
An Efficient and Novel Approach for Sequential

Access Pattern Mining

Krishnakant P. Adhiya
Department of Computer Engineering, SSBT’s College of Engineering & Technology, Bambhori, Jalgaon, Maharashtra,

India

Email: kpadhiya@yahoo.com

Satish R. Kolhe

School of Computer Sciences, North Maharashtra University, Jalgaon, Maharashtra, India

Email: srkolhe2000@gmail.com

Abstract—Sequential access pattern mining aims to discover

interesting and frequent patterns from web data. Most of

the sequential pattern mining algorithms are mainly Apriori

based and Pattern-growth based. Various algorithms based

on Apriori based technique bear the cost of multiple scans

of database. Some of the algorithms based on Pattern-

growth technique such as PrefixSpan, requires construction

of projected databases. WAP-tree based mining techniques

require reconstruction of large numbers of intermediate

WAP-trees during mining process, which is very costly. In

this paper, we propose an efficient sequential access pattern

mining algorithm, based on CSB-mine [1]. The proposed

algorithm focuses on constructing Web Access Sequence

(WAS) list, Unique Symbol (US) list, and generation of SAP

table without using WAP trees at any stage. The algorithm

eliminates the use of any separate single sequence testing

algorithm and it does not need any extra data structure to

find first appearance of each symbol, thus saving the space.

Also use of compact data structure avoids the

reconstruction of projection database, which also saves

space and time. The experiments are carried on synthetic

data set and we present the performance of proposed

algorithm considering memory utilization and run time.

Experimental results show that the proposed algorithm

outperforms the PrefixSpan and CSB-mine. The results

show significant improvement in average memory usage and

10% to 15% improvement in the run time.

Index Term—web usage mining, sequential pattern mining,

frequent patterns, prefixspan, CSB-Mine

I. INTRODUCTION

Web mining is considered as use of data mining

techniques to discover and extract information from web

resources. Mainly there are three categories to carry out

web mining task: web usage mining, web structure

mining and web content mining. The web log mining,

also called as web usage mining focuses on techniques

that could predict the behavior of users while they are

Manuscript received July 1, 2015; revised September 21, 2015.

interacting with the web. The user’s navigational

behavior can be stored in web logs. These raw web logs

are stored in various repositories such as client browsers,

proxy servers or web servers and work as input source to

carry out web usage mining process [2, 3].

Various algorithms of sequential pattern mining can be

used to carry out mining task in web usage mining

process [4]. Sequential pattern mining can be considered

as knowledge discovery from the database, which can be

done by discovering frequent sequences where ordering

of elements (element means item or itemset) is important

[4, 5]. Some researchers [1] proposed their design of

personalized web recommendation system using those

frequent patterns [6]. Generally sequential pattern mining

algorithms are differentiated by: number of scans

required for the database, process to generate and store

candidate set of k-itemsets, number of candidate sets

generated and a process to count the support value [4, 5,

7]. Run time and memory utilization are two important

measures for performance evaluation of those mining

algorithms [4]. There exists number of sequential pattern

mining algorithms with different techniques. Two

techniques that are primarily used by most of them are:

Apriori based and Pattern-growth based (also called as

FP-growth) [4, 8]. AprioriTid, AprioriAll, AprioriSome,

GSP (Generalized Sequence Pattern) are Apriori based

algorithms while WAP-mine, FreeSpan, PrefixSpan

belong to pattern-growth technique. Most of Apriori

based algorithms encounter the problems such as:

multiple scans of databases, generation of explosive

number of candidate sequences and difficulties at mining

long sequential patterns [4, 8, 9, and 10]. FP-growth

based algorithms such as PrefixSpan involves the

construction of projected databases in various steps [4, 9].

All these processes may be costly in terms of memory

and run time. The basic mining algorithm based on WAP-

tree is the WAP-mine algorithm which needs only two

scans of sequence database. The algorithm builds a tree at

start and then number of intermediate trees for frequent

subsequences. This results in utilization of more memory

[4, 15].

