

Requirements Engineering in Agile Software
Development

Andrea De Lucia and Abdallah Qusef

Dipartimento di Matematica e Informatica, University of Salerno
Via Ponte don Melillo, 84084 Fisciano (SA), Italy

{adelucia, aqusef}@unisa.it

Abstract—Finding out, analyzing, documenting, and
checking requirements are important activities in all
development approaches, including agile development.
This paper discusses problems concerned with the
conduction of requirements engineering activities in agile
software development processes and suggests some
improvements to solve some challenges caused by agile
requirements engineering practices in large projects, like
properly handling and identifying sensitive (including non-
functional) requirements, documenting and managing
requirements documentation, keeping agile teams in
contact with outside customers. The paper also discusses
the requirements traceability problem in agile software
development and the relationships between the traceability
and refactoring processes and their impact on each other.

Index Terms—Requirements Engineering; Agile Software
Development, Traceability, Refactoring.

I. INTRODUCTION

The agile approach is creating a stir in the software
development community. Agile methods are reactions
to traditional ways of developing software and
acknowledge the “need for an alternative to
documentation driven, heavyweight software
development processes” [1]. In the implementation of
traditional methods, work begins with the elicitation and
documentation of a “complete” set of requirements,
followed by architectural and high-level design,
development, and inspection. Beginning in the 1990s,
some practitioners found these initial development steps
frustrating and, perhaps, impossible [2]. The industry
and technology move too fast, requirements “change at
rates that swamp traditional methods” [3], and
customers have become increasingly unable to
definitively state their needs up front while, at the same
time, expecting more from their software. As a result,
several consultants have independently developed
methods and practices to respond to the inevitable
change they were experiencing. These Agile methods
are actually a collection of different techniques (or
practices) that share the same values and basic
principles. The Agile Manifesto states valuing “
individuals and interaction over processes and tools,
working software over comprehensive documentation,
customer collaboration over contract negotiation, and
responding to changes over following a plan” [1].

Requirements Engineering (RE) is the process of
establishing the services that the customer requires from
a system and the constraints under which it operates and
is developed. The main goal of a RE process is creating a
system requirements document for knowledge sharing,
while Agile Development (AD) methods focus on face-
to-face communication between customers and agile
teams to reach a similar goal. There are several research
papers discussing the relationship between RE and AD,
e.g. [4, 5, 6, 7, 8, 9]: they explain some RE practices in
agile methods, compare these practices between agile and
traditional development systems, and examine the
problems of AD when it is dealing with the management
of large projects and control critical requirements.

This paper addresses the problem of how (user)
requirements can be captured and specified in the context
of agile software development approaches. It therefore
tries to identify how standard RE techniques and
processes can be combined with agile practices and to
find solutions to some of the difficulties related to their
work. In addition, this article discusses the traceability
problem in agile software development, since the current
traceability between agile software artifacts is ill defined
[10]. In particular, we discuss how to solve the
traceability problem by extracting some important
information from software artifacts to identify a
traceability links between them, we also discuss how
these links can be used to improve the decisions making
process and help developers during the refactoring
process. Finally, the paper comes up with a set of
guidelines for agile requirements engineering.

The paper is organized as follows; the next Section
sheds light on the importance of agile development in IT
organizations and the benefits and limitations of agile
methodologies in the software development life cycle and
discusses some of agile approaches from a requirements
engineering perspective. The agile RE activities are
discussed in detail in Section 3, beginning with the
objectives of the activity and explaining the techniques
used to achieve these goals in AD, then the problems of
each activity are identified and improvements to remedy
these problems are discussed. In Section 4 some
guidelines and enhancements are described concerned
with an efficient application of RE practices in AD.
Finally, Section 5 summarizes our conclusions and future
work.

212 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jetwi.2.3.212-220

II. AGILE SOFTWARE DEVELOPMENT

The goal of agile methods is to allow an organization
to be agile, but what does it mean to be Agile? Jim
Highsmith says that being Agile means being able to
“Deliver quickly. Change quickly. Change often” [2].
While agile techniques vary in practices and emphasis,
they follow the same principles behind the agile
manifesto [1]:

• Working software is delivered frequently (weeks
rather than months).

• Working software is the principal measure of
progress.

• Customer satisfaction by rapid, continuous
delivery of useful software.

• Even late changes in requirements are welcomed.
• Close daily cooperation between business people

and developers.
• Face-to-face conversation is the best form of

communication.
• Projects are built around motivated individuals,

who should be trusted.
• Continuous attention to technical excellence and

good design.
• Simplicity.
• Self-organizing teams.
• Regular adaptation to changing circumstances.

