
A Cost Effective Load Balancing Scheme for

Better Resource Utilization in Cloud Computing

K.PushpaLatha
Student, M.Phil(Computer Science)

Noorul Islam Centre of Higher Education, Thucklay, India

ktpushpalatha@gmail.com,

Dr. R. S. Shaji
Professor, Information Technology,

Noorul Islam Centre of Higher Education, Thucklay, India

shajiswaram@yahoo.com,

J. P. Jayan
Assistant Professor, Department of Software Engineering

Noorul Islam Centre of Higher Education, Thucklay, India

jeyanjp@gmail.com.

Abstract—Cloud computing is a new rising paradigm,

consists a pool of virtual resources for cloud users, where

they can access, build and use different operations as per

their need by just agree upon the contract called Service

Level Agreement (SLA) with the cloud provider. Task

Allocation and Storage Distribution are the two discussable

issues while talking about cloud storage (Collection of

VMs).Thus it is very important to the cloud provider for

choosing highly efficient and maximum profitable

scheduling and load leveling strategy to allocate resources to

the various customers for their different operations. In this

article a cost effective load balancing scheme for cloud

computing is proposed that increases the performance of the

resources by decreasing migration time and response time.

The proposed system has a new task scheduling with load

balancing technique (TSLB algorithm) associated with

compression technique to increase resource utilization and

to speed up the process.

IndexTerms—task scheduling, load balancing, cloud

computing,compression.

I. INTRODUCTION

A. Cloud Computing

In the computer world, very latest and commonly

pronounceable term by the many is “Cloud computing”. A

computing system consists of number of interconnected

virtual machines to process different tasks from different

users called cloud. Cloud computing includes three major

components Figure 1 named Datacenters, servers and

virtual machines. A cloud contains multiple of datacenters,

each datacenter contains group of servers and each server

is extended by different number of virtual machines. By

using these components it provided three kinds of services

Figure 2 to its clients. They are, Infrastructure as a Service

(IaaS) for providingvirtualized storage, hardware, servers

and networking componentseg: Amazon Elastic Compute

Cloud, Platform as a Service(PaaS) for application

platforms and databases as a serviceeg: Google

AppEngine and Software as a Service(SaaS) for installing,

running and maintaining software in the cloud eg: Google

AppEngine. These services are facilitates that access

software, applications, and data, build their own software,

application and infrastructure, use the storage and

resources in a very safe and less complexity manner.

Since it is a place of very large, scalable and virtual

resources in the parallel and distributed computing

environment, its clients are allowed to use these resources

for performing their tasks. For using those resources the

clients need to make an agreement with the cloud

provider called SLA. By this agreement the cloud

provider takes some rent from the clients for the

resources used by them. So it is called as a pay-per-use-

on-demand internet system. By the increasing clients with

multiple tasks in the cloud computing it is important to

manage virtual resources in an effective way to avoid

resource wastage and the virtual manager is responsible

for selecting a superlative scheduling with load balancing

plan.

Figure 1. Components in cloud computing

280 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 3, AUGUST 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jetwi.6.3.280-290

B. Load Balancing on Cloud

Load balancing is a typical and important consideration

in the cloud computing on resource allocation. It is an

optimization technique required to distribute the workload

dynamically between various resources. It can be used to

increase resource utilization and throughput, lower latency,

reduce Response time, and avoid system overload.

In cloud computing it is the process of distributing

service requests to resources [1] and its role is highly

engage in IaaS virtual cloud computing environment Load

balancing classified into distributed load balancing (eg:

Honeybee Foraging Algorithm) and centralized load

balancing (eg: Periodic Hierarchical Load Balancing

Algorithm) [15]. Load balancing techniques are classified

as System based load balancing algorithms and Process

initiation based load balancing algorithms. System state

based load balancing algorithms are classified as static

and dynamic load balancing algorithms. Dynamic load

balancing algorithms are classified as Distributed and non-

distributed and the distributed load balancing algorithms

are classified as co-operative and non co-operative load

balancing algorithms. The non distributed algorithms are

classified as centralized and semi distributed load

balancing algorithms. Process initiation based load

balancing algorithms are classified as sender initiation

based, receiver initiation based and symmetric load

balancing algorithms [12]. Generally load balancers use

scheduling algorithms to assign where the request is sent.

Typical scheduling algorithms in current use are round

robin, weighted round robin, fastest response time, least

connections and weighted least connections and custom

assignment based. Round robin DSN is a simple algorithm

and it is used by the Google as its workload manager [1].

Cloud load balancing is done in two stages Figure3,

first one is the virtual machine load and another one is the

resource layer load. The following are the metrics need to

be considered while constructing load balancing algorithm:

• Throughput

It describes the count of completed task in a unit of

time [19] and it should be high for the best performance.

• Overhead

It describes the overall overhead on the implementation

of load balancing algorithm and it should be minimized

for the effective functionality of an algorithm.

• Fault tolerance

It describes the ability of takeover the failure.

• Migration time

It describes the time taken while transferring task from

one node to another and it should be minimized.

• Response Time

It describes an amount of time taken to respond by a

particular load balancing algorithm and should be

minimized

• Resource Utilization

Good load balancing algorithm should give high

resource utilization.