5©2015 Journal of Emerging Technologies in Web Intelligence
doi: 10.12720/jetwi.7.1.5-12

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

In this paper, we have presented an efficient sequential

access pattern mining algorithm. It is based on CSB-mine

(Conditional Sequence Base mine) [1]. Our proposed

algorithm does not require the construction of initial

WAP-tree and reconstruction of number of intermediate

conditional WAP-trees. There is no need of generating

sub conditional sequence bases separately. Also it

eliminates the need for recursive mining, thus saving

space and time.

The rest of the paper is organized as follows. In section

II, we introduce a study of related work, section III

explains motivation for the proposed work, section IV

details our proposed algorithm with data structures used,

section V presents performance evaluation of proposed

mining algorithm and in section VI conclusion of the

paper is mentioned

II. RELATED WORK

The problem of sequential pattern mining in

transaction database was first presented by Agrawal and

shrikant in [7]. Sequential pattern mining algorithms

mainly belong to two types of categories: Apriori based

and Pattern-growth based [4, 8]. Some algorithms are

based on early-pruning techniques [4].

Rakesh Agrawal et al. [5], presented two algorithms to

find out all association rules: Apriori and AprioriTid. The

Apriori algorithm is used to find frequent itemsets using

candidate generation. It employs a level-wise search,

where all the transactions are scanned to calculate the

support count for each item. The candidates are generated

at different levels by considering only those itemsets that

satisfy the minimum support count. The algorithm runs

with basic principle of: k-itemsets are used to generate

candidate set of (k+1) itemsets using join and prune

actions at different levels. In AprioiTid algorithm, the

original database D is used only at first level to count the

support value. In next levels, 𝐶̅k is used. 𝐶̅k is a set of

items of the form < TID, all k-itemsets corresponding to

TID value>. In first level i.e. k=1, 𝐶̅ 1 corresponds to

original database D. But for next level, i.e. k=2, 3, 4,…n,

𝐶̅k contains only those transaction (TID) entries which

contain any candidate k-itemsets. So number of entries in

Ck will be reduced and it will be less than number of

transactions in original database D. Apriori based

algorithms scans the database many times and generates

huge number of candidates for larger itemsets.

Rakesh Agrawal et al. [7], presented AprioriAll and

AprioriSome algorithms for mining sequential patterns in

a large database. AprioriAll belongs to count-all

algorithm family while AprioriSome belongs to count-

some family. AprioriAll employs the counting of all large

sequences (itemsets), whereas AprioriSome focuses only

on counting the maximal sequences. In AprioriSome

algorithm all the maximal sequences are not found in a

single phase, rather it uses forward phase to count certain

length sequences and all remaining sequences are

counted in backward phase. In AprioriAll, new candidate

sequences are generated from large sequences. The large

sequences are determined using the support value of

candidate sequences. It is shown that both algorithms

perform better in different applications.

Ramakrishnan Srikant et al. [11], presented GSP

(Generalized Sequential Pattern) algorithm, which deals

the limitation of problem definition in previous Apriori

based algorithms. GSP includes sliding time window and

time constraints to generalize the problem definition. It

performs multiple pass for generating candidate

sequences. In each pass a new candidate sequence is

generated using candidate sequence of the previous pass.

For larger itemsets explosive number of candidates may

be generated, so some frequent sequences will be stored

on the disk. It means that the algorithm is not only main

memory algorithm. It is shown that GSP performs better

than AprioriAll [11, 4].

Jiawei Han et al. [12] presented a new sequential

pattern mining algorithm called FreeSpan (Frequent

pattern-projected Sequential Pattern mining). It focuses

to reduce or to avoid the costlier candidate sequences

generation. The basic concept of algorithm is to generate

the projected database. The mining task requires three

scans of sequence database. In the first step, the sequence

database is scanned to create a set of frequent 1-

sequences. In next step, the database is again scanned to

construct a frequent item matrix. This matrix is then used

to create a set of frequent 2-sequences and projected

database. From this, a set of frequent 3-sequences will be

generated, and so on. In this way the algorithm performs

recursive mining on projected database and it terminates

when there is no longer patterns remaining to be mined. It

is shown that it outperforms GSP [12, 4].

