ordinary data values.

In bottom-up derivations, the “ ” generates the
next fresh Skolem constant, obtaining facts such as
reciship(4711ˆ...). In top-down queries like
reciship(?objˆ...), the OID-request variable
?obj is successfully bound to such a fresh Skolem
constant. The bottom-up direction is preferable for a (non-
Horn) extension with conjunctive heads (RDF graphs)
sharing Skolem constants.

Such rules can be employed within a semantic search
engine operating on RDF/POSL-described metadata for
obtaining high-precision results: in the above example,
priced pairs of Web objects about A-to-B and B-to-A
shippings.

VII. CONCLUSIONS

This article introduces a core of positional and slotted
notions plus notations for KR on the Semantic Web and
e-Business knowledge interchange.

A notion not treated in this article is negation in
POSL, for which negation-as-failure (Naf or “∼”), strong-
negation (Neg or “¬”) and a combination (Naf of Neg
or “∼ ¬”) are allowed as in RuleML. These distinctions
can again be added to the other POSL distinctions as an
orthogonal dimension, and their (stable model) semantics
adapted from ERDF [18].

Only relations and their defining Horn clauses
have been presented here. However, functions
defined by (conditional) equations can be added as
in Relfun [http://www.relfun.org], Functional RuleML
[http://www.ruleml.org/fun], and RIF [5]. Such ‘active’
functions, usually with positional arguments, are easily
incorporated into the positional/slotted design space.

Current work concerns a general POSL treatment of
slot cardinalities. While the F-logic system FLORA-2
distinguishes single-valued from set-valued attributes, the
description logic system OWL DL provides exact, min,
and max cardinality restrictions. The POSL design as
presented in this article employs single-valued slots. How-
ever, our plex data with only basinal elements constitute
bags (finite multisets), which can represent fillers of
multiple-valued slots.

A topic of future research is the issue of extending
OIDs towards a general notion of object identity.
Actually, there can be several (M) objects to the
left of the POSL “ˆ” infix, targeted by an (N -ary)
operation: operation(oid1...oidM ˆarg1...argN). This
can provide a bridge from the declarative OO KR
rules studied here to OOP-like reaction rules and
Web Services. For example, with M=2 and N=1, the
message transfer(checking1,savings2ˆ3500)
addresses equally focussed account objects checking1
and savings2 in a positional manner, using
the single argument 3500 for the amount to be
transferred in the ‘from-to’ direction. Besides such
“,”-ordered receiver objects, also “;”-unordered
ones can be used for parallel message broadcasting.
For example, with M=2 and N=2, the message
equalize(checking1;checking2ˆmin->1000;
max->2000) addresses equally focussed objects
checking1 and checking2 in an unordered manner,
using slotted arguments for the minimal amount, 1000,
and the maximal amount, 2000, to be left in both
accounts after a balancing transfer in either direction, if
their amounts were unequal. In practice, such symbolic
account names would be replaced by password-protected
IRIs.

POSL has been successfully used in, e.g., the
e-Business applications mentioned in section I, distributed
Rule Responder profiles [http://ruleml.org/RuleResponder], and
Drools [http://jboss.org/drools]. The RIF Working Group has
collected use cases and a large number of test cases
[19] employing the RIF Presentation Syntax (PS). Since
there have been several issues with PS, which was not
conceived as an actual Web rule language, a version of
POSL with explicit quantifiers is proposed as an alternate
human-oriented RIF syntax.

352 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

REFERENCES

[1] M. Kifer and G. Lausen, “F-Logic: A Higher-Order
Language for Reasoning about Objects, Inheritance, and
Scheme,” in Proceedings of the 1989 ACM SIGMOD Inter-
national Conference on Management of Data, J. Clifford,
B. G. Lindsay, and D. Maier, Eds., Portland, Oregon,
31 May–2 June 1989, pp. 134–146.

[2] G. Yang and M. Kifer, “Reasoning about Anonymous
Resources and Meta Statements on the Semantic Web,”
in J. Data Semantics I, ser. Lecture Notes in Computer
Science, S. Spaccapietra, S. T. March, and K. Aberer, Eds.,
vol. 2800. Springer, 2003, pp. 69–97.

[3] P. Hayes, “RDF Semantics,” http://www.w3.org/TR/rdf-
mt/,” W3C Recommendation, February 2004.

[4] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and
J. Hendler, “N3Logic: A Logical Framework For the World
Wide Web,” Theory and Practice of Logic Programming
(TPLP), vol. 8, no. 3, May 2008.

[5] H. Boley and M. Kifer, “A Guide to the Basic Logic Di-
alect for Rule Interchange on the Web,” IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 11, pp.
1593–1608, Nov. 2010.

[6] B. Motik, P. F. Patel-Schneider, and B. Parsia, “OWL 2
Web Ontology Language — Structural Specification and
Functional-Style Syntax,” World Wide Web Consortium,
Candidate Recommendation CR-owl2-syntax-20090611,
June 2009.

