
Securely Streaming SVG Web-Based Electronic
Healthcare Records involving Android Mobile

Clients

Sabah Mohammed and Jinan Fiaidhi
Department of Computer Science, Lakehead University,

Thunder Bay, Ontario P7B 5E1, Canada
{mohammed, jfiaidhi}@lakeheadu.ca

Osama Mohammed

Department of Software Engineering, Lakehead University,
Thunder Bay, Ontario P7B 5E1, Canada

omohamme@lakeheadu.ca

Abstract— Although Electronic Healthcare Records (EHRs)
technology largely facilitates patient care by providing
clinicians with the ability to review a more complete medical
record, interoperability and privacy issues present
significant barriers to their implementation. This article
proposes the open source SVG (Scalable Vector Graphics)
standard for representing electronic healthcare records for
interoperability purpose where security can be enforced
using lightweight SAX streaming filters. The SVG filters are
based on the Java SAX API to push pieces of the SVG to the
encryption/decryption handlers. The SAX handlers can
filter, skip tags, or encrypt tags partially or universally at
any time from the stream of the SVG EHRs. A prototype
for implementing the SAX streaming filter is presented
along with experiments to test its applicability in a web
environment for sharing SVG EHRs on the Android mobile
development environment.

Index Terms— Open Source EHRs, Semantic
Interoperability, SVG, SAX Filters, XML Encryption
Standard, Android.

I. INTRODUCTION

 E-health networks can provide more seamless and
integrated services to patients and health care workers
that are more broadly accessible by leveraging Internet
technology and electronic health records. In order to do
so, however, issues of security and privacy of personal
health information must be addressed [1]. Moreover,
healthcare systems globally are challenged by the human
and financial resource requirements of an ever growing
and aging population. Health promotion and preventative
programs along with early and rapid access to treatment
are all key factors to improving healthy living.
Investments in medical technology to improve the
delivery of health care are also a critical consideration
and it is here that the mobile Internet has a role to play.
Mobile Internet technology has also proven itself
invaluable in bringing important medical applications to
the point of care [2]. In the past, physicians and
healthcare users who required information related to a
medication almost always had to wait for the legacy

system to provide it in a paper fashion. Healthcare has
long relied upon paper based record systems which have
become cumbersome and expensive to manage and
present significant challenges related to speed of
accessibility and security. Thus the emerging benefit of
mobile Internet technology to healthcare is to provide
mobile access to medical records. Again, using mobile
technology means that the treatment process can be sped
up and the potential for medical errors can be reduced.
With motivations such as patient privacy protection and
laws like the US Health Insurance Portability and
Accountability Act (HIPAA), the US President Executive
Order (13335 of April 2004) on the migration to EHR,
the recent President Obama’s Healthcare Reform where
EHRs is the key for such strategy, the Canada Personal
Information Protection and Electronic Documents Act
(PIPEDA) and Ontario Personal Health Information
Protection Act (PHIPA), make implementations of EHRs
and their security a fundamental concern within the
healthcare industry.

 However, the advantages of mobility and openness
offered by the Internet to promote connectivity between
healthcare user’s devices are not in line with the
connectivity between e-health applications. There are
many different standards for EHRs (e.g. EN13606,
HL7v3 RIM, HL7 CDA) and we need to provide the right
harmonization between these different standards to
achieve the required compatibility. Although there are
many standards development organizations who care
about e-health standardization including EHRs (e.g. HL7,
CEN, ISO/IEC, ASTM, DICOM, OMG, IHE, IEEE,
OASIS, LOINC, SNOMED, WHO, UN/CEFACT, W3C
and various universities, research institutes and national
standards bodies), much work is still required to resolve
several key compatibility issues and gain global
acceptance of widely used standards for the

Extended article from an article submitted to the E-health Workshop,
Part of MCETCH 2009 Conference, University of Ottawa, Ottawa,
Ontario, Canada, May 4-6, 2009.