Agile development methods have been designed to

solve the problem of delivering high quality software on
time under constantly and rapidly changing requirements
and business environment. Agile methods have a proven
track record in the software and IT industries. Fig. 1
shows that about 69% of organizations are adapting one
or more of agile practices for use in general project
management as well as organizational development [11].

Figure 1 Agile Development Adoption

In fact, the agile development methodologies are used

in organizations where there is no requirement freezing,
incremental and iterative approach is used for modeling
and every one in the team is an active participant and
everyone’s input is welcome. The main benefit of the
agile development software is that it allows for an
adaptive process - in which the team and development

react to and handle changes in requirements and
specifications, even late in the development process.
Through the use of multiple working iterations, the
implementation of agile methods allows the creation of
quality, functional software with small teams and limited
resources. The proponents of the traditional development
methods criticize the agile methods for the lightweight
documentation and inability to cooperate within the
traditional work-flow. The main limitations of agile
development are: agile works well for small to medium
sized teams; also agile development methods do not
scale, i.e. due to the number of iterations involved it
would be difficult to understand the current project status;
in addition, an agile approach requires highly motivated
and skilled individuals which would not always be
available, lastly, no enough written documentation in
agile methods lead to information lose when the code is
actually implemented. However, with proper
implementation the agile methods can complement and
benefit traditional development methods. Furthermore, it
should be noted that traditional development methods in
non-iterative fashions are susceptible to late stage design
breakage, while agile methodologies effectively solve this
problem by frequent incremental builds which encourage
changing requirements. In the following, some common
agile methods are briefly discussed from a requirements
engineering perspective.

Agile Modeling (AM) is a new approach for
performing modeling activities [12]. It gives the
developers a guideline of how to build models - using an
agile philosophy as its backbone- that resolve design
problems and support documentation purposes but not
’over-build’ these models. The aim is to keep the amount
of models and documentation as low as possible. The RE
techniques are not explicitly referred in AM but some of
the AM practices support some RE techniques like
brainstorming.

Feature-Driven Development (FDD) consists of a
minimalist, five-step process that focuses on building and
design phases [13] each defined with entry and exit
criteria, building a features list, and then planning-by-
feature followed by iterative design-by-feature and build-
by-feature Steps. In the first phase, the overall domain
model is developed by domain experts and developers.
The overall model consists of class diagrams with classes,
relationships, methods, and attributes. The methods
express functionality and are the base for building a
feature list. A feature in FDD is a client-valued function.
The feature lists is prioritized by the team. The feature list
is reviewed by domain members [14]. FDD proposes a
weekly 30-minute meeting in which the status of the
features is discussed and a report about the meeting is
written.

Dynamic Systems Development Method (DSDM)
was developed in the U.K. in the mid-1990s. It is an
outgrowth of, and extension to, Rapid Application
Development (RAD) practices [15]. The first two phases
of DSDM are the feasibility study and the business study.
During these two phases the base requirements are
elicited. Further requirements are elicited during the

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010 213

© 2010 ACADEMY PUBLISHER

development process. DSDM does not insist on certain
techniques. Thus, any RE technique can be used during
the development process [9]. DSDM’s nine principles
include active user involvement, frequent delivery, team
decision making, integrated testing throughout the project
life cycle, and reversible changes in development.

Extreme Programming (XP) is based on values of
simplicity, communication, feedback, and courage [16].
XP aims at enabling successful software development
despite vague or constantly changing software
requirements. The XP relies on the way the individual
practices are collected and lined up to function with each
other. Some of the main practices of XP are short
iterations with small releases and rapid feedback, close
customer participation, constant communication and
coordination, continuous refactoring, continuous
integration and testing, and pair programming [17]. Table
I shows how RE activities are implemented in XP
approach. In fact, XP is the most famous of any of the
agile approaches.

Scrum is an empirical approach based on flexibility,
adaptability and productivity [18]. The Scrum leaves
open for the developers to choose the specific software
development techniques, methods, and practices for the
implementation process. Scrum provides a project
management framework that focuses development into
30-day Sprint cycles in which a specified set of Backlog
features are delivered. The core practice in Scrum is the
use of daily 15-minute team meetings for coordination
and integration. Scrum has been in use for nearly ten
years and has been used to successfully deliver a wide
range of products; Table II summarizes how RE activities
are implemented actually in Scrum.