• Performance

It describes the overall efficiency of a system and it

should be increased

C. Scheduling on Cloud

Scheduling is the heart function of any OS and its duty

is to schedule the task to the processor in a desired

manner [16] [17]. In the cloud computing task scheduling

occupies important part and it defines that a mapping

mechanism from users‟ tasks to the appropriate selection

of resources and its execution [18]. The users‟ tasks are

many in number and keep coming in a particular

manner.Various scheduling strategies are in use to

provide effective task processing by speed up the process

and maximizing resource utilization.

Generally scheduling on cloud has the following

features:

1. Task scheduling caters to a unified resources

platform.

2. Task scheduling is global centralized.

3. Each node in the cloud is independent.

4. The scalability of task scheduling

5. Task scheduling can be dynamically self-

adaptive

Following are some of the goals settled on scheduling

in the cloud environment,

1. To provide optimal tasks scheduling for users

2. To provide the entire cloud system throughput.

3. To achieve High load balancing level

4. To provide best quality of service

5. To meet economic principle

Traditional job scheduling algorithms are not suitable

for providing scheduling in the cloud environment. Task

scheduling algorithms in the cloud computing can be

classified into two broad groups; first one is Batch Mode

Heuristic Scheduling Algorithms and the second one is

On-line mode heuristic algorithms. In the first one, tasks

are queued and collected into a set when they arrive in the

system. The scheduling algorithm will start after a fixed

period of time. In the second type, tasks are scheduled

only at the time of their arrival in the task tray.The on-

line mode heuristic scheduling algorithms are well

suitable for a cloud environment.Because the cloud

environment is a heterogeneous system and each

resources‟ speed differs easily while processing different

tasks [7].

Figure 2. Services in cloud computing

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 3, AUGUST 2014 281

© 2014 ACADEMY PUBLISHER

Figure 3.Load balancing architecture

In the Cloud environment load balanced task

scheduling is an important issue to be discussed. Since it

is a NP-Complete problem, most of the clouds computing

research scholars focus on this load balancing problems.

D. Compression

Data compression is a technique of reducing the size of

data. It is helpful in data storage to minimize the space

needed in the resources and in data transmission to speed

up the transaction process. Thus it can be defined as a

space–time complexity trade-off. Lossless and Lossy

Compression are two types of data compression. In lossy

data compression the compressed data cannot be

recovered as its original data. So it is not suitable for

textual and sensitive data and commonly it is used for

Digitally Sampled Analogy Data. In Lossless data

compression the compressed data can be recovered its

original data. Thus it is best for text file compression [9].

Data compression can also be used for in-network

processing technique in order to save energy because it

reduces the amount of data in order to reduce data

transmitted and/or decreases transfer time because the

size of data is reduced [10]. J-bit encoding (JBE) works

by manipulate bits of data to reduce the size and optimize

input for other algorithm. The main idea of this algorithm

is to split the input data into two data where the first data

will contain original nonzero byte and the second data

will contain bit value explaining position of nonzero and

zero bytes. Both data can be compressed separately with

other data compression algorithm to achieve maximum

compression ratio [11].

II.BACKGROUND STUDY

Many papers have been studied related on scheduling

tasks and load balancing and few of them noted below, by

this way identified that many scheduling algorithms have

been designed for cloud environments, to solve the

problem of mapping a set of tasks to a set of virtual

machines (scheduling). In the infrastructure as a service

perspective, cloud providers allow customers to run their

applications in modern virtualized cloud data centers [20].

It has been proved that optimal-solving of this mapping is

an NP problem.

Jose Luis Lucas-Simarro is proposed “Scheduling

strategies for optimal service deployment across multiple

clouds”; he introduced a cloud brokering architecture. It

acts as a middleware between the user and the

administrator. Scheduler, Database service pool, virtual

manager, cloud manager, VM interface, and information

interface a cloud broker are the components in this

architecture to handle with cloud market information, to

help users to distribute their services among available

clouds making it transparent for them, to provide for

users in the task of managing their virtual infrastructure

using a unique interface, and also to provide them the

way to optimize some parameters of their service (e.g.

cost, performance) with different scheduling strategies [3].

Sen Su was proposed “Cost-efficient task scheduling

for executing large programs in the cloud”. Here tasks are

represented as a DAG and two heuristic strategies used

for scheduling. The first strategy, named Pareto Optimal

Scheduling Heuristic, is using Pareto dominance concept

to map tasks to the most cost-efficient VMs dynamically.

The second strategy, named Slack Time Scheduling

Heuristic, is added as a complementary for the first

strategy and it for reducing the monetary costs of non-

critical tasks. It gives good makespan and reduces

monitory cost to a large extent. This algorithm is

designed for single type of virtual machines with one

pricing model. So it is not suitable for multiple types of

VMs with different pricing models [2].

YuanjunLailiis proposed “A Ranking Chaos Algorithm

for dual scheduling of cloud service and computing

resource in private cloud”, here a dual scheduling of cloud

services and computing resources which combines the

service composition optimal selection and optimal

allocation of computing resources is presented. A new

Ranking Chaos algorithm is designed for DS-CSCR in

private cloud to achieve high efficient one-time decision

in DS-CSCR. This algorithm combines new adaptive

chaos optimal strategy with ranking selection and dynamic

heuristic mechanism to balance the exploration and

exploitation in optimization. Finding optimal solution of

DS-CSCR is tough. Through the experiments he proved

that this algorithm is improved in searching capability and

reduced time-consuming [5].