146 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 1, NO. 2, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jetwi.1.2.146-152

representation and interchange of shared EHRs.
Therefore, the only possible solution to foster more
engagement between vendors and the standardization
community is to have EHRs as open source and deal with
their translation, transcoding and integration through the
use of semantic interoperability technologies [3,4,5]. In
this paper, we are investigating the issue on how the open
source EHRs and the semantic technologies may securely
support and promote interoperability among electronic
healthcare records systems. Currently, the primitive
techniques used for achieving some sort of semantic
interoperability are based on XML technologies [6]. Such
systems include: Synapses, SynEx, GEHR, GALEN
among many others [7,8,9,10,22]. In such systems, the
XML based semantic interoperability facilitates the
representation, coding, transmission and use of meaning
and metadata across health services, between providers,
patients, citizens and authorities, research and training
[13]. In this direction, any adopted security policy or
technique needs to conform to the methods of
representation, coding and transmission of XML-based
information. For this reason, several e-health
organizations developed systems for sharing EHRs where
their security is based on the W3C XML Security
(www.w3c.org). Among such systems are: EHRcom
(www.centc251.org/), OpenEHR (www.openehr.org/),
HL7 CDA (www.hl7.org), IHE XDS (www.ihe.net), HIE
RID (www.ihe.net), and DICOMX [23]. However, the
type of security adopted is based on identity management
techniques such as OpenID (http://openid.net/) and
OAuth (http://oauth.net/) which requires trusting a third
party. However this becomes more challenging when the
objective is collaboration across organizational
boundaries. Numerous identity management services as
well as access control methods exist for each enterprise
and there is a need to develop methods for cross-
boundary control. For this reason, some healthcare users
do not prefer trusting a third party and prefer to use
security that are based on direct trust. Direct trust refers
to a situation in which two individuals or organizations
have established a trusting relationship between
themselves. Whereas third party trust allows individuals
to implicitly trust each other without a personal
relationship, direct trust is predicated on the existence of
a personal or business relationship prior to exchanging
secure information. Although, trusting a third party
according to some security experts imposes additional
security holes and unrequited risks [24], there are many
reliable solutions that rely on third parties for identity
certification and authentication even within cross-
boundary environments [29].

II. THE SVG OPEN STANDARD

Following the advent of XML in the 1990s, corporate
computing customers began to realize the business value
in adopting open formats and standardization in the
computer products and applications that they relied on. IT
professionals benefited from the common data format
possible with XML because of its capacity to be read by
applications, platforms, and Internet browsers. The use of

XML syntax for the exchange of electronic patient
records is no exception as it evident in many projects
(e.g. Synapses, SynEx [22] and Open XML[25]).
However, these efforts have not focused on representing
EHRs that are rich with imaging/multimedia data.
Certainly the use of XML in these attempts was focused
on the representation of the administrative, clinical
textual data and the financial transactions related to the
patient record. Indeed, the use of XML is not limited for
the representation of textual documents, but also it can be
used to represent medical tests, imaging and multimedia.
In this direction there are varieties of XML compliant
formats that can be used to represent imaging/multimedia
information besides textual information (e.g. VRML,
SVG, MPEG-7). However, selecting any of these formats
depends on the quality of information obtained and on
how easy it can be retrieved, accessed, filtered and
managed. However, VRML and MPEG7 are more
dedicated formats for representing multimedia animations
only and what is required for representing EHRs must
include imaging and textual data. For this purpose, SVG
is the only standard format that can be used for such
comprehensive representation of patient data including
text, imaging and multimedia [13]. Once an application
is built using SVG such as the patient healthcare record, a
wide range of other XML technologies can be brought to
bear its rendering and processing (e.g. CSS, XSLT,
XPath, DOM or SAX). The broad support behind SVG
comes from its many advantages. SVG has sophisticated
graphic features, which is naturally important for a
graphic format, but it also benefits from having an XML
grammar. SVG has all the advantages of XML, such as
internationalization (Unicode support), wide tool support,
easy manipulation through standard APIs (e.g. DOM,
Batik API) and easy transformation (e.g.XSLT). In the
graphical arena and especially compared to raster
graphics formats (such as GIF, JPEG or PNG images).
SVG has the advantage of being [11,]:

* Lightweight. For many types of graphics, an SVG
graphic will be more compact than its raster
equivalent
* Interactive. SVG content can include scripts to
enable interaction and animation.
* Searchable. Because SVG content is XML, it
becomes possible to search the content of an SVG
image for text elements, comments or any kind of
meta-data.
* Structured and Accessible. Graphic objects can be
grouped and organized hierarchically
* Annotatable. Since SVG is XML, one can annotate
any part of the image.

