
Recovery Based Architecture To Protect Hids 
Log Files Using Time Stamps 

 
Surinder S. Khurana 

 Punjab Engg. College, Chandigarh, India 
surindersingh.cs07@pec.edu.in 

 
Divya Bansal , Prof. Sanjeev Sofat 

Punjab Engg. College, Chandigarh, India 
 

Abstract – After the great revolution in the field of 
Information Technology, many applications made necessity 
to run computer systems (either servers or client machines) 
all the time. Along with improvements and new inventions 
in technology, the threat of attacks through computer 
networks becomes a large issue. Host Based Intrusion 
Detection is a part of security system that protects hosts 
from various kinds of attacks. It also provides a great 
degree of visibility (of system activities). It is quite widest 
that HIDS are vulnerable to attacks. An adversary, if 
successfully enters in a system can disable HIDS or modify 
HIDS rules to hide its existence. One can easily evade HIDS. 
In [7] we propose a new architecture that protects HIDS 
from such attacks. In this paper, we have proposed a new 
mechanism to check integrity of log files. We have discussed 
its affects on performance of system. 
 

I.   INTRODUCTION 

Intrusion Detection System [5] is an imperative 
ingredient in network computer security which plays a 
vital role in detecting the intrusive activities before they 
occur. Intrusion Detection is usually done through 
scanning network traffic and/or hosts data and activities. 
These intrusive activities can be defined as - activities 
performed by some adversary for gaining unlawful 
benefits. The adverse affects of such intrusion activities 
are in terms of loss of confidentiality, integrity and 
availability of resources or services.  

IDSs can be classified under various categories. 
Figure-1 illustrates the various classifications of Intrusion 
Detection Systems. 

 
 

Response Based 
• Active IDS 
• Passive IDS 

 

 
Domain Of 
Detection Based 

• HIDS 
• NIDS 

 

 
Underlying 
Detection 
Technique 
Based 

• Anomaly based IDS 
• Signature based IDS 

 

 
Figure-1: IDS Classification 

 
An IDS can be active or passive. Passive IDS detect 

the attacks and logs information or raise alarms. Active 
IDS takes action in response to an already detected 
attack. Active IDSs are also known as Intrusion 
Prevention System.  

Section 2 discusses Detection and Recovery based 
Architecture to protect HIDS. Section 3 describes time 
stamping based protocol to check integrity of log files. In 
section 4 and 5, we discuss implementation details. 
Affects of our architecture on system performance has 
described in section 6. In section 7, we discuss some 
related works. We present directions for future work in 6 
and our conclusion in section 8. 

 

II.   OVERVIEW OF DETECTION AND RECOVERY 
BASED ARCHITECTURE 

In [1], architecture has proposed to detect attacks on 
HIDS and recover HIDS to its previous healthy state. The 
architecture protects HIDS from two type of attacks: first 
is that it does not allow adversary to kill the HIDS 
process. And the other is it does not allow unauthorized 
modification of rule or signature database. The basic idea 
behind the architecture is to allow the adversary to 
perform attack on HIDS and then recover the HIDS to its 
previous healthy state. A new process called MonitorIDS 
has been introduced in the proposed architecture. 
MonitorIDS is a lightweight system process which 
detects the attacks that affects HIDS and takes required 
actions to recover HIDS from affects of that attack. 
MonitorIDS takes care of both HIDS process and 
integrity of HIDS related information. However, this 
architecture does not consider underlying technique used 
by HIDS to detect intrusions. It can be used with either 
signature based or anomaly based IDS. 

Figure 2 depicts working of proposed architecture. As 
shown in figure 2, a backup of HIDS related files has 
been created immediately after the installation. 
MonitorIDS process is embedded with HIDS. This 
process regularly monitors the HIDS process and files 
after a small fraction of time gap. If MonitorIDS found 
HIDS process dead (detect unauthorized kill of HIDS) it 
immediately restarts the HIDS. It also monitors integrity 
of files related to HIDS. These files may include rule or 
signature database. If it found any unauthorized 
modification of HIDS files it replace the modified files 

110 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 2, MAY 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jetwi.2.2.110-114



Create Log For Attack and inform the Administartor.