Chia-Ming Wu proposed “A green energy efficient

scheduling algorithm using the DVFS technique for cloud

datacenters”. Here the author introduced a scheduling

algorithm for the cloud datacenter with a dynamic voltage

frequency scaling technique. Two processes are there.

First one is to provide the feasible combination or

scheduling for a job. The next one is to provide the

appropriate voltage and frequency supply for the servers

through the DVFS technique. The system architecture of

DVFS algorithm is sketched out with job submission,

VM Manager, Scheduling Algorithm, DVFS controller,

Servers and VMs. This algorithm is good in reducing

power consumption but not provided the solid

confirmation on the quality of performance of a system

[6].

282 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 3, AUGUST 2014

© 2014 ACADEMY PUBLISHER

III. MODELLING AND ARCHITECTURE

3.1. System Model

In cloud computing the tasks of multiple clients come

across datacenters, multiple of servers and virtual

machines for their processes. By nature these all satisfies

heterogeneity. Every server has its own RAM and hard

disk and they could be shared with the virtual machine

instances generated on them. For the best performance it

is needed to handle the resources and their memory in a

well efficient manner. Following are some definitions

made to achieve such an effective mapping and balancing

scheme:

Definition 1. Let Vr= { Vr1, Vr2, Vr3,……. Vrn } denotes

the set of virtual machines in a server and Vc={ Vc1, Vc2,

Vc3, Vc4,……Vcn } are corresponding speed of each VM

as CPU cycle per second.

Definition 2. Let Tl= { Tl1, Tl2, Tl3, Tl4,…….. Tlm }

denotes the set of independent tasks is in the task tray

waiting for virtual machines to be processed and Tc=

{ Tc1, Tc2, Tc3, Tc4,…….. Tcm} are the corresponding

CPU cycles needed of each task.

Definition 3. Let Sa ={ Sa1, Sa2, Sa3, Sa4,………Sap } denotes

list of SLA, associated with VMs, is provided by the

cloud service provider. Based on the client selection from

this list the client tasks are mapped to virtual machines to

be processed.

Tasks executions are assumed as pre-emptive. Most of

the providers offer their virtual machines in one-hour

periods. Thus here the time quantum is treated as one

hour.

3.1.1. Costreckoning

In the cloud different types of workloads assign to

different types of virtual machines and these virtual

machines have different process capacities and afford on

different pricing models. Google pricing model is

adopted here. In this pricing model, highest processing

power virtual machine is associated with a higher

monetary cost and one of the two pricing model, a linear

pricing model is used for the monetary cost calculation.

By this pricing model the cost of virtual machine usage is

measured on the basis of number of CPU cycles

consumed. Let Vcpis the slowest machine (Vs)‟s CPU

cycle and minimum price charged to Vs is Vcs. then the

cost to execute task Ti on Vjis calculated by,

𝑪𝑻 𝑻𝒊, 𝑽𝑱 = 𝜷 × 𝑬𝑻 𝑻𝒊, 𝑽𝑱 × 𝑽𝒄𝒔 ×
Ti‟s CPU Cycles

Vj‟s CPU Cycles
 (1)

Here, β is a random variable used to generate different

combination of virtual machine pricing and capacity.

3.1.2. Makespanreckoning

The maximum completion time of all the tasks is

known as makespan. It is actually a time variation of start

and finish time of a sequence of tasks in a resource. Total

completion time, TCt, of a task is calculated by,

 𝑻𝑪𝒕 = 𝑻𝑪 + 𝑻𝑬 + 𝑻𝑾 (2)

𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 = 𝑴𝑨𝑿 𝑻𝑪𝒊 + 𝑻𝑬𝒊 + 𝑻𝑾𝒊
𝒏
𝒊=𝟏 (3)

Here, TCdenotes Communication time of the task

between resources, TE denotes the time taken to execute

and TW denotes the time to wait for resource.

3.1.3. VM Load reckoning

Load of a virtual machine (LoadVM) is the summation

of all tasks‟ CPU cycles to be processes on that particular

virtual machine. Thus it can be calculated by the

following formulae,

 𝐋𝐨𝐚𝐝𝐕𝐌 = 𝑻𝑪𝑪𝒊
𝒏
𝒊=𝟏 (4)

Here, Tcc is denotes single task‟s CPU cycles count.

3.1.4. Resourceutilization

Resource utilization (RUT) is measured by calculating

the number of tasks (Tli) handled by all virtual machines

(Vrj) in particular time duration (t).

𝑹𝑼𝑻 = ((𝑻𝒍𝒊,𝑽𝒓𝒋
𝒏,𝒎
𝒊=𝟎
𝒋=𝟎

)/𝒕 (5)

3.1.5. Throughputreckoning

Throughput (TP) of a system is calculated by the count

of task in the maximum average execution time of a set of

tasks. The formulae is,

Tp=TasksCount/MAX(AETi); i=0,1,2…..n , (6)

Here, AETi is denotes the Average Execution Time of

each task, and it is calculated by,

𝐀𝐄𝐓𝐢 =
𝐓𝐜𝐜𝐢/𝐕𝐜𝐜𝐣

𝐕𝐜𝐜𝐧

𝐧
𝐣=𝟏 (7)

Here, Tcci denotes the time taken to complete the CPU

cycles of particular task allocated on a particular machine,

Vccjdenotes time taken to complete all CPU cycles

allocated on a particular virtual machine, and Vccn

denotes over all time taken to complete all tasks on all

virtual machines.