Our objective in this article is to achieve secure sharing

and accessing of EHRs represented as XML and SVG for
the Web and other ubiquitous environments. In this
direction, we are demonstrating the usefulness of the
SVG standard in representing medical records that
involves medical and radiological imaging such as those
involved with several legacy systems (e.g. RIS, PACS
and DICOM). Moreover, we are introducing streaming-

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 1, NO. 2, NOVEMBER 2009 147

© 2009 ACADEMY PUBLISHER

based security filtering capabilities to complement other
means of controlling the release of SVG EHRs to
individuals and organizations on the Web and outside of
the direct healthcare delivery settings. However, to use
SVG to support EHR, one needs to develop a
comprehensive data model to support patient record
representation using both textual and graphical primitives
on 2-D layout. To achieve this, we need first to adopt an
EHRs standard (e.g. HL7 v.3) and there are some tools
that may assist healthcare users to create such EHRs
according to the selected standard. For example, the
Altova MapForce Enterprise Edition 2009
(http://www.altova.com/) toolkit supports mapping to
HL7 v.3 standard and convert as well as catalogue the
resulting record in a variety of XML-compliant formats
including SVG. Having set the SVG EHRs standard and
they way it is represented using XML (e.g. RDF), then
one can use a powerful query engine to acquire
information from the EHRs repositories based on widely
used Web servers such as SPARQL
(http://www.w3.org/TR/rdf-sparql-query/) and Jena
(http://jena.sourceforge.net/). Where SPARQL represents
a qualified query and data access specification and Jena
provides a Web Server environment that supports
SPARQL and includes a rule-based inference engine for
further reasoning requirements (www.w3.org/TR/rdf-
sparql-query/) . What concerns us in this article is the
security issues related to open source SVG EHRs access
on the Web.

III. SECURING THE OPEN SOURCE SVG BASED EHRS

 There are variety of techniques that may be used to
secure XML-Based open source data such as the use of
XML Security Suite for Java (XSS4J) [12] or the use of
the Security Assertion Markup Language (SAML) and its
OpenSAML APIs (www.opensaml.org). However, both
techniques do not consider the canonical order of the
XML-based document. One other possible solution can
be based on the use compression techniques that convert
vector graphics into binary with an "encryption" to
increase its security. However, controlling access to an
XML-based document requires a perfect organization of
the internal data and the use of a matching metadata.
Unfortunately, in both of these cases (i.e. the non-
canonical security toolkits and the compression) the order
requirement cannot be fulfilled, since their underlying
techniques imply a radical restructuring of all internal
information structures and may cause scrambling of the
metadata. Even if the metadata information can be
extracted first (e.g. compression techniques like XMLZip
or XMill, which leaves the metadata information intact),
such techniques did not succeed [14]. Alternatively, we
need to use security techniques that maintain the SVG
structure intact and filter only information that need to be
secured. Such a security technique can safely digest and
sign the canonical form of the SVG document and at the
time of verification, the canonical form of the SVG needs
to be verified. For this purpose, there are two security
techniques, which adhere to the structure of the SVG
document: the access control map that allows only