Jian Pei et al. [9] proposed a new mining algorithm

called PrefixSpan (Prefix-projected Sequential Pattern

mining). The main advantage of this algorithm is that, no

candidate sequences are generated at any stage of

execution. First, the original sequence database is

scanned to find a set of frequent 1-sequences. Next,

projected database is constructed by considering only

postfix subsequences. The projected database is

constructed recursively to find set of frequent 2-length

sequences, then 3-length sequences, and so on.

Construction of projected database is the only major

effort associated with this algorithm [9, 4, 13].

Jay Ayers et al. [14], proposed a algorithm called

SPAM (Sequential Pattern Mining), particularly for

longer patterns. The algorithm employs construction of

vertical bitmap to represent the given dataset. Then this

bitmap is used to generate the candidate sequences. All

sequences in a sequence database are stored in a tree

called as sequence tree. This sequence tree is traversed

using depth-first strategy and authors claim to be the first

one to use this strategy in sequential pattern mining. The

algorithm uses two pruning methods: S-step pruning and

I-step pruning for performance improvement. It is shown

that SPAM performance is far better than PrefixSpan for

longer patterns. [14, 4].

Jian Pei et al. [15], introduced an efficient sequential

pattern mining algorithm for web logs, called WAP-mine

using a WAP-tree (i.e. Web Access Pattern tree). The

process of mining starts with preprocessing of web logs,

6©2015 Journal of Emerging Technologies in Web Intelligence

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

where main task is to obtain web access sequences user

wise. Then the initial WAP-tree is constructed by

inserting web access sequence and support count. WAP-

mine algorithm is applied to the WAP-tree generated at

start and also applied to the trees generated in between, to

obtain web access patterns. Unlike Apriori based

algorithms, it requires only two scans of sequence

database. Candidate sequences are not generated at any

stage during the mining process. The main problem of

this algorithm is the utilization of more memory, as large

numbers of intermediate trees are generated during

complete process.

Baoyao Zhou et al. [1], presented the algorithm called

as Conditional Sequence Base mining algorithm (CSB-

mine). It does not generate any candidate sequences like

Apriori-based algorithms. Also there is no need to build

any WAP-tree to store web access sequence. The

algorithm starts with preprocessing step to build

conditional sequence base. Next, events queues are

constructed using this conditional sequence base. In

further step, sub-conditional sequence base is constructed

recursively to obtain frequent patterns. Like WAP-mine

algorithm, it does not generate any costlier intermediate

trees. Authors also presented web recommendation

system using CSB-mine algorithm. It is shown that CSB-

mine outperforms WAP-mine algorithm.

III. MOTIVATION

The existing algorithms such as Apriori based suffer

from the major cost such as: database is scanned many

times to obtain frequent patterns and specifically for large

number of itemsets explosive candidate sequences are

generated [4, 8, 9, 10]. Other algorithms based on

Pattern-growth either involve the construction of

projected databases or construction of number of trees

during the complete mining process [4, 9, 15]. The

conditional Sequence Base (CSB) algorithm does not

construct any costlier tree at any stage, but it generates

sub conditional sequence base recursively to obtain

frequent patterns [1]. It also includes a process to test if

all generated sequences can be merged to form a single

sequence. If yes, then the test process will be terminated.

For the evaluation of sequential pattern mining

algorithms, run time and memory utilization are two

important measures [4]. So we have tried to improve the

performance of our algorithm by considering these two

factors. Our proposed algorithm avoids recursive mining

for sub-CSB and does not use any extra data structure to

store first appearance of symbol. It stores only pointer to

first appearance of symbol of first WAS list in Unique

Symbol list with support count and then consecutive

occurrence pointers are stored in WAS set as shown in

Fig. 4, to form linked list. This technique saves space and

time. The used data structure is compact and also the

construction of projected database is avoided. This again

saves space and time. At the end, a data structure SAP is

generated which holds frequent patterns of all lengths

with their support value. SAP can be further useful for

developing system like web recommendations or

personalization.

IV. PROPOSED MINING ALGORITHM

Let I is a set of unique items (item may also be referred

as event or symbol). While surfing the web, users access

various web resources e.g. it may be any URL, topic or

web page. Assume I = {p, q, r, s, t}, then p, q, r, s and t

can be any URL, topic or web page [1]. Let WS =

i1i2i3….in , where ix ϵ I for 1 ≤ x ≤ n . WS is called as web

access sequence. The length of WS is denoted by n and it

is │WS│. Note, ix and iy are not necessarily different. It

means repetition of items or symbols is allowed [1]. e.g.