In this article some recommendations are suggested for
agile development teams to help them in managing and
implementing large projects and projects with critical
requirements.

TABLE I.
RE IMPLEMENTATION IN XP

RE activity XP implementation

Requirements
Elicitation

• Requirements elicited as stories.
• Customers write user stores.

Requirements Analysis
• Not a separate phase.
• Analyze while developing.
• Customer prioritizes the user stories.

Requirements
Documentation

• User stories & acceptance tests as
requirements documents.

• Software products as persistence
information.

• Face-to-face communication.

Requirements
Validation

• Test Driven Development (TDD).
• Run acceptance tests.
• Frequent feedback.

Requirements
Management

• Short planning iteration.
• User stories for tracking.
• Refactor as needed.

TABLE II.
RE IMPLEMENTATION IN SCRUM

RE activity Scrum implementation

Requirements
Elicitation

• Product Owner formulates the Product
Backlog.

• Any stakeholders can participate in the
Product Backlog.

Requirements Analysis

• Backlog Refinement Meeting.
• Product Owner prioritizes the Product

Backlog.
• Product Owner analyzes the feasibility of

requirements.

Requirements
Documentation • Face-to-face communication.

Requirements
Validation • Review meetings.

Requirements
Management

• Sprint Planning Meeting.
• Items in Product Backlog for tracking.
• Change requirements are added/deleted

to/from Product Backlog.

III. REQUIREMENTS ENGINEERING FROM THE
AGILE DEVELOPMENT POINT OF VIEW

RE is concerned with discovering, analyzing,
specifying, and documenting the requirements of the
system. RE activities deserve the greatest care because
the problems inserted in the system during RE phase are
the most expensive to remove. As shown in Fig. 2, some
studies revealed that around 37% of the problems
occurred in the development of challenging systems are
related to the requirements phases [19].

Figure 2 Problems of challenging systems

The main difference between traditional and agile
development is not whether to do RE but when to do it.
The RE processes in traditional systems focuses on
gathering all the requirements and preparing the
requirements specification document before going to the
design phase, while the agile RE welcomes changing
requirements even late in the development lifecycle.

Agile RE applies the focal values mentioned in the
agile manifesto to the RE process. The processes used for
agile RE vary widely depending on the application
domain, the people involved and the organization
developing the requirements. However, this paper
explains the agile RE activities which are: Feasibility

214 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010

© 2010 ACADEMY PUBLISHER

Study, Elicitation and Analysis, Documentation,
Validation, and Management.

A. Feasability Study
The Feasibility Study gives the overview of the target

system and decides whether or not the proposed system is
worthwhile. The input of the feasibility study is an
outline description of the system and how it will be
within an organization. The results should be a short
report, which recommends whether or not it is worth
carrying on with the RE and AD process. Initially, all
relevant stakeholders have to be defined, in other words,
all right customers who are related to the development of
the system and are affected by its success or failure must
be selected, and then the brainstorming session takes
place to share the knowledge ideas between agile teams
and “ideal” customers to answer a number of questions
like:

1) Does the system contribute to the high level
objectives and the critical requirements of the
organization?
In a first step, the high level goals and critical
requirements (functional and non-functional
requirements) for the system are defined upfront in
order to determine the scope of the system; these
requirements describe the expected business values
to the customer.

2) Is your organization ready for the AD?
Each agile method has its own characteristics and
practices that will change the daily work of the
organization. Before an organization selects one of
them, it should consider whether or not it is ready
for agile development. This is a very important
question and many researchers tried to answer it
[11, 20]. For example, Ambler [11] discusses some
successful factors and questions to be answered
affecting the successful adoption of agile methods.

3) Can the system be implemented within given
budget?
Some contracts do not allow for changing
requirements. “The requirements must be complete
before a contract can be made, which is often
found in fixed-priced projects” [6]. In agile
projects where changing requirements is
welcomed, contracts often are based on time and
expenses and not on fixed-priced scope. Also,
“agile methods use scope-variable price contracts”
[21]. This means that the features really
implemented into the system and its cost evolve as
well. Therefore, requirements are not specified in
details at contract level but defined step by step
during the project through a negotiation process
between the customer and the development team
[8].

4) How to integrate the agile activities with
traditional organizational activities already in
place?
Some researches suggest tentative models for
integrating agile activities with traditional
organizational activities by transferring the
knowledge from one process to another and how

the traditional team should adopt its activities to
suit the mechanisms of agile teams [22, 23].