authorized accesses to particular parts of the SVG
document [15]; and the use of SVG path filters (where
such filters apply methods of compression and to alther
the SVG path description). The first approach is useful
for authentication purposes and cannot be used for
general security. The second approach that uses SVG
path filters may be built based on utilizing compression
and approximation functions (e.g. cubic Bezier [16],
triangulation techniques [17]). However, the results of
using such functions are not very good: files size are too
high, images are blurred, with a bad “blocked” effect and
colors are too different from the original image [18, 19].
Alternatively, SVG path filters may be built using certain
scripting visual filters or more generally using security
filters that are based on streaming the parsing based
events. The use of visual filters are a familiar concept if
one has ever used browser based scripting languages like
JavaScript: The user may take a raw image and tell their
browser to put a little blur on it, or they might reverse
some of the image itself. In this direction W3C [20]
recommended certain SVG visual filters which consist of
a series of graphics operations that are applied to a given
source SVG document to produce a modified graphical
change. The result of the filter effect is rendered to the
target device instead of the original source graphic. Filter
visual effects are defined by the 'filter' elements within
the JavaScript program. To apply a filter effect to a
graphics element or a container element, you set the value
of the 'filter' property on the given element such that it
references the filter effect. Each 'filter' element contains a
set of filter primitives as its children. Each filter primitive
performs a single fundamental graphical operation (e.g.
blur) on one or more inputs, producing a graphical result.
Because most of the filter primitives represent some form
of image processing, in most cases the output from a filter
primitive is a single RGB image. When applied to
container elements such as a graph path 'g', the SVG
'filter' property applies to the contents of the group as a
whole. Typically, the graphics commands are executed as
part of the processing of the referenced 'filter' element via
use of the keywords SourceGraphic or SourceAlpha.
Filter effects can be applied to container elements with no
content (e.g., an empty 'g' element), in which case the
SourceGraphic or SourceAlpha consist of a transparent
black rectangle that is the size of the filter effects region.
SVG Filter primitives such as 'feGaussianBlur',
'feOffset', 'feSpecularLighting', 'feComposite', 'feMerge', '
feTurbulence ', 'feConvolveMatrix', 'feDiffuseLighting',
'feDisplacementMap', 'feFlood', 'feImage',
'feMorphology', and 'feTile' takes input SourceAlpha,
which is the alpha channel of the source graphic. The
result is stored in a temporary buffer which then can be
used by another SVG filter primitive to add more
graphical effects. Although, the W3C SVG visual filters
can be used to hide or change some of the SVG document
contents using a wide variety of server side SVG
generators or scripts that can add SVG filters on the fly
(e.g. AgileBox, DataSlinger, CGI Perl Scripts), the usage
of W3C SVG visual filters cannot secure SVG documents
as the receiver can delete these filters from the SVG

148 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 1, NO. 2, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

source and view the original images. For this reason we
need more generic and secure SVG filters which
transform securely SVG EHR in a predictable fashion by
recognizing and processing the SVG structured elements
through parsing and streaming. More specifically we are
proposing to use SVG streaming techniques like the Java
SAX API along with some standard W3C XML
Encryption techniques (www.w3.org/TR/xmlenc-core/).
The use of SAX API helps in parsing and streaming the
SVG contents in orderly way as Figure 1 illustrates.

Figure 1: Streaming an XML file using the SAX API.

 SAX offers an efficient alternative to processing any
XML-based document compared to the Document Object
Model (DOM). When you use the DOM to manipulate an
XML/SVG file, the DOM reads the file, breaks it up into
individual objects; such as elements, attributes, and
comments; and then creates a tree structure of the
document in memory. The benefit of using the DOM is
that you can individually reference and manipulate each
object, called a node. However, creating a tree structure
for a document, especially a large document, requires a
significant amount of memory and utilizes large amount
of processing power that cannot be readily available for
mobile and highly constrained devices. Unlike the DOM,
SAX is stream and event based; it generates events as it
finds specific symbols in an XML/SVG document. One
advantage of SAX is that it reads a section of an
XML/SVG document, generates an event, and then
moves on to the next section. Because SAX processes
documents in this serial fashion, it uses less memory than
the DOM and is therefore better for processing large
documents. SAX can create applications that abort
processing when a particular piece of information is
found. For this reason, the Java SAX API is often
associated with mobile applications. This means we can
easily use the SAX API with any Java-Enabled mobile
device (e.g. Nokia, Windows Mobile, Blackberry or any
other Java J2ME mobile device like Android). Android
brings attractive design to anyone, regardless of what
phone they are using. Additionally, features typically
only available on high-end phones, like mapping
applications and threaded text messages, are available
with Android. Android isn’t dependent on device
hardware. Instead, it changes which features it offers.
iPhone-like features would be reserved for individuals
with pricier phones, but those with lesser-priced phones
need not worry about lacking applications like mapping
and address books. Most importantly with Android, he

average consumer does not have to know what open
standard (e.g. SVG or XML) is to benefit from it. The use
of SAX filters can be extended to be used with the
popular Web 2.0 publish and subscribe protocol (e.g
RSS) [27]. In short, the Android platform is an open
source mobile development platform [28].