Attack performed Attack performed 

MonitorIDS related 
 Files Changed 

      HIDS Files
         Changed 

Restore Files From
 Backup Directory

      HIDS Process
      Terminated

Create Backpup Directory During Installation

Monitor for Attack on HIDS

Run HIDS and Monitor IDS process

Monitor for Attack on MonitorIDS

MonitorIDS Process 
       Terminated

Restore Files From
 Backup Directory

Restart   MonitorIDS
 ProcessRestart The HIDS 

                                                                           Figure 2 : Block Diagram of proposed architecture

with files from backup directory. It also logs the attack 
information and informs the administrator.  

The architecture also takes care of backup directory 
and MonitorIDS process related information, so that these 
cannot be modified by some adversary. One important 
point to note about MonitorIDS is that it is a System 
process. To run this process as system process an entry 
labeled with respawn has made in /etc/inittab file.  That 
cannot be stopped. If some adversary makes attempt to 
kill this process, operating system kernel automatically 
restarts it. MonitorIDS process also takes care of 
/etc/inittab file so that entry related to it cannot be 
removed. 
 

III.  TIME STAMPING BASED MECHANISM TO 
CHECK INTEGRITY OF LOG FILES 

 
The main goal is to detect and recover unauthorized 

modification of log files by any process that is not related 
to HIDS. Such detection is made based on the last 
modification time (a file attribute, changed when the file 
was modified) of the log file. 

As shown in Figure-3, when HIDS is running under 
this mechanism it should follow the below given 
sequence of steps to write an entry in a file. 

 
1. Write log entry in log file and in backup copy of 

log file. 
2. Encrypt Last Modification Time of log file and its 

backup copy.  
3. Write encrypted version of last Modification time 

of log file and its backup copy into a file. 
 

Compares Last Modification 
Time of Log File 

With stored value 

Write log entry in log file 
and 

in backup copy of log file.

Encrypt Last Modification 
Time of log file 

and 
Its backup copy 

Save Encrypt Last Modification 
Times in a File 

Replace Log File With 
Backup coopy

 Figure - 3:  Sequence of Steps to Write Entry in Log File

 

Before writing any entry IDS process compares the 
current last modification time of log file and last 
modification time that was stored in a file as specified in 
step 3 given above. A mismatch between these two 
values represents that any other process changed the log 
file means unauthorized modification of log file. In such 
a case log file is replaced with its backup copy or if 
unauthorized access to the backup file is detected, it will 
be replaced with log file. 

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 2, MAY 2010 111

© 2010 ACADEMY PUBLISHER



IV.   IMPLEMENTATION 

The proposed architecture has been implemented in 
Red Hat Linux environment. Our architecture does not 
emphasis on underlying technology used by host based 
intrusion detection system to detect intrusion. Rather than 
construct a HIDS from scratch, we decided to leverage an 
HIDS within current implementation of our architecture.  

The two hypotheses that underlie this dissertation are 
practical in nature. First, they intend to show that it is 
feasible to protect HIDS using proposed architecture. 
Second, proposed architecture does not affect system 
performance adversely. Therefore, an implementation 
was a center point for the development of this dissertation 
and was used both for practical verification of the 
intended features of the architecture and for aiding in 
reasoning about and experimenting with its 
characteristics. 

 
V.   NEW PROCESSES PROPOSED IN 

ARCHITECTURE 

Practically MonitorIDS process (introduced in our 
proposed architecture) has implemented with two sub 
processes : 

1. MonitorProcesses 
2. MonitorFiles 
To ensure that MoitorIDS processes live forever we 

run these processes as system processes. When the 
adversary tries to kill this process kernel automatically 
restarts it. A respawn labeled entry related to these 
processes has been written in system file ‘\etc\inittab’ to 
run these processes as system processes.  

MonitorProcesses process ensures that all processes 
related to OSSEC are always running. If it found any 
process dead it restarts the process corresponding HIDS 
process. MonitorProcesses also prevents modification 
related to these entries in ‘\etc\inittab’ file. In case of 
deletion or modification of these entries from 
‘\etc\inittab’ file, this process writes new entries. The 
purpose of MonitorFiles sub-process is to protect HIDS 
files from unauthorized modification. If it detects any 
modification or deletion, it restores the victim file with 
genuine file from backup directory. 

VI.   AFFECTS ON PERFORMANCE OF THE 
SYSTEM 

To evaluate the affects on the performance on system 
following steps are carried out : 

1. To evaluate the affects on execution time of basic 
Linux commands, some time         measurements 
were carried out. 

2. System Monitoring Utility was used to check the 
changes in utilization of processor due to 
processes related to our proposed architecture.  