B. Requirements Elicitation
In this activity, agile teams work with stakeholders to

find out about the application domain, the services that
the system should provide, the system’s operational
constraints, and the required performance of the system
(non-functional requirement). The most important
techniques used for requirements elicitation in AD are:

1) Interviews: “Interviewing is a method for

discovering facts and opinions held by potential
stakeholders of the system under development”
[7]. There are two types of interviews: Closed
interviews, where a predefined set of questions
are answered, and the Open interviews, where
there is no predefined agenda and a range of
issues are explored with stakeholders. In fact,
interviews are good for getting an overall
understanding of what stakeholders do and how
they might interact with the system, but they are
not good for understanding domain
requirements. All agile methods say that
interviews are an efficient way to communicate
with customers and to increase trust between
two sides.

2) Brainstorming: this is a group technique for
generating new, useful ideas, and promoting
creative thinking. Brainstorming can be used to
elicit new ideas and features for the application,
define what project or problem to work on and
to diagnose problems in a short time. The project
manager plays an important role in
brainstorming. He/she determines the time of
creative session, makes sure that there is no
escalating discussions about certain topics, and
comes to make sure that every body expresses
his/her opinion freely. After the creative session
is ended, the topics are evaluated by the team.
Also, the connections and dependences between
the discussed ideas are represented by (for
example) graph visualization, so the conflicts
with other requirements are found and evaluated.

3) Ethnography: it is an observational technique
that can be used to understand social and
organizational requirements [24]. In agile
development ethnography is particular effective
at discovering two types of requirements: the
first one refers to requirements that are derived
from the way in which people actually work
rather than the way in which process definitions
say they ought to work, and the second one
refers to requirements that derived from
cooperative and awareness of other people’s
activities. Ethnography is not a complete
approach to elicitation and it should be used
with other approaches such as use case analysis
[19, 24].

4) Use Case analysis: this is a scenario based
technique used in UML-based development

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010 215

© 2010 ACADEMY PUBLISHER

which identifies the actors involved in an
interaction and describes the interaction itself. A
set of use cases should describe possible
interactions that will be presented in the system
requirements; each use case represents a user-
oriented view of one or more functional
requirements of the system [24].

C. Requirements Analysis
The main task here is to determine whether the elicited

requirements are unclear, incomplete, ambiguous or
contradictory, and then resolve these issues. Conflicts in
requirements are resolved through prioritization
negotiation with stakeholders. The main techniques used
for requirements analysis in agile approaches are:

1) Joint Application Development (JAD): this is
a workshop used to collect business requirements
while developing a system. The JAD sessions also
include approaches for enhancing user
participation, expediting development, and
improving the quality of specifications [24]. In
agile environment, in case of conflicts between
stakeholders’ requirements the use of JAD can
help promoting the use of a professional facilitator
who can help to resolve conflicts. In addition, the
JAD sessions encourage customer involvement
and trust in the developed system.

2) Modeling: system models are important bridge
between the analysis and the design process [7]. In
agile environment the pen board (or pin board
also) is divided into three sections: models to be
implemented, models under implementation, and
models completed. “This layout provides a visual
representation of the project status” [8]. These
models must be documented and not throw-away.

3) Prioritization: agile methods specify that the
requirements should be considered similar to a
prioritized stack. The features are prioritized by
the customers based on their business value, so
that the agile teams estimate the time required to
implement each requirement. The agile team must
distinguish between “must have” requirements
from “nice to have” requirements, this can be done
by frequent communications with the customers.
Fig. 3 shows the Requirements prioritization
process: “at the beginning of each iteration, there
is a requirements collection and prioritization
activity. During that, new requirements are
identified and prioritized. This approach helps to
identify the most important features inside the
ongoing project. Typically, if a requirement is
very important it is scheduled for the
implementation in the upcoming iteration;
otherwise it is kept on hold. At the following
iteration, the requirements on hold are evaluated
and, if they are still valid, they are included in the
list of the candidate requirements together with the
new ones. Then, the new list is prioritized to
identify the features that will be implemented, if a
requirement is not important enough, it is kept on
hold indefinitely” [8].

Figure 3 Requirements prioritization process

D. Requirements Documentation
The purpose of requirements documentation is to

communicate requirements (or knowledge sharing)
between stakeholders and agile teams. In fact, no formal
requirements specification is produced in agile
development methods since agile focuses on minimal
documentation. The features and the requirements are
recorded on story boards, index cards, and paper
prototypes like use cases and data flow diagrams.