[7] A. Maclachlan and H. Boley, “Semantic Web Rules for
Business Information,” in Proc. International Conference
on Web Technologies, Applications, and Services (WTAS
2005), Calgary, Canada. IASTED, July 2005.

[8] T. Dema, “eTourPlan: A Knowledge-Based Tourist Route
and Activity Planner,” Master’s thesis, Faculty of Com-
puter Science, University of New Brunswick, September
2008.

[9] J. Li, H. Boley, V. C. Bhavsar, and J. Mei, “Expert Finding
for eCollaboration Using FOAF with RuleML Rules,” in
Montreal Conference of eTechnologies 2006, 2006, pp. 53–
65.

[10] B. L. Craig and H. Boley, “Personal Agents in the Rule
Responder Architecture,” in RuleML, ser. Lecture Notes
in Computer Science, N. Bassiliades, G. Governatori, and
A. Paschke, Eds., vol. 5321. Springer, 2008, pp. 150–165.

[11] H. Boley, T. M. Osmun, and B. L. Craig, “WellnessRules:
A Web 3.0 Case Study in RuleML-Based Prolog-N3 Pro-
file Interoperation,” in RuleML, ser. Lecture Notes in Com-
puter Science, G. Governatori, J. Hall, and A. Paschke,
Eds., vol. 5858. Springer, 2009, pp. 43–52.

[12] J. W. Lloyd, Foundations of Logic Programming. Berlin,
Heidelberg, New York: Springer-Verlag, 1987.

[13] M. Ball, H. Boley, D. Hirtle, J. Mei, and B. Spencer, “The
OO jDREW Reference Implementation of RuleML,” in
Rules and Rule Markup Languages for the Semantic Web,
First International Conference, RuleML 2005, Galway,
Ireland, November 10-12, 2005, Proceedings, ser. Lecture
Notes in Computer Science, A. Adi, S. Stoutenburg, and
S. Tabet, Eds., vol. 3791. Springer, 2005, pp. 218–223.

[14] H. Boley, “Object-Oriented RuleML: User-Level Roles,
URI-Grounded Clauses, and Order-Sorted Terms,” in Proc.
Rules and Rule Markup Languages for the Semantic Web
(RuleML-2003). LNCS 2876, Springer-Verlag, Oct. 2003.

[15] M. Hermenegildo and F. Rossi, “Strict and Non-Strict
Independent And-Parallelism in Logic Programs: Correct-
ness, Efficiency, and Compile-Time Conditions,” Journal
of Logic Programming, vol. 22, no. 1, pp. 1–45, 1995.

[16] M. Kifer, “The Relationship Between the Slotted Notation
and Frame Notation,” Email attachment frames-vs-slots.txt
sent to SWSL-Rules team, Jan. 2005.

[17] M. Sintek and S. Decker, “TRIPLE – A Query, Inference,
and Transformation Language for the Semantic Web,” in
1st International Semantic Web Conference (ISWC2002).
Sardinia, Italy, June 2002.

[18] A. Analyti, G. Antoniou, C. V. Damásio, and G. Wagner,
“Stable Model Theory for Extended RDF Ontologies,” in
International Semantic Web Conference, ser. Lecture Notes
in Computer Science, Y. Gil, E. Motta, V. R. Benjamins,
and M. A. Musen, Eds., vol. 3729. Springer, 2005, pp.
21–36.

[19] S. Mitchell, L. Morgenstern, and A. Paschke, “RIF
Test Cases,” June 2010, W3C Working Draft,
http://www.w3.org/TR/2010/WD-rif-test-20100622/.

Harold Boley is adjunct professor at the Faculty of Computer
Science, University of New Brunswick, and Leader of the
Semantic Web Laboratory at the National Research Council
Canada, Institute for Information Technology. His specification
of Web rules through RuleML has found broad uptake. It has
been combined with OWL to SWRL and become the main input
to RIF. His work on Rule Responder has enabled deployed
distributed applications for the Social Semantic Web.

APPENDIX

EBNF GRAMMAR FOR POSL

rulebase ::= (clause | signature)* .

clause ::= atom (IMP atoms)? PERIOD .
signature ::= atom ASTERISK .

atoms ::= atom (COMMA atom)* .
atom ::= rel LPAREN oid? cont RPAREN .
oid ::= term HAT .

cont ::= SEMI? term? | SEMI COMMA | ps .
ps ::= (pos prest? | prest) (SEMI set)?

srest?
| set srest pstrail?
| (set pstrail?)? srest? .

pstrail ::= (SEMI pos prest? | prest)
(SEMI set)? .

prest ::= PIPE (var | posplex) .
srest ::= BANG (var | setplex) .

posplex ::= LBRACK pos? prest? RBRACK .
setplex ::= LBRACK (SEMI term? | term SEMI set)?

srest? RBRACK .

pos ::= COMMA term? | term (COMMA term)+ .
set ::= term (SEMI term)* .

term ::= slot | unkeyed .
slot ::= role ARROW unkeyed .

unkeyed ::= ind
| var
| skolem
| structure
| plex .

structure ::= ctor LBRACK cont RBRACK
(HATHAT type)? .

plex ::= LBRACK cont RBRACK .

ind ::= (symbol iri? | iri) (HATHAT type)? .
var ::= QMARK symbol? (HATHAT type)? .
skolem ::= USCORE symbol? (HATHAT type)? .

ctor ::= rel ::= role ::= type ::= symbol .