A. Affects on execution of Linux commands   

For this purpose, most of the time measurements were 
carried out regarding basic Linux commands (ps, find, 
who). Each Command was executed 100 times and all 
corresponding 100 execution times were recorded. The 

average of these timings has been considered as the 
Average Execution Time(ATE). Average Execution Time 
(AET) was calculated twice. In first run, we calculate 
execution time (ATE1) without running processes (such 
as MonitorIDS process) related to our architecture. And 
in second run we calculate execution time (ATE2) while 
processes related to our architecture were running.  

 
Table-1 Average Execution Time in milliseconds 

 
Table 1 represents average execution time (in 

milliseconds) and corresponding overhead. Very small 
fraction of time was observed as overhead due to the 
MonitorIDS process.   

B. Changes in processor utilization due MonitorIDS 
Process 

MonitorIDS process is a very lightweight process  
that works in iterative manner. In each iteration checks 
the state (process terminated or running) of HIDS 
processes and integrity of HIDS related files. One 
iteration requires approximately .001 Second time for 
execution.  

Figure 3 represents the CPU utilization graph when 
MonitorIDS process was not running. Because the 
processor in use is Dual Core two lines represents 
utilizations of processor. As shown in the graph  CPU 
utilization is between 0% to 20%. Most of the time the 
CPU utilization is below 10%. 

  
 

Figure 3: Graph showing CPU utilization while MonitorIDS not running  

          Command                            ps –ef                 find / >/dev/null    
    
  Number of system 
   calls                                                  536                        10055           
    
(a) Average Execution Time 

 (AET 1)                                      25.9                          63.1          
     (time required to execute  
      on machine while not running  
      processes  related to proposed  
      architecture ) 
 
(b) Average Execution Time 

 (AET 2)                                      30.1                         65.5          
      (time required to execute  
      on machine while processes   
      related to proposed architecture 
      are running ) 
 
Overhead relative to (a)                       0.16%                      0.03%     
                         

112 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 2, MAY 2010

© 2010 ACADEMY PUBLISHER



But as shown in graph given in figure 4, while 
MonitorIDS process has been running the CPU use is 
increased to some extent. Most of the time one of the 
CPU utilization lies between 15 to 20 % and other CPU 
utilization lies between 5 to 15%.  

 

 
 

 Figure 4 Graph showing CPU utilization while MonitorIDS running  
. 

As in comparison to graph in figure3 the CPU use is 
increased about approximately 8 to 10% of total CPU 
utilization while MonitorIDS process has been running.  

VII.   RELATED WORK 

To protect the HIDS many researchers have given the 
proposals. In [2], Laureano and Jamhour define the use of 
virtual machine to protect the HIDS. Virtual machine is 
used because of its inherent properties like separation of 
execution space. Other benefits [3] of virtual machine, 
that are useful in system security are isolation (a process 
running outside the VM cannot be accessed internal 
process of VM), inspection (VM state can be accessed by 
VM Monitor), and interposition (any operation issued by 
VM can be modified by VM Monitor). The idea behind 
the architecture is to encapsulate the system activities 
(both user and guest activities) in virtual machine and 
place the Intrusion Detection System outside the scope of 
virtual machine. Now any process has not been able to 
access the IDS. IDS monitors the activities performed in 
the virtual machine and identify the intrusive activities. 
Their approach use type II virtual machine. The 
architecture protects the IDS from attacks by placing it 
out from the scope of other processes. However, this 
approach has one basic problem regarding with 
theperformance issue. The overhead due to virtual 
machine degrades the system performance to very worse 
status. As results given by them if we compare the 
execution timings of basic routines under an actual 
machine and virtual environment, there is a large 
variation. The time taken by routines under virtual 
machine is much more than time taken on an actual 
machine. 

Table 2 represents a subset of results given by 
Laureano and Jamhour in [2]. The virtual machine 
overhead is so high that each routine requires double or 

even more time for execution as in comparison to time it 
requires to execute on a normal machine.  

 
Table-2 Virtual Machine Overhead on execution time 

 

 
The architecture also affects the network 

performance. The performance of applications such as 
FTP and HTML etc. is also turned down.   

The work in [4] represents the use of virtual machine 
type-I. The basic idea is same as to run the HIDS in 
execution space that cannot be accessible by other 
processes. However, virtual machine overheads also 
affect this architecture. 