WS = qpsprs is a web access sequence. Table I shows

various web access sequences as a sample database. The

table contains five web access sequences i.e. it contains

five WAS lists.

TABLE I. VARIOUS WEB ACCESS SEQUENCES AS A SAMPLE

DATABASE

Web Access Sequence (WAS)

pqpsprs

tptqrpr

qpuptr

puqprurs

psqs

If web access sequence WS = psqs, then if WSprefix =

p then WSsuffix will be sqs. WS can also be denoted as

WS=p+sqs = ps+qs = psq+s [1].

Let, any web access sequence database = WSDB =

{WS1, WS2, …., WSm}, where m is the size of database

and it is │WSDB│. Any web access sequence WS is

called as sequential access pattern if support of WS is ≥

minimum threshold value called as MinSupport. e.g. if

MinSupport = 60% then it is required to find all

sequential access patterns supported by at least 60% web

access sequences from the sample database [1].

Following are some terms and definitions used in our

proposed algorithm:

 InitWAS is initial WAS. It is the set of all web

access sequences in the given database, as shown

in Table I.

 The WAS generated in one session is considered

as one WAS.

 Sessions file: It is a collection of sessions.

 WASLEN: It is a number of WAS in a session file.

 PerSupport : Percentage support.

 WAS Set: A set/collection of all WAS lists. WAS

list is also called as Event Queue (EQ)

 US list: Unique Symbol list, also called as Header

Table (HT).

 Ui: Unique Symbol i.

 SAPn: Sequential Access Patterns of length n.

The data structures used in the proposed algorithm are

as follow:

A. WAS List Node Structure

Symbol Next Link

 Symbol: Each symbol of a WAS list.

 Next: It points to next appearance of a same

symbol in next WAS list of WAS set.

 Link: It points to next symbol in WAS list.

7©2015 Journal of Emerging Technologies in Web Intelligence

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

B. Unique Symbol List Node Structure

Symbol Symbol Count Next Link

 Symbol: Unique symbol found in a WAS list.

 Symbol Count: Number of times symbol found in

WAS set (count once even if found more than

once in a WAS list)

 Next: It points to first appearance of a same

symbol in next WAS list.

 Link: It points to next symbol in US list.

The WAS list node structure used in our algorithm, is

compact data structure, thus requires less memory. The

proposed algorithm consists the steps such as:

construction of WAS list, construction of Unique Symbol

(US) list, preparing Conditional Suffix table and

generation of SAP table.

Initially Web Access Sequence (WAS) set and Unique

Symbol (US) list are constructed. The WAS set is

constructed from session file, where session file contains

number of web access sequences. The US list is

constructed by considering each symbol (event) in WAS

set whose support count is greater than or equal to the

minimum support. So, US list contains only those unique

symbols having support count ≥ minimum support.

Symbols with count < minimum support are removed

from WAS set. Then the conditional suffix table is

constructed for each symbol in US list, to link that

symbol with WAS set. The use of compact data structure

and the technique of linking used, save space and time.

All lists like WAS list, US list etc. are maintained as

linked lists. Finally, Sequential Access Pattern (SAP)

table is generated, which stores the frequent patterns.

The proposed mining algorithm is as follow:

1. Construct WAS set and US list

1.1. Construct WAS set from sessions file

1.1.1. Construct WAS list for each session

1.2. Define MinSupport = (PerSupport / 100) *

WASLEN

1.3. Construct US list

1.3.1. For each Ui in WAS set, add Ui to US list if its

count is ≥ MinSupport (multiple appearances of

a symbol in a WAS is counted as one)

1.4. Remove symbols from WAS set which are not

members of US list

1.5. Prepare Conditional Suffix table for each

symbol Ui in US list

1.5.1. Link the symbol Ui from US list with first

appearance of symbol Ui in WAS set.

1.5.2. Link the first appearance of symbol Ui in WAS

list with the first appearance of same symbol Ui

in the next WAS list, and continue linking till

the end of WAS set.