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 4, NOVEMBER 2010 353

© 2010 ACADEMY PUBLISHER

Call for Papers and Special Issues

Aims and Scope
Journal of Emerging Technologies in Web Intelligence (JETWI, ISSN 1798-0461) is a peer reviewed and indexed international journal, aims at

gathering the latest advances of various topics in web intelligence and reporting how organizations can gain competitive advantages by applying the
different emergent techniques in the real-world scenarios. Papers and studies which couple the intelligence techniques and theories with specific web
technology problems are mainly targeted. Survey and tutorial articles that emphasize the research and application of web intelligence in a particular
domain are also welcomed. These areas include, but are not limited to, the following:

• Web 3.0
• Enterprise Mashup
• Ambient Intelligence (AmI)
• Situational Applications
• Emerging Web-based Systems
• Ambient Awareness
• Ambient and Ubiquitous Learning
• Ambient Assisted Living
• Telepresence
• Lifelong Integrated Learning
• Smart Environments
• Web 2.0 and Social intelligence
• Context Aware Ubiquitous Computing
• Intelligent Brokers and Mediators
• Web Mining and Farming
• Wisdom Web
• Web Security
• Web Information Filtering and Access Control Models
• Web Services and Semantic Web
• Human-Web Interaction
• Web Technologies and Protocols
• Web Agents and Agent-based Systems
• Agent Self-organization, Learning, and Adaptation

• Agent-based Knowledge Discovery
• Agent-mediated Markets
• Knowledge Grid and Grid intelligence
• Knowledge Management, Networks, and Communities
• Agent Infrastructure and Architecture
• Agent-mediated Markets
• Cooperative Problem Solving
• Distributed Intelligence and Emergent Behavior
• Information Ecology
• Mediators and Middlewares
• Granular Computing for the Web
• Ontology Engineering
• Personalization Techniques
• Semantic Web
• Web based Support Systems
• Web based Information Retrieval Support Systems
• Web Services, Services Discovery & Composition
• Ubiquitous Imaging and Multimedia
• Wearable, Wireless and Mobile e-interfacing
• E-Applications
• Cloud Computing
• Web-Oriented Architectrues

Special Issue Guidelines

Special issues feature specifically aimed and targeted topics of interest contributed by authors responding to a particular Call for Papers or by
invitation, edited by guest editor(s). We encourage you to submit proposals for creating special issues in areas that are of interest to the Journal.
Preference will be given to proposals that cover some unique aspect of the technology and ones that include subjects that are timely and useful to the
readers of the Journal. A Special Issue is typically made of 10 to 15 papers, with each paper 8 to 12 pages of length.

The following information should be included as part of the proposal:
• Proposed title for the Special Issue
• Description of the topic area to be focused upon and justification
• Review process for the selection and rejection of papers.
• Name, contact, position, affiliation, and biography of the Guest Editor(s)
• List of potential reviewers
• Potential authors to the issue
• Tentative time-table for the call for papers and reviews

If a proposal is accepted, the guest editor will be responsible for:
• Preparing the “Call for Papers” to be included on the Journal’s Web site.
• Distribution of the Call for Papers broadly to various mailing lists and sites.
• Getting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors should be

informed the Instructions for Authors.
• Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact

information.
• Writing a one- or two-page introductory editorial to be published in the Special Issue.

Special Issue for a Conference/Workshop
A special issue for a Conference/Workshop is usually released in association with the committee members of the Conference/Workshop like general

chairs and/or program chairs who are appointed as the Guest Editors of the Special Issue. Special Issue for a Conference/Workshop is typically made of
10 to 15 papers, with each paper 8 to 12 pages of length.

Guest Editors are involved in the following steps in guest-editing a Special Issue based on a Conference/Workshop:
• Selecting a Title for the Special Issue, e.g. “Special Issue: Selected Best Papers of XYZ Conference”.
• Sending us a formal “Letter of Intent” for the Special Issue.
• Creating a “Call for Papers” for the Special Issue, posting it on the conference web site, and publicizing it to the conference attendees.

Information about the Journal and Academy Publisher can be included in the Call for Papers.
• Establishing criteria for paper selection/rejections. The papers can be nominated based on multiple criteria, e.g. rank in review process plus the

evaluation from the Session Chairs and the feedback from the Conference attendees.
• Selecting and inviting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors

should be informed the Author Instructions. Usually, the Proceedings manuscripts should be expanded and enhanced.
• Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact

information.
• Writing a one- or two-page introductory editorial to be published in the Special Issue.

More information is available on the web site at http://www.academypublisher.com/jetwi/.