IV. APPLYING THE XML ENCRYPTION

 With the increasing importance and widespread
distribution of SVGs, the protection of the information
represented by such open-source standard becomes
increasingly significant. SVG can be copied and widely
distributed without any significant loss of quality.
Protecting the property rights of the owners’ data is
therefore an increasingly important capability. In this
direction, the W3C has provided the specifications for the
security of any XML compliant data (e.g. SVG) based on
what is called “XML Encryption”
(http://www.w3.org/Encryption/2001/). Although, there
are many implementations for such specifications given
the increasing importance of XML on the Internet and
Web, these implementations are based on heavyweight
APIs (e.g. Apache XML Security API, XMLSec,
XMLDSig), which cannot yield acceptable performance
for the Web and ubiquitous applications [20]. Hence, we
need to implement a more lightweight implementation to
the XML Encryption specification. With SAX streaming,
such lightweight implementation can be achieved along
with the capability to go through the document structure
orderly as a sequence of events. Thus implementing the
XML Encryption standard based on SAX requires only
listing to these events and handling them. To program
systems based on SAX with any Java/J2ME environment
like Android, all we need is to implement two interfaces,
the XMLReader interface that represents the parser and
the ContentHandler interface that receives data from
the parser.

V. THE SAX SECURITY MODEL

 Our SAX security programming model is based on the
concept of security mediators, called SAX Filters that
enable legitimate external customers to gain remote
electronic access to the SVG EHR residing in a medical
institution, while inhibiting the release of content that
cannot be released, even when the requester appears to be
authorized. Such a security mediator is typically placed
into the firewall surrounding the institution’s internal
database activities. A SAX filter is simply a class that is
passed as the event handler to another class that generates
SAX events, then forwards all or some of those events on
the next handler (or filter) in the processing chain. A filter
may prune the document tree by not forwarding events
for elements with a given name (or that meet some other
condition), while in other cases, a filter might generate its
own new events to add parent or child elements to certain
elements of the existing document stream. Also, element
attributes can be added or removed or the character data
altered in some way. SAX filters often perform only a
single, simple task, but when piped together they are

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 1, NO. 2, NOVEMBER 2009 149

© 2009 ACADEMY PUBLISHER

capable of complex tasks. The basic structure of a SAX
filter is based on an XMLReader that receives already
parsed events from another XMLReader. Figure 2 shows
the course of SVG processing with a SAX filter. A client
application instructs the filter, represented in SAX by an
XMLFilter object, to read the text of an XML
document. The filter then instructs the parser to read the
text of an XML/SVG document. As it reads, the parser
calls back to the filter’s ContentHandler. The filter’s
ContentHandler then calls back to the client
application’s ContentHandler.

Figure 2: SVG processing with SAX filters.

 Since the filter sits in the middle between the real
parser and the client application, it can change the stream
of events that gets passed back and forth between the two.
For example, it can call a cryptography library to encrypt
elements, decrypt encrypted elements, sign a document or
verify the signature. Using this idea of a SAX filter, we
developed a model for protecting SVG EHR contents. A
client application instructs the SAX Filter to read the text
of an SVG EHR. The filter then instructs the parser to
read the text of an SVG EHR. As it reads, the parser calls
back to the filter’s ContentHandler. The filter’s
ContentHandler will contain the processing instructions,
which could be an instruction to encrypt/decrypt elements
of the SVG document. The filter’s ContentHandler will
do the cryptographic tasks and will call back to the client
application’s ContentHandler.