3.2. System Architecture

The system architecture is shown in [Fig.8] consists of

the Task Queue, Virtual Machine Manager, the status

record, Compression technique, the TSLB Algorithm and

Virtual Machines. Their descriptions are,

Tasks:

 Tasks are in ready queue, waiting for the

resources to get deploy. Each task is labelled with the

CPU cycles expected to be processed. While sending task

the SLA also has to be sent with it.

Virtual Machine Manager:

 Virtual Machine Manager is the Controller of

virtual machines and has responsible for selecting

suitable resources for every task. When the tasks are

received the requirement of resources and status of VMs

are send to the TSLB algorithm, once the virtual manager

receives the choice of TSLB algorithm , the virtual

manager generate the virtual machine instances as per the

need and assign task to them with the help of algorithm.

Compression Technique:

 With the help of J-bit encodingcompression

technique the virtual machine manager Compress the data

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 3, AUGUST 2014 283

© 2014 ACADEMY PUBLISHER

before allocate resource for it. It helps out to speed up the

process by reducing the use of memory space.

Status Record:

 Keeping status of all resources and the tasks

entered in to process. It is done in periodically.

TSLB Algorithm:

An algorithm used in scheduling tasks to resources and

balancing the workload of overloaded resources with

under loaded resources effectively. SLA also considered

while mapping tasks to resources. The TSLB Algorithm

verifies the status of tasks and resources. According to

the status record it is given decision made to the virtual

manager to perform either mapping new task to virtual

machines or balancing the resources with the assistance

of load calculation.

Virtual Machines:

Virtual machines are the instances generated from the

servers to share and execute the tasks assigned to that

server. These are the resources used for processing tasks.

The time and cost complexity of VMs are managed by

the virtual manager.

3.3. Parameters and Metrics

3.3.1. Parametersused

Table [1] shows the parameters in this algorithm used

while implementation.

3.3.2 TSLB algorithm

Procedures & Parameters

1. Cost Calculation

 This procedure is to calculate the cost acquired for

the completion of client‟s requested task

processing

 Parameters: Time, Basic Charge, CPU Cycles of

VM, CPU Cycles of Task.

2. Load Calculation

 This procedure is to calculate the workload

of each resource for balancing the schedule.

 Parameters: VM list, Capacity, Status

3. Makespan Calculation

 This procedure is to calculate the makespan

which is meant that the maximum completion time

 of all tasks

 Parameters: VM list, Task list

4. Precedence setting

 This procedure is to set the priority of tasks

and virtual machines.

 Parameters: Task list with CPU Cycles, VM list

with capacity

5. Scheduling tasks

 This procedure is to make sure the scheduled

tasks and the virtual machines get assigned for

task processing.

 Parameters: Task list, VM list
TABLE 1

 PARAMETERS

6. Resource Utilization

 This procedure is to find the ability of the

system to help in the course of resource utilization.

 Parameters: Task list, VM list, time

7. Throughput Calculation

 This procedure is to measure the range of

output produced by a system that is related to the

input feed.

 Parameters: Task list, VM list, time

3.3.3. Metricsconsidered:

1. Makespan

 It a measure of time taken to complete all tasks,

while calculating makespan the time of migration

oftask between virtual machines, time spent on

execution on each machine, and time for waiting

resources are needed to be considered. Equation (2)

is used to calculate the makespan.

2. Resource Utilization

 Resource utilization is a measure of virtual

 machines used for processing a particular set of

 tasks. This is calculated by Equation (5)

3. Throughput

 Throughput of a system is calculated by the

 count of task and the average execution time of

 each task. It is calculated by the Equation (7)

IV. METHODOLOGY

In the cloud computing, inside the IaaS, the scheduling

is done in two levels; first one is on servers in each

datacenter and on virtual machines in each server. In this

proposed scheme, all tasks received from the clients are

put into the task queue associated with their SLA number

and the weight of each task. Here weight of the task is the

total number of CPU cycles needed by each task. Before

the tasks are entered into scheduling process, they

compressed by using J-bit encoding algorithm. Then the

system first checks out the servers‟ capacity and the

availability of its resources and arrange them in

ascending order then choose the most fit server to

Virtual Machine(Vr) Task(Tl)

ID Tl ID VrID

Capacity Size Status

Speed Arrival Time SLA

Cost
Execution Start Time

(st)

Latest Finish

Time (lft)

LoadVM
Earliest Start Time
(est)

Earliest Finish
Time (eft)

Status(Idle, Running,

Failed)

Figure 4. The system architeure

284 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 3, AUGUST 2014

© 2014 ACADEMY PUBLISHER

4.1 Procedure of TSLB Algorithm

The simplest procedure of TSLB algorithm is shown

below:

1. Take compressed tasks and Virtual Machines are as

input

2. Initialize the status record

3. Set priority by „priority setting‟ procedure based on

CPU cycles.

4. Load of virtual machines calculated by „Load

Calculation‟ procedure

5. Update status record

6. Assign task to virtual machine by „Mapping‟

procedure.