The use of virtual machines for the security of 
systems has defined by G. Dunlap & et. al.[6]. The 
proposal defines an intermediate layer between the 
monitor and the host system, called Revirt. This layer 
captures the data sent through the syslog process (the 
standard UNIX logging daemon) of the virtual machine 
and sends it to the host system for storing and later 
analysis. However, if the virtual system is compromised, 
the guest syslog process can be terminated and/or the log 
messages can be manipulated. by the intruder, and 
consequently they are no longer reliable. 

VIII.   FUTURE WORK 

Still there are many issues to be addressed about how 
the proposed architecture can be best implemented and 
used. MonitorIDS process checks HIDS continuously 
in iterative way. To check HIDS in an iteration 
MonitorIDS process requires .001 seconds.  

On an average, the adversary has .0005 (.0001/2) 
seconds to disable our architecture and HIDS by 
executing following steps : 

 
1. Terminate the MonitorIDS process  
2. Remove the entry related to MonitorIDS process 

from /etc/inittab file to stop the Operating system 
to restart MonitorIDS process.  

3. Terminate HIDS processes or change  files related 
to HIDS. 

 
A DFA (Deterministic Finite Automata) shown in 

Figure 4, represent such sequences of steps. State q1 is 
the initial healthy state and q4 is the final state. After 
reaching at q4 state attacker can tamper the HIDS. To 
avoid this case, there should be some mechanism that 

          Command                      ps –ef        find / >/dev/null 
 
Number of system calls              536                    10055 
 
(a) Host Time                              25                       125  
     (time required to execute  
      On real machine ) 
 
(b) Guest Time                            68                         484 
      (time required to execute  
      On real machine ) 
 
Overhead relative to (a)             172%                     287% 
 

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 2, MAY 2010 113

© 2010 ACADEMY PUBLISHER



prevents transitions of system states from q1 to q4. As 
discussed above in average case transition from q1 to q4 
is only possible if made in .0005 seconds. Such 
mechanism can be based on detecting system call 
sequence required for this transition. If any such 
sequence is detected it should delay (approximately .0005  
execution of these system calls so that before the system 
state will change from q2 or q3 to state q4, transition 
from q1 or q2 to state q1(initial healthy state) took place. 
This mechanism can be implemented by changing 
operating system kernel. 

 
 

 
Figure-4: DFA representing sequence of steps to disable our 

architecture. 
 

Issue of authorization and integrity of genuine 
updates of HIDS information is another important issue  
to be addressed. In this approach, we did not consider any 
technique to authorize of update. Because IDS’s 
rules/signature database requires frequent updates, 
inclusion of a strong authorization mechanism would be 
required. 

 
 
 
 
 

IX.  CONCLUSION 
 

In this paper, we propose a new time stamping based 
approach to check integrity of log files of HIDS. This 
approach can be combined with Detection and Auto 
Recovery based architecture to Protect Host Based IDS. 
As discussed in section 4, unlike other approaches our 
approach does not use virtual machine and hence does 
not affect system performance adversely.  

Our mechanism ensures that HIDS process always 
live (cannot be killed by adversary) and the information 
related to HIDS can never be updated by any adversary. 
This architecture also ensures the integrity of frequently 
updated log files of HIDS. 
 

REFERENCES 
 

[1] A. Abraham, C. Grosan and C.M. Vide. Evolutionary 
Design of Intrusion Detection Programs. International 
Journal of Network Security, Vol. 4, No. 3, 2007. 

[2] M Laureano, C Maziero, E Jamhour, Protecting host-
based intrusion detectors through virtual machines- 
Computer Networks- Elsevier, 2007. 

[3] P. Chen, B. Noble, When Virtual Is Better Than Real, 
Workshop on Hot Topics in Operating Systems, 2001. 

[4] T. Garfinkel, M. Rosenblum, A virtual machine 
introspection based architecture for intrusion detection, 
ISOC Network and Distributed System Security 
Symposium (2003). 

[5] S. Axelsson. Research in intrusion detection systems: A 
survey. Technical report, Chalmers University of 
Technology, 1999. 

[6] G. Dunlap, S. King, S. Cinar, M. Basrai, P. Chen, ReVirt: 
Enabling Intrusion  Analysis through Virtual-Machine 
Logging and Replay, USENIX Symposium on Operating 
Systems Design and  Implementation, 2002. 

[7] Surinder Singh khurana, Ms. Divya Bansal, Prof. Sanjeev 
Sofat “Detection and Auto Recovery Approach to Protect 
Host Based IDS” 2009 IEEE International Advance 
Computing Conference (IACC 2009) 

 
 
 

114 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 2, NO. 2, MAY 2010

© 2010 ACADEMY PUBLISHER