The lack of documentation might cause long-term
problems for agile teams [7], so, we suggest some
techniques to solve this problem:

1) The agile team leader assigns two or three
members to produce documentation in parallel and
concurrence with development. The two (or three)
members will be responsible for handling
requirements (functional and non-functional
requirements), writing, reviewing, and maintaining
documentation consistent with development.
Furthermore, efficient practices like peer interviews
will help to ensure the accuracy and quality of the
documentation. The reason for choosing two or
three members is because the resources are limited
and the other members must adhere to the agile
manifesto of producing working software rather
than documentation. In addition, we can not have
just one person doing it, because that violates one of
the agile manifesto principles [1] “Business people
and developers must work together daily through-
out the project”.
2) Using computer-based tools like UML modeling

and project management tools to specify a high
level description of the project, and to document
certain practices and requirements used in agile
projects in an electronic format.

3) Developing a reverse engineering process [25] to
be applicable on agile projects, so that we can
use it to reverse engineer the code to produce

216 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010

© 2010 ACADEMY PUBLISHER

documentation using for example UML
modeling tools.

E. Requirements Validation
The goal of requirements validation is to ensure that

requirements actually define the system which the
customer wants. The requirements validation checks the
consistency, completeness and realism of requirements.
The main practices used for requirements validation in
agile approaches are:

1) Requirements reviews: it is a manual process
that involves multiple readers from both agile
team and stakeholders checking the requirements
against current organizational standards and
organizational knowledge for anomalies and
omissions. In agile projects the requirements
reviews must be formal reviews: we mean that
the agile team should walk with the customers
through each requirement; conflicts, errors,
extra, and omissions in the requirements should
be formally recorded.

2) Unit testing: In agile, unit testing is a method for
requirements validation and therefore also part of
requirements engineering. In some agile methods
like XP, the requirements are implemented and
tested using the TDD technique. By applying this
technique developers create tests before writing
code. The developed code is then refactored to
improve its structure [32]; the rule here is to write
a code if and only if a test fails. This technique has
some advantages; it is the greatest advantage to set
test cases that test your requirement very
accurately. The requirement from which the test
case was created is now presented in a form in
which it is completely validated, in the sense that
it can be automatically (after each iteration)
determined whether a requirement is implemented
by the software or not. This makes the developers
aware for the progress of the project and the state
of the current iteration of the project. Also,
supports the refactoring process to get an
improved design by reduced coupling and strong
cohesion [26]. A common misconception is that
all of the tests are written prior to implementing
the code [9]. Rather, TDD contains short iterations
which provide rapid feedback. Code refactoring
and unit tests ensure that emerging code is more
simple and readable. In fact, unit tests can be
considered as a live and up-to-date documentation:
they represent an excellent repository for
developers trying to understand the system, since
they show how parts of a system are executed.

3) Evolutionary prototyping: a prototype is an
initial version of the system. Evolutionary
prototyping starts with a relatively simple system
which implements the most important customer
requirements which are best understood and which
have the highest priority. The system prototypes
allow customers to experiment to see how the
system supports their work (requirements
elicitation), and may reveal errors and omission in

the requirements which have been proposed
(requirements validation). As shown in Fig. 4, the
main objective of evolutionary prototyping in AD
is to deliver a working system to customers by
focusing on customer interaction, [24]. The
verification (Are we building the system right?)
and validation (Are we building the right system?)
[27] of agile projects which have been developed
using evolutionary prototyping can only therefore
check if the system is adequate, that is, if it is good
enough for its intended purpose; in other words,
verification and validation of requirements in agile
systems usually rely on the validation process.

4) Acceptance testing: acceptance testing is a formal
testing conducted by the customer to ensure the
system satisfies the contractual acceptance criteria.
The acceptance tests are not different than the
automated system tests, but they are performed by
the customer. Delivering working software to the
customer is a fundamental agile principle and
hence. The customers create acceptance criteria
for the requirements and test the requirements
against these criteria. Being AD an incremental
process, the customers can give feedbacks to the
developers to enhance the development of future
increments of the system. However, as a general
problem there are often no formal acceptance tests
for non-functional requirements.

Figure 4 Evolutionary prototype processes

F. Requirements Management
Understanding and controlling changes to system

requirements take place in this activity. In order for
requirements management tools to work efficiently, “they
must be able to store requirements, prioritize
requirements, track requirement changes and
development progresses, and provide a level of
requirements traceability” [28, 29].