Procedure Schedule (vr[],tl[]){

for each tl

for each vr

{ //get load of each virtual machine from load

calculation procedure

currentcapacity[vr]=capacity[vr]-load[vr]

 //get task status from status record

 If(load[vr]<=capacity[vr] &&

status[tl]==’waiting’

&&tcw[tl]<=currentcapacity[vr]

 vrtcw[tl]}

} //output:virtual machines and their assigned

tasks

Procedure Load(vr[],tcw[],tcr[])

{

for each vr{

for each tcw,tcr}

Load[vr]=tc[tcw]+tc[tcr]}

 }

 } //output:load of each virtual machine

perform the given task list. After selecting the server the

process of TSLB will start. In Figure 5 the planning of the

data flow of TSLB algorithm is sketched clearly.

The detailed procedure of the TSLB algorithm is show

below:

4.2. Procedures and Pseudo Code:

This section revealed the list of pseudo codes of

procedures used on the TSLB algorithm and the pseudo

codes of metrics costing:

4.2.1 Precedence setting
This procedure takes compressed tasks and their CPU

cycles needed and the resources and their capacity as

inputs. Next arrange all tasks in ascending order and all

resources in descending order. The outputs of this

procedure are the ordered tasks and resources.

4.2.2. Loadcalculation

Load of virtual machine is needed to calculate for

scheduling to avoid congestion. For that here the

procedure has taken the resource „vr‟ and all tasks‟ CPU

cycles in waiting queue „tcw‟ and in processing „tcr‟ are

as input and determines the load. According to the load of

each machine that is calculated, the status record gets

updated. So here the load of each virtual machine is the

output

4.2.3. Scheduling

This procedure handles assigning tasks, tl[], to virtual

machines, vr[], according to the load calculated by the

„Load‟ procedure. So here the compressed and ordered

tasks those are waiting for resources and the ordered

virtual machines those are ready to receive tasks for

processing are the inputs.

∀𝑉𝑀

∀ 𝑠𝑐ℎ𝑑𝑢𝑙𝑒𝑑 𝐶𝑇

1. Input: CTi(from TaskTray),VMj,tq; i=1…n|n≥1;

j=1…m|m≥1

2. ∀𝑉𝑀, ∀𝐶𝑇,

Call “PreSet”

3. ∀𝑉𝑀,

Call “Load”

4. ∀𝑉𝑀, ∀ 𝑢𝑛𝑠𝑐ℎ𝑑𝑢𝑙𝑒𝑑 𝐶𝑇,

If Curr.Cap[VMi]≤ Size[CTi] &&

Status[VMi]= „idle‟ || Status[VMi]=

„underloaded‟ then

 Call “Schedule”

 Call “Statusupdate”

5. 𝑖𝑓𝑡𝑞𝑡ℎ𝑒𝑛

 If Status[CTi]==”WoM” &&

Status[VMi]== „overloaded‟ then

 Move CTi to TaskTray

 Else If Status[CTi]==”Completed”

then

 Delete CTi from TaskTray

 Call “Statusupdate”

6. Repeat 1 to 5 till

∀𝐶𝑇 , Status[CTi]==”Completed”||

 ∃𝐶𝑇 𝑜𝑛 𝑇𝑎𝑠𝑘𝑇𝑟𝑎𝑦

Procedure PreSet(tl[], vr[])

{

for each tl {

iftc[tl]>tc[tl+1] {

 temp= tl;

 tl = tl +1;

 tl+1=temp; } }

for each vr {

if capacity[vr]<capacity[vr+1] {

 Temp=vr;

 vr=vr+1;

 vr+1=temp; } }

} //output: ordered tasks and virtual machines

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 3, AUGUST 2014 285

© 2014 ACADEMY PUBLISHER

Procedure CostCal(vr[],tl[],bc,t[]){

for i=1 to n //tasks

for j=1 to m //virtual machines

 {

mc(i,j)=β*t(i,j)*bc*cc[i]/cc[j] //monitory cost on each

machine

tmc+=mc(i,j)} //output:totalmonitary cost

}

Procedure MakespanCal(tl[],vr[]){

for each tl{

for each vr

 {

 ct[i]+=lst[i][j]-eft[i][j]

 et[i]+=lft[i][j]-eft[i][j]

 wt[i]+=fst[i]-at[i]

 tc[i]+= ct[i][j]+ et[i][j]+ wt[i][j]

 msp=max(tc[i])} //output:maskespan

}

Procedure ResUtil(tl[],vr[],t)

{

 for(i=1 to n) //virtual machines{

 for(j=1 to m) //tasks on each virtual machine{

 if(task[j].status==’completed’&&(timediff(task[j].st,task

[j].et)<=t

 count[i]++;}}

for i=1 to n

 c+=count[i]; //output: count of tasks performed

}

4.2.4. Statusupdation

Once the tasks are scheduled then the status of each

task and each virtual machine are automatically get

updated periodically by one hour in the status record.

This could be shown in this following procedure.

4.2.5. Costcalculation

The cost of all tasks performed is calculated in the

procedure. Here list of virtual machines, list of tasks with

cpu cycles, basic charge that is agreed in SLA, and time

utilized on each machine are the inputs and monitory cost

is an output.