Developing the SVG SAX Security Filter

 Our developed SAX filter is called XMLFilter which
inherits its interface methods from the XMLReader
superinterface. XMLFilter has just two methods,
getParent() and setParent(). The parent of a filter is the
XMLReader to which the filter delegates most of its
work. XMLReader provides other methods such as
getFeature(), setFeature(), getProperty(), setProperty(),
setEntityResolver(), getEntityResolver(),

setDTDHandler(), getDTDHandler(),
setContentHandler(), getContentHandler(),
setErrorHandler(), getErrorHandler() and parse(). The
developed SVG Security prototype involves two SAX
filters, for encrypting and decrypting (FilterEncryption
and FilterDecryption). The main class of the SVG
security prototype is called SVGEncryption which calls
instances of these SVG filters and an instance of a real
parser, then passed the real parser to the filter’s
setParent() method:

String encryptFilter = "FilterEncryption";
String decryptFilter = "FilterDecryption";

// Encryption filter
XMLFilter filter =

(XMLFilter)Class.forName(encryptFilter).newInstance();
filter.setParent(XMLReaderFactory.createXMLReader())

// Decryption Filter
XMLFilter filter = (XMLFilter)

Class.forName(decryptFilter).newInstance();
filter.setParent(XMLReaderFactory.createXMLReader())

By doing this it is confirmed that the client application
only interacts with these filters. It forgets that the original
parser exists. Going behind the back of the filter, for
instance, by calling setContentHandler() on
parser instead of on filter, runs the risk of
confusing the filter by violating constraints it expects to
be true. All such occasions were carefully avoided.
Actually, the XMLFilter interface filters are called from
the client application to the parser. Most events are
passed in the other direction from the parser to the client
application through the various callback interfaces,
especially ContentHandler. Hence, the XMLFilter is set
up to filter calls from the client application to the parser,
but not calls from the parser to the client application. To
achieve this type of communication, the
setContentHandler() method is replaced with two method
calls (HandlerDecryption, HandlerEncryption) so that the
handlers receive the callback events from the parent
parser. These methods either passes them along or passes
something different as instructed to the client
application’s handler methods. The following illustrates
how these two methods are called via the
setContentHandler() method:
public void setContentHandler(ContentHandler handler)

{ parent.setContentHandler(new
HandlerEncryption(handler));}

...
public void setContentHandler(ContentHandler handler)

{ parent.setContentHandler(new
HandlerDecryption(handler));}

The Security Handler for FilterEncryption

 The first thing the HandlerEncryption does is that it
asks the users to provide with some information (e.g
Encryption Key). When the information collection is
done, it goes straight to business. To do the encryption
the filter content handler does the following:

150 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 1, NO. 2, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

1. When the parser encounters the start-tag and end-tag
that needs to be encrypted it changes the tag name to
<EncryptedData> and </EncryptedData>

2. When the parser encounters the element that needs to
be encrypted it sends the element content to
Encrypter class to do the encryption and receives the
cipher text.

3. Creates new attributes of EncryptedData (to save the
cipher and other encryption information).

This handler can encrypt all the SVG tags (e.g. all path
tags), any particular SVG tag (e.g. only a particular path
tag), or even a portion of a particular path (e.g.
“horizontal lineto”, “smooth curveto”, etc).

Figure 3 illustrates the use of SAX filter in validating
authorized and unauthorized access to an SVG EHR for
an Android mobile client.

 (Authorized Access)

 (Unauthorized Access)
Figure 3: Accessing SVG-Based EHRs from a Web URL
using the Android Mobile Client.

VI. CONCLUSIONS

This article proposes the open source SVG standard for
representing EHRs for interoperability purpose where
security can be enforced using a lightweight SAX filters.
The SAX filters implements the XML Encryption
specification standard as introduced by the W3C. The
steps for developing these SAX filters are introduced.
The SAX Filter Encryption/Decryption services enable
users to encipher SVG EHRs as whole or partially for any
SVG tag(s) or attribute(s) within a specific tag. A
prototype has been developed based on Android mobile
environment to test the applicability of using the SAX
filters for securely sharing SVG EHRs among trusted
parties on the Web and via mobile clients. The SAX
filters enable each trusted party to authenticate and access
EHRs published by the other trusted party.

ACKNOWLEDGMENT

This research is funded by the first two authors NSERC
Discovery Grants. The authors would like to thank Mr. A. Arif
for implementing the Java SAX Filter of the desktop client
[11,26].