In agile projects, managers have to create and maintain
a framework for the interaction between the agile teams
and the stakeholders, by identifying the ideal people who

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010 217

© 2010 ACADEMY PUBLISHER

can be members of agile teams and ideal customers who
can answer all the developers questions correctly [7],
strengthening the collaboration, and negotiating contracts
with the customers [8].

We believe that agile methods can play an important
role in the management of large projects. The
decomposition of the larger parts of the project into
smaller components, called sub-components, lends itself
to the employment of more agile teams. These agile
teams can work in other time zones and other countries
provided that frequent communications and self
organization are established. Agile teams working in
parallel on sub-components allows for quick development
and an early design. An early design leads to an early
review. Consequently, the iterative schedule and
emphasis on delivering the product allows the agile teams
to assess the successes and shortcomings, and plan for the
next iteration. Once a specific agile team has successfully
completed a sub-component, the team is available to
work on another component or sub-component. Each of
these smaller agile teams will still be responsible for
assigning two members to complete the previously
described documentation which is necessary to satisfy the
other stakeholders.

Agile teams should use modern communications like
web-based shared team projects and instant messaging
tools; these tools are useful to keep in touch with the
customer and other agile teams in order to discuss
requirements when they are not on-site.

The ability to trace the software artifacts through the
system lifecycle (source code, acceptance tests,
requirements, and design logic) is critical to the success
of large complex projects. Requirements traceability
refers to the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction
[30]. One of the problems is that traceability is an
important part in traditional software development but it
is not a standard practice for the agile methods. There are
many techniques that have been presented to solve
traceability issues. These techniques have been intended
to work with traditional software development
methodologies and therefore designed under the
assumption that a formal requirements process is in place,
but in agile software development the situation is
different because the main development artifact in agile
methods is a source code. In agile process, requirements,
acceptance tests, unit tests and code change at the same
time, so the unit tests should be traced to code, and the
acceptance tests must include references to the
requirements they test, see Fig. 5 [31].

As we say before, the main software development
practice used in agile is TDD. The key aspect of TDD is
that it can be viewed as a source of free traceability
information. In turn, if such information is available to
the developer, it may improve the efficiency with which
tests are produced and code is written for each iteration.
In TDD a traceability matrix is obtainable by matching
new tests with changes in the code [31].

Figure 5 Traceability from requirements to code

Refactoring is an important aspect of TDD, but can

represent a serious challenge to traceability. Refactoring
of code may lead to the appearance of new traceability
links and the disappearance of old traceability links
between tests/requirements and code. Additionally,
refactoring may lead to temporary code degradation,
when some of the existing tests fail to pass. When
refactoring, the TDD developer must ensure that all unit
tests continue to pass, so unit tests might need to be
refactored together with the source code.

IV. GUIDELINES FOR AGILE RE

This section introduces some guidelines to improve the
performances of requirements engineering processes in
agile environment and to enhance the quality of
requirements.

• Customer Involvement: agile development
focuses very strongly on customer interaction. At
the beginning, all relevant ideal stakeholders have
to be identified. Selecting the right customers and
prioritizing their respective requirements is a key
issue. The different elicitation practices aim to get
as much knowledge as possible from all
stakeholders and resolve inconsistencies.

• Agile Projects Contracts: at the beginning, the
most critical requirements are expressed by the
stakeholders as well as they can, so that the
experienced project leaders can determine an
initial cost for agile projects and guess the cost of
later changes.

• Frequent Releases: frequently delivering parts of
the system provides the ability to release faster
expected results to the customers in order to get
feedbacks from them. Hence, the requirements are
implemented in an iterative and incremental
fashion.

• Requirements Elicitation Language: use
linguistic methods for requirements elicitation,
derived from Natural Language Processing (NLP)

218 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010

© 2010 ACADEMY PUBLISHER

[7]. In other words, requirements are collected
using the language of the customer, not a formal
language for requirements specification.

• Non-Functional Requirements (NFR): in agile
approaches handling of NFR is ill defined [9]. We
propose the customers and agile team leaders to
arrange for meetings to discuss NFR (and all
critical requirements) in the earliest stages. Once
the initial NFR of a project have been identified
and documented, the agile teams can begin with
development.

• Smaller agile teams are flexible: smaller agile
teams allow continuous communications between
them and stakeholders in efficient way, and the
requirements changes are controlled. Fig. 6 shows
that whenever the agile teams are smaller, the
chances of the project success increased [16].