4.2.6. Makespancalculations

This procedure helps to find the metric makespan. It

accepts tasks and their execution times, waiting times and

migration times. Migration time is the summation of the

time difference between last start time and the earliest

finish time of a task in each machine. Waiting time is the

time difference between the task arrived in the ready

queue and first starting time of execution. Execution time

is summation of time differences between latest finish

time and the earliest finish time in each machine.

4.2.7. Resourceutilization

This procedure helps to calculate the metrics resource

utilization. It accepts tasks and virtual machines are the

inputs and time duration in hours. And it is giving the

output as a count of tasks performed in a given period of

time.

Procedure Statusupdate(vr[],tl[]){

//tasks status updation

for i=1 to n //virtual machines{

for j=1 to m//tasks on each i{

counp[j]+=completedcycles[j]}

}

for i=1 to m //all tasks

{

if(countp[i]==size[i]) status[i]=‟completed‟

 else if (countp[i]<size[i]) status[i]=‟running‟

 else if(countp[i]==0) status[i]=‟waiting‟

}

//VM status updation

//get load of each virtual machine from load

calculation procedure

for i=1 to n // virtual machine

{

if(load[i]>capacity[i]) status[i]=‟heavyloaded‟

 else if (load[i]<capacity[i])

status[i]=‟underloaded‟

 else if(load[i]==capacity[i])

status[i]=‟normallyloaded‟}

}

Figure 5. Data flow diagram

286 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 3, AUGUST 2014

© 2014 ACADEMY PUBLISHER

Procedure Thruput(tl[],vr[],t[]){

t1=ft[t1,v1]-st[t1,v1] //time taken to complete single

task

for(i=1 to n) //virtual machines

for(j=1 to m) //tasks

 {

t2[i]+=ft[j]-st[j] //time taken to complete allotted

tasks on single machine

 }

for(i=1 to n) //all t2 s

 t3+=t2[i] //time taken to complete all tasks

for(i=1 to n) //all task

aet[i]= (t1/t2[i])/t3

Tp=taskcount/MAX(aet[i])

}

4.2.8. Throughputcalculation:

This procedure facilitates to locate the metric named

through put. For that it accepts the tasks, virtual machines,

and execution details of each task on various machines

thenperforms the required calculation and utilizes the

equation and giving the throughput as an output.

V. IMPLEMENTATION

5.1. ExperimentalSetup:

The LBTS algorithm has been implemented in

Microsoft Visual Studio 2012 Express on Windows

Azure Platform. It provides the easiest way of virtual

machine creation and provides multiples of class libraries

for the .Net developers [13]. All those libraries can be

used by downloading NuGet package manager on

Microsoft Visual Studio 2012. NuGet is the package

manager with number of tools that facilitate the

constructing and deconstructing packages [14].

5.2. Variation on Inputs and Its Effects:

Firstly, make the flow of uncompressed tasks (files)

through this algorithm and collected the results to verify

the metrics. Next collect and verify the metrics values

with compressed tasks.

The comparisons of both results are shown a huge

difference on all the metric values. It could be seen from

the Figure 6. It also shows that the CPU usage is

minimized greatly while passed tasks though

compression.

5.3. Initial Experiments and Sample Outputs:

For the experiment there is an assumption made on

cloud computing that the cloud provider posses various

level of services with the various virtual machines. The

variations of virtual machines are treated by their

capacity, speed and cost associated with it. Here the 5

resources and the 6 tasks model are taken. Each task is

having different sizes and each virtual machine is holding

different capacities, speed and cost as it is shown in table

2 and table 3.

Figure 6. Comparison chart of compressed and

uncompressed tasks execution

0

50

100

150

200

250

300

350

400

Compressed Task Uncompressed Tasks

360.00

140.00

300

250

180

300

va
lu

e
s(

%
)

Resouce Utilization

Throughput

Makespan

TABLE 2

TASKS

Task Size(CPU Cycles) SLA

Tl1 64200 Sl3

Tl2 18250 Sl2

Tl3 23616 Sl8

Tl4 48876 Sl1

Tl5 9170 Sl2

Tl6 4264 Sl4

TABLE 3
 VIRTUAL MACHINES

Virtual Machine
Capacity(CPU

Cycles)
Speed(b/sec)

Vr1 64592 3944

Vr2 34646 1945

Vr3 41465 2502

Vr4 23324 1068

 TABLE 4

TASKS IN ASCENDING ORDER

Task Size(CPU Cycles) SLA

Tl6 4264 Sl4

Tl5 9170 Sl2

Tl2 18250 Sl2

Tl3 23616 Sl8

Tl4 48876 Sl1

Tl1 64200 Sl3

TABLE 5

 VIRTUAL MACHINES IN DESCENDING ORDER

Virtual

Machine
Capacity(CPU Cycles) Speed(b/sec)

Vr1 64592 3944

Vr3 41465 2502

Vr2 34646 1945

Vr4 23324 1068

Figure7. Load variation

0 0 0

4765
3543

2565

2987

1890

1007

3567

2654

1768

0

2000

4000

6000

8000

10000

12000

5 10 15

Lo
ad

(C
P

U
 C

yc
le

s)

Time(ms)

VM
4

VM
3

VM
2

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 3, AUGUST 2014 287

© 2014 ACADEMY PUBLISHER

By calling the PreSet procedure the tasks and virtual

machines are arranged in ascending and descending order.