REFERENCES

[1] L. Peyton, J. Hu, C. Doshi, P. Seguin, “Addressing Privacy
in a Federated Identity Management Network for
EHealth”, IEEE Eighth World Congress on the
Management of eBusiness (WCMeB 2007)

[2] P. De Toledo et. al., “Interoperability of a Mobile Health
Care Solution with Electronic Healthcare Record
Systems”, IEEE 28th Annual International Conference of
Engineering in Medicine and Biology Society, 2006.
EMBS APOS 06. Aug. 30 2006-Sept. 3 2006, pp5214 –
5217.

[3] J.T. Fernández-Breis et al, “Using semantic technologies to
promote interoperability between electronic healthcare
records’ information models”, Proceedings of the 28th
IEEE EMBS Annual International Conference, New York
City, USA, Aug 30-Sept 3, 2006, pp2614-2617

[4] D. Lopez and B. Blobel, “Semantic interoperability
between clinical and public health information systems for
improving public health services”. PubMed Journal,
2007;127: pp256-267. Available Online:
.http://www.ncbi.nlm.nih.gov/pubmed/17901617

[5] A. Aguilar, “Semantic Interoperability in the context of e-
Health”, Research Seminar, DERI Galway, December
15th, 2005. www.m3pe.org/seminar/aguilar.pdf

[6] D. G Katehakis et al, “An Infrastructure for Integrated
Electronic Health Record Services: The Role of XML
(Extensible Markup Language)”, Journal of Medical
Internet Research (http://www.jmir.org), 17.3.2001.

[7] Health Level 7, SGML/XML Special Working Group.
Patient Record Architecture (PRA), (2001 Jan 22).
http://www.hl7.org/special/committees/sgml/sgml.htm

[8] Comité Européen de Normalisation (CEN), Technical
Committee 251, Working Group I. Information Models.
2001, http://www.centc251.org/

[9] American Society for Testing and Materials (ASTM),
subcommittee E31.25. 2001,
http://www.astm.org/COMMIT/COMMITTEE/E31.htm

[10] M. Sanromà, A. Mateu and K. Oliveras, “Survey of
Electronic Health Record Standards”, Research Group on

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 1, NO. 2, NOVEMBER 2009 151

© 2009 ACADEMY PUBLISHER

Artificial Intelligence (BANZAI), Document from the
Research Project K4CARE (IST-2004-026968 K4CARE).

[11] J. Fiaidhi, S. Mohammed, M. Garg and A. Arif (2005),
“Developing a SAX Filtering Intermediary Service for
Protecting SVG Multimedia Contents in a Ubiquitous
Publish/Subscribe Environment”, Int.Conference on
Internet Computing (ICOMP05), Las Vegas, USA, June
27-30, 2005.

[12] B. Siddiqui, Secure XML messaging with JMS, Part 2:
Using XSS4J to implement XML Security, IBM Research
Journal, 21 Feb 2000,
http://www.ibm.com/developerworks/edu/x-dw-x-
secmes2-i.html.

[13] Semantic-HEALTH-Report, Semantic Interoperability for
Better Health and Safer Healthcare: Deployment and
Research Roadmap for Europe, Ref.: Plan-Publi
2009.2098, Catalogue number : KK-80-09-453-EN-C,
ISBN-13 : 978-92-79-11139-6, Jan. 2 0 0 9.

[14] M. Cokus and D. Winkowski (2002), “XML Sizing and
Compression Study for Military Wireless Data”, XML
Conference 2002, Dec. 8-13, 2002, Batimore, MD, USA.

[15] E. Damiani, S. De Capitani di Vimercati, E. Fernández-
Medina, P. Samarati (2002), "An Access Control System
for SVG Documents," in Proc. of the Sixteenth Annual
IFIP WG 11.3 Working Conference on Data and
Application Security, King's College, University of
Cambridge, UK, July 29-31, 2002.

[16] P. Kamthan (2000), “XMLization of Graphics”, Internet
Related Technology OnLine Journal, Monday 27th March
2000, http://www.irt.org/articles/js209/

[17] S. Battiato, G. Barbera, G. Di Blasi, G. Gallo, G. Messina
(2005), “Advanced SVG Triangulation/Polygonalization of
Digital Images”, In proceedings of IS&T/SPIE Electronic
Imaging 2005.