Figure 6 Agile team sizes

• Evolutionary requirements: RE in agile methods
accommodate changing requirements even late in
the development cycle, but that changes to the
requirements must wait until the culmination of
each iteration. Therefore, agile development does
not spend much time in initial requirements
elicitation. Consequently, this methodology will
ensure that iterations are consistent with
expectations, and that the development process
will remain organized.

• No early documentation: any documents
produced in the early stages can quickly become
irrelevant because the agile principles encourage
requirements change. By allocating only 5%-15%
of the resources to requirements we think
development team can still address shortcomings
in agile development while complying with the
agile principles in general.

• Requirements splitting: if the agile team
considers a requirement too complex, this
technique helps the customer to divide it into
simpler ones. This helps agile teams to better
understand the functionalities requested by the
customer, and helps agile teams working in
parallel with frequent communications between
them. In XP [16], the requirements are written on

story cards, the complex user stories are broken
down smaller stories. Of course not all user stories
can be divided since somecontain several sub-
requirements, or record non-functional
requirements. If a story card could be successfully
divided, the original story card is discarded, since
it no longer needed. All requirements are now
included in the union of the new story cards.

• Requirements Traceability: a major upset in the
development of large systems, especially those
with evolving requirements is ensuring that the
design of the system meets the current set of
requirements. We are persuaded that agile projects
would work better if they include requirements
traceability tools together with validation tools. A
good practice would be to identify the traceability
links in TDD environment. In other words, the
traceability links between test cases and related
code should be identified and evolved to control
co-changes. In this way, once the code is
refactored, the agile team is able to re-build the
traceability matrix again and determine what are
the test cases needed to be re-run. In particular, the
focus should be on the identification of the
traceability links added or deleted after the
refactoring process. In case the traceability links
between source code and the related unit tests are
broken during refactoring, this may be treated as a
warning for possible code and/or unit test review
[31]. Traceability information between
requirements, source code and unit tests can also
be used to drive software development, by
identifying requirements for which unit tests
and/or source code has not been implemented yet.
In addition, traceability information can be used to
support refactoring. Similar test cases can be
grouped in test suite and traced onto source code
classes. Source code classes related to more than
one test suite are good candidates for refactoring.

V. CONCLUSION AND FUTURE WORK

The agile methodology manifesto supports a very
efficient RE; this paper surveys the real process and
activities of agile RE including feasibility study,
elicitation, analysis, documentation, validation, and
management. The secret of the success of agile RE is
customer collaboration, good agile developers, and
experienced project managers. This article provides some
recommendations to solve the requirements documentati-
-on problem in agile projects, to make agile methodology
suitable for handling projects with critical (functional and
non-functional) requirements, to allow agile teams
involved in large software projects to work in parallel
with frequent communications between them. As future
work, we will present industrial case studies that support
our ideas, and try to develop a tool that support the
distinction between functional and non-functional
requirements; also we ignite debates for solving the
traceability problem in TDD environment to re-establish

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010 219

© 2010 ACADEMY PUBLISHER

traceability after refactoring and to use traceability to
improve refactoring.

AKNOWLEDGMENTS

We would like to thank Mr. Avishek Shrestha for his
help, valuable ideas, and various references.

REFERENCES

[1] K. Beck, A. Cockburn, R. Jeffries, and J. Highsmith,
(2001). “Agile manifesto”. http://www.agilemanifesto.org,
23-02-2010.

[2] J. Highsmith, “Agile Software Development Ecosystems,”
Addison–Wesley, Boston, MA, 2002.

[3] J. Highsmith, K. Orr, A. Cockburn, “Extreme
programming,” E-Business Application Delivery, pp. 4–17,
February, 2000.

[4] S. Bose, M. Kurhekar, J. Ghoshal, “Agile Methodology in
Requirements Engineering,” SETLabs Briefings Online.
http://www.infosys.com/research/publica-tions/agile-
requirements-engineering.pdf, February, 2010.

[5] A. Eberlein and J. Leite, “Agile Requirements Definition:
A View from Requirements Engineering,” Proceedings of
the International Workshop on Time-Constrained
Requirements Engineering (TCRE'02), Germany, 2002.

[6] R. Goetz, “How Agile Processes Can Help in Time-
Constrained Requirements Engineering,” International
Workshop on Time-Constrained Requirements
Engineering, 2002

[7] F. Paetsch, A. Eberlein, F. Maurer, “Requirements
engineering and agile software development,” Eighth
International Workshop on Enterprise Security, Linz,
Austria, 9 - 11 June, 2003.