Table 4 and Table 5 show the result of PreSet procedure

calling.

Initially the status of tasks and virtual machines are

empty. Once the execution of task has been started on

virtual machines, then the values of status record gets

updated after the given period. The capacity of each

virtual machine also changed after starting task

processing. Here the variations are monitored on each

time quantum and updated in the status record. The table

6 shows filtered values from the status record that is

obtained with 30mins time quantum.

Experiments on metrics:

This section concise the values of various metrics

those are taken in account while structuring and

implementing the TSLB algorithm.

The load of each virtual machines obtained by the

procedure Load and the metric values Makespan,

Resource Utilization and Throughput are obtained in the

course of calling their corresponding procedures. The

graph in the Figure 7 shows the load variation of virtual

machines on few of its time quantum.

Resource utilization of an overall system is calculated

through the procedure ResUtil, is the implementation of

an equation (5). Here it is needed to know the difference

between the CPU usage and the resource utilization. This

paper means that CPU usage is the space occupied on a

memory by a task while processing. But resource

utilization is calculated based on the ability of handling

number of CPU Cycles by a virtual machine in a given

period of time. The graph illustrated in Figure 8 shows

the task handled ratio of each virtual machine.

The metric throughput values are collected by

implementing and executing the procedure „Thruput‟

which follows on equation (6).

Throughput means that here the expected ratio of

output in an average execution time of a set of task. The

graph in Figure 9 shows the throughput ratio of each

task.Makespan is calculated by calling the procedure

MakespanCalwhich holds the implementation of equation

(3) and the monitory cost is calculated by

CostCalprocedure.

For calculating monitory cost, the random number β

generated dynamically and measured cost afford for the

utilization of resources. The Figure 10 shows the

relativity of makespan and monitory cost by the values

given through the execution.

VI.RESULT ANALYSIS AND DISCUSSION

This section covers the comparison of overall

performance of the TSLB algorithm against the algorithms

in [2][3][5][6]. The main goal of this TSLB algorithm is to

maximizing the resource utilization by decreasing the

CPU usage of the resources. This was initially achieved

by using task compression [10]. Thus the discussion

hereabout the resource utilization of different algorithms

Figure 8. Resource utilization

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

100 150 200 250

C
P

U
 C

yc
le

s

Time/ms

VM1

VM2

VM3

VM4

Figure 9. Throughput

0

5

10

15

20

100 200 300 400 500 600

18.34

9.13 9.08

16.29

9.17

6.09

Th
ro

u
gh

p
u

t

Time(ms)

TABLE 6

 STATUS RECORD

Virtual

Machines
Tasks

Starting

Time
Finish Time

CPU cycles

allotted

Status of

Tasks

Status of

VM

Capacity

of VM

Vr1 Tl6 11:00 11:02 4264 Completed Underload 60328

Vr3 Tl5 11:00 11:05 9170 Completed Underload 32295

Vr2 Tl2 11:01 11:19 18250 Completed Underload 16396

Vr4 Tl3 11:01 11:25 23324 Completed Normal 0

Vr1 Tl4 11:03 11:06 48876 Completed Underload 11451

Vr3 Tl1 11:06 11:20 32295 Completed Normal 0

Vr2 Tl3 11:20 11:27 291 Completed Underload 28250

Vr1 Tl1 11:26 11:30 9170 Completed Underload 1281

288 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 3, AUGUST 2014

© 2014 ACADEMY PUBLISHER

thoseare revised in the background study section. Table 7

shows the comparison result of usage of resources by the

various scheduling schemes and the Figure 11 shows the

graphical presentation of the same. The TSLB algorithm is

executed with different sets of tasks and with different

capacity of virtual machines. Then those obtained values

are compared with the results produced by other

algorithms.

The comparative result shows that the TSLB algorithm

is produced good makespan than others. At every

quantum of time period the load of each resource are

calculated and reschedule them so the resources are not

falling in wastage of time and help to produce high

throughput than other algorithms. Graphs in Figure 12

and Figure 13 show the variation of throughput and

makespan, monitory cost of different algorithms.

VII.CONCLUSION

Load balancing is one of the researchable area in the

cloud computing and it could be more efficient when

using with scheduling. Here the cost efficient load

balancing scheme is introduced and the algorithm

introduced in it is called TSLB algorithm. Nowadays in the

cloud environment processing huge amount of data from

its more than billion customers is crucial due to the lack

of resources. So the foremost theme of this newly devised

algorithm is to reduce the usage of memory while

processing the tasks from its various clients. Through the

experiments it is also proved that this algorithm is

increasing the resource utilization, producing good

makespan and awarded high throughput. The

performance of this algorithm also compared with other

schemes and proved its effectiveness and the importance

in the cloud computing.

REFERENCES

[1] Barrie Sosinsky, Cloud Computing Bible(2011), Wiley

India Pvt Ltd.

[2] Sen Su, Cost-efficient task scheduling for executing large

programs in the cloud, SciVerseScienceDirect , Parallel

Computing 39 (2013) 177–188.

[3] Jose Luis Lucas-Simarro, “Scheduling strategies for

optimal service deployment across multiple clouds”,

SciVerseScienceDirect, Future Generation Computer

Systems 29 (2013) 1431–1441.