[18] J. Feng, T, Nishita, X. Jin, Q. Peng (2002), "B-Spline Free-
Form Deformation of Polygonal Object as Trimmed Bezier
Surfaces", The Visual Computer, Vol.18, No.8, pp.493-
510, 2002-12.

[19] S. Lee (2002), “Wavelet-Based Multiresolution Surface
Approximation from Height Fields”, Ph.D. Thesis, Virginia
Polytechnic Insitute and State University, Blacksburg,
February 2002

[20] M. Duignan, R. Biddle and E. Tempero, “Evaluating
scalable vector graphics for use in software visualization”,
Proceedings of the Australian symposium on Information
visualization, Adelaide, Australia, Volume 24, pp. 127 –
136, 2003

[21] F. Ipfelkofer, B. Lorenz and H. Ohlbach, “Ontology
Driven Visualisation of Maps with SVG –An Example for
Semantic Programming”, IEEE Proceedings of the
Information Visualization (IV’06), 2006

[22] B. Jung and J. Grimson , “Synapses/SynEx goes XML”,
In: Peter K, Blaz Z, Janez S, Marjan P, Rolf E, editor. In
Proceedings of the Medical Informatics Europe '99
Conference (MIE99): August, 1999; Slovenia, Ljubljana.
IOS Press,pp. 906–911.

[23] B. Jung, “DICOM-X - seamless integration of medical
images into the HER”, 18th IEEE Symposium
onComputer-Based Medical Systems,June 23-24 June
2005: 203- 207

[24] N. Szabo, “Trusted Third Parties Are Security Holes”,
White Paper,2005, Available Online:
http://szabo.best.vwh.net/ttps.html

[25] T. Pattison et. al, “Using Office Open XML Formats to
Support Electronic Health Records Portability and Health
Industry Standards” ,October 2007,MSDN Office
Developer Center. Available Online:
http://msdn.microsoft.com/enus/library/bb879915.aspx

[26] S. Mohammed, J. Fiaidhi and A. Arif, "Developing
filtering techniques for securing vector graphics images
applied to ubiquitous patient records," Proceedings of the
5th WSEAS International Conference on
Telecommunications and Informatics, Istanbul, Turkey, May
27-29, 2006 (pp139-144)

[27] Tane Piper, “Writing a SAX-based RSS and Podcast
Parser”, Learning Android, 18/02/2009.
http://learningandroid.org/tutorial/2009/02/writing-sax-
based-rss-and-podcast-parser,

[28] Michael Galpin, “Working with XML on Android: Build
Java applications for mobile devices”. IBM Research
Journal, 23 Jun 2009,
http://www.ibm.com/developerworks/library/x-android/

[29] Oluwafemi Ajayi, Richard Sinnott, Anthony Stell,Dynamic
Trust Negotiation For Flexible e-Health Collaborations,
Mardi Gras Conference ’2008, Jan 31 – Feb 2, Baton
Rouge, Louisiana, USA.

Sabah Mohammed is a Full Professor with the Department

of Computer Science, Lakehead University, Ontario, Canada.
Dr. Mohammed is also an Adjunct research Professor with the
University of Western Ontario, Canada. His research interests
includes: Medical informatics, Web Oriented Architectures,
Open Source Multimedia Protection and Web Intelligence. Dr.
Mohammed holds two graduate degrees in Computer Science
from Glasgow University (MSc-1981) and from Brunel
University (PhD-1986). Dr. Mohammed is a Professional
member of ACM, member of the British Computer Society
(MBCS), member of the Canadian Information Processing
Society (ISP) and a Professional Engineer (PEng).

Jinan Fiaidhi is a Full Professor of Computer Science,

Lakehead University, Ontario, Canada. She is also an Adjunct
Research Professor with the University of Western Ontario,
Canada. Her research interests includes: Collaborative Learning
Environments, Enterprise Mashups, Web 2.0, Mobile Learning
and Peer-to-peer programming.

Osama Mohammed is a final year HBEng student with the

Department of Software Engineering, Lakehead University,
Ontario, Canada.

152 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 1, NO. 2, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