[8] A. Sillitti, G. Succi, “Requirements Engineering for Agile
methods,” Engineering and Managing Software
Requirements, Springer, 2005.

[9] B. Ramesh, L. Cao and R. Baskerville, “Agile
requirements engineering practices and challenges: an
empirical study,” Info Systems J, “doi:10.1111/j.1365-
2575.2007.00259.x”, 2007.

[10] B. Rompaey and S. Demeyer, “Establishing Traceability
Links between Unit Test Cases and Units under Test,” 13th
European Conference on Software Maintenance and
Reengineering, Germany, 2009.

[11] S. Ambler, “When does(n’t) agile modeling make
sense?,”.http://www.agilemodeling.com/essays/whenDoes
AMWork.htm, February, 2010.

[12] S. Ambler, “Agile Modeling: Effective Practices for
Extreme Programming and the Unified Process,” John
Wiley & Sons, Inc. New York, 2002.

[13] S. R. Palmer and J. M. Felsing, “A Practical Guide to
Feature-Driven Development,” The Coad Series, 2002.

[14] Peter Coad, Eric Lefebvre and Jeff De Luca, “Java
Modeling in Color with UML,” Prentice Hall PTR,
Chapter 6, 1999.

[15] Jennifer Stapleton, “DSDM - Dynamic System
Development Method,” Addison-Wesley, 1995.

[16] K. Beck, “Extreme programming explained. Reading,
Mass,” Addison-Wesley, 1999.

[17] Pekka Abrahamsson, Outi Salo, Jussi Rankainen and
Juhani Warsta, “Agile software development methods -
Review and analysis,” VTT Electronics, 2002.

[18] K. Schwaber and M. Beedle, “Agile Software
Development With Scrum,” Upper Saddle River, NJ:
Prentice-Hall, 2002.

[19] A. Polini, “Software Requirements,”
http://www1.isti.cnr.it/~polini/lucidiSE/Requirements1.pdf
, February, 2010.

[20] A. Sidky and J. Arthur, “Determining the Applicability of
Agile Practices to Mission and Life-Critical Systems,”
Proceedings of the 31st IEEE Software Engineering
Workshop, IEEE Computer Society, pp. 3-12, 2007.

[21] T. Poppendieck and M. Poppendieck, “Lean Software
Development: An Agile Toolkit for Software Development
Managers,” Addison-Wesley, 2003.

[22] O. Salo, “Systematical Validation of Learning in Agile
Software Development Environment,” 7th International
Workshop on Learning Software Organizations,
Kaiserslautern, Germany, April, 2005.

[23] O. Salo and P. Abrahamsson, “Integrating Agile Software
Development and Software Process Improvement: a
Longitudinal Case Study,” 4th International Symposium on
Empirical Software Engineering, Noosa Heads, Australia,
November, 2005.

[24] I. Sommerville and P. Sawyer, “Requirements Engineering
– A Good Practice Guide,” John Wiley & Sons, 2000.

[25] E. Chikofsky and J. I. Cross, “Reverse engineering and
design recovery: A taxonomy,” IEEE Software, vol. 7, no.
1, pp. 13–17, 1990.

[26] K. Beck and M. Flower, "Planning Extreme
Programming," Addison-Wesley, 2001.

[27] B. Boehm, “Verifying and validating software
requirements and design specifications,” IEEE Software,
Vol. 1(1), 1984.

[28] L. Delgadillo, “Story-Wall: Lightweight Requirements
Management for Agile Software Development,” 15th IEEE
International Requirements Engineering Conference,
pp.377-378, 2007.

[29] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora,
“Recovering traceability links in software artifact
management systems using information retrieval methods,”
ACM Transactions on Software Engineering and
Methodology, vol. 16, no. 4, 2007.

[30] O. Gotel, and A. Finkelstein, “An Analysis of the
Requirements Traceability Problem,” Proceedings of the
IEEE International Conference on Requirements
Engineering, pp 94-101, April, 1994.

[31] J. Hayes, A. Dekhtyar and D. Janzen, “Towards Traceable
Test Driven Development,” Proceedings of the 2009 ICSE
Workshop on Traceability in Emerging Forms of Software
Engineering, pp.26-30, 2009.

[32] M. Fowler, “Refactoring: Improving the design of existing
code,” Addison Wesley, 1999.

220 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 3, AUGUST 2010

© 2010 ACADEMY PUBLISHER