[4] Jinn-TsongTsai,“Optimized task scheduling and resource

allocation on cloud computing environment using

improved differential evolution algorithm”,

SciVerseScienceDirect, Computers & Operations Research

40 (2013)3045–3055".

[5] YuanjunLaili, “A Ranking Chaos Algorithm for dual

scheduling of cloud service and computing resource in

Figure10.Relativity of makespan and monitory cost

8

5

10

13

7

17

4.58

10

10.45

9.54

3.76

14.58

100

105

110

115

120

0.1 0.2 0.3 0.4 0.9 1

Ti
m

e/
m

.s
ec

Cost

Makespan

Monitory Cost

Figure 12. Comparison result of makespan

1.5
2.09

3
2.5

2.031.45

3.87

2 1.78

1.04
2.34

2

1
1.5

1.002

1.01 1.006

0.08 0.05 0.030

1

2

3

4

5

Tl1 Tl2 Tl3 Tl4 Tl5

M
ak

e
sp

an

Task set

POSH
Ranking Chaos
DVFS
TSLB

Figure 13. Comparison result of throughput

45.66

56.57

67.87

78.79
85.67

34.45

45.56 47.45
53.56

58.6532.33
36.67

45.67 48.76

59.08

48.67

68.79
77.88

87.9 90.86

0

20

40

60

80

100

100 200 300 400 500

Th
ro

u
gh

p
u

t(
%

)

Time(m.sec)

POSH

Ranking Chaos

DVFS

TSLB

TABLE 7

COMPARATIVE RESULT OF RESOURCE UTILIZATION

Resources POSH
Ranking

Chaos
DVFS TSLB

V1 2.34 1.45 1.01 3.86

V2 1.24 1.35 1.04 2.01

V3 1.02 1.05 0.5 2.03

V4 1.75 1.83 1.06 2.01

Figure 11. Comparison result of resource utilization

0

1

2

3

4

Vr1 Vr2 Vr3 Vr4

2.34

1.24 1.02
1.75

1.45 1.35
1.05

1.83
1.01 1.04

0.5
1.06

3.86

2.01
2.03

2.01

Sp
ac

e
 in

 m
e

m
o

ry

Resourceset

POSH

Ranking
Chaos

DVFS

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 3, AUGUST 2014 289

© 2014 ACADEMY PUBLISHER

private cloud”, SciVerseScienceDirect, Computers in

Industry, 64(2013)448–463.

[6] Chia-Ming Wu, “A green energy-efficient scheduling

algorithm using the DVFS technique for cloud datacenters”,

SciVerseScienceDirect, 2013, (article in press).

[7] Abraham Silberschatz, Peter Baer Galvin, Greg

Gagne,“Operating System Concepts”, Sixth Edition.

[8] PinalSalot, “A Survey of Various scheduling algorithm in

cloud omputing environment”, IRJET, vol.2, Is. 2, p.131-

135, yr.2013.

[9] Introduction to Data Compression, Guy E. Blelloch

[10] Capo-chichi, E. P., Guyennet, H. and Friedt, J. K-RLE a

“New Data Compression Algorithm for Wireless Sensor

Network”, In Proceedings of the 2009 Third International

Conference on Sensor Technologies and Applications.

[11] AgusDwiSuarjava, “A new algorithm for data compression

optimization”, IJACSA, vol.3, No.8, 2012.

[12] YatendraSahu, “Cloud Computing overview with load

balancing techniques”, International Journal of Computer

Applications, vol.65, No.24,p.0975-8887, 2013.

[13] Building Real-world Cloud Apps with Windows Azure,

Tom Dykstra Rick Anderson Mike Wasson, Microsoft

Corporation, January, 2014

[14] http://nuget.codeplex.com/documentation?title=Getting%2

0Started

[15] https://devcentral.f5.com/articles/intro-to-load-balancing-

for-developers-ndash-the-algorithms#.Us_xJprrbIU

[16] DhananjayM.Dhamdhere, Operating Systems-A Concept-

Based Approach

[17] Andrew S. Tanenbarem, Modern Operating System, 2nd

Edition

[18] Yiqiu Fang, Fei Wang, and Junwei, “A Task Scheduling

Algorithm Based on Load Balancing in Cloud Computing”,

Web Information Systems and Mining

[19] Lecture Notes in Computer science, vol 6318, pp 271-277,

2010.

SubasishMohapatra, Subhadarshini and K.SmrutiRekha,

“Analysis of Different Varients in Round Robin

Algorithms for Load Balancing in Cloud Computing”,

International Journal of Computer Applications, Vol.69,

No.22,pp 0975-8887, 2013.

[20] Canali C and Lancellotti R., “Improving Scalability of

Cloud Monitoring Through PCA - Based Clustering of

Virtual Machines”, Journal Of Computer Science And

Technology, 29(1), pp. 38-52,2014.

290 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 6, NO. 3, AUGUST 2014

© 2014 ACADEMY PUBLISHER

https://devcentral.f5.com/articles/intro-to-load-balancing-for-developers-ndash-the-algorithms#.Us_xJprrbIU
https://devcentral.f5.com/articles/intro-to-load-balancing-for-developers-ndash-the-algorithms#.Us_xJprrbIU