2. Generate SAP

2.1. Initialize SAP table to US list (SAP1 = US list)

2.2. Generate n+1 length Sequential Access Patterns

2.2.1. Repeat until SAPn+1 are generated with support

count less than MinSupport

2.2.1.1. For each sequence SEQ of length ‘n’ from SAP

table generated in previous iterations, do

2.2.1.1.1. For each symbol Ui from US list

2.2.1.1.1.1. Use WAS set to find SEQ + Ui, with

 support count more than MinSupport

2.2.1.1.1.2. Add SEQn+1 = SEQn + Ui to SAP table.

As shown in Table I, InitWAS = {pqpsprs, tptqrpr,

qpuptr, puqprurs, psqs } with WASLEN as 5. To be

qualified as a conditional frequent symbol (event) with

MinSuport = 60% and WASLEN = 5, a symbol must

have a count of at least 3 (multiple appearance of a

symbol in a WAS is counted as one). Therefore, the

conditional frequent symbols are (p: 5), (q: 5), (s: 3) and

(r: 4). The frequent access symbol is represented as

(symbol: count), and count means number of sequences

which contains the given symbol.

After completion of step 1.1, WAS set will be

constructed as shown in Fig. 1.

Figure 1. WAS set

After completion of step 1.3, symbols with less than

support value 3 (i.e. non frequent symbols t and u) are

removed from WAS set and unique symbol list.

Therefore, the US list will be as shown in Fig. 2.

Figure 2. US list

After completion of step 1.4, contents of WAS set will

be as shown in Fig. 3.

Figure 3. WAS set after removing non frequent symbol t and u

After completion of step 1.5, WAS set and unique

symbols list entries will be linked as shown in Fig. 4.

8©2015 Journal of Emerging Technologies in Web Intelligence

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

Figure 4. Linking of WAS set and US list.

All suffix sequences of p, q, r and s will be as follow:

For (p): {qpsprs, qrpr, pr, qprrs, sqs}.

For (q): {psprs, rpr, ppr, prrs, s}.

For (r): {s, pr, rs}.

For (s): {prs, qs}.

The proposed method is more efficient as every data

structure is maintained as linked list, so there is no need

of generating sub conditional sequence bases separately.

They are mined directly from linked list. After

completion of step 2, the complete sequential access

patterns (SAP) with MinSupport of 60% will be as shown

in Table II.
TABLE II.

Length of
Patterns

Sequential Access Patterns (SAP)

1 p : 5, q : 5, s : 3, r : 4

2 pp :5, pq : 4, ps : 3, pr : 4, qp : 5,qr : 4

3 pqp : 4, pqr : 3, qpr : 4

V. PEFORMANCE EVALUATION OF PROPOSED

MINING ALGORITHM

Run time and memory utilization are two important

measures for performance evaluation of mining

algorithms. In our proposed algorithm, as every data

structure is maintained as linked list there is no need of

generating sub conditional sequence bases separately.

They are mined directly from linked list. Also there is no

need of separate single sequence testing algorithm, as

generation stops when no n+1 length sequence is

generated having count ≥ support value. The mining is

done by processing inter connected WAS set and US list.

Also the algorithm uses a compact data structure for

WAS list node structure and hence there is no need to

reconstruct the projected database. All these techniques

will save memory space and run time. The algorithm uses

different technique to link US list with WAS list. WAS

set is a collection of WAS lists. Every US node holds a

unique symbol and its count occurred in WAS set. It also

points to the first appearance of the same symbol in the

next WAS list. First appearance of any symbol in WAS

list points to first appearance of same symbol in next

WAS list in sequence of WAS set. In short, we store only

pointer to first appearance of symbol of first WAS list in

Unique Symbol list with support count and then

consecutive occurrence pointers are stored in WAS set as

shown in Fig. 4, to form linked list. This saves memory

space and time.

TABLE III. RESULTS OF PREFIX SPAN MINE ALGORITHM

Support
in %

Support
Number of Symbols

with MinSupport

Total Number of

Sequential Access

Patterns generated

Average

Memory
Usage

(in KB)

Run Time
(in Min:Sec)

2.0 200 462 533 40319 1:58

1.9 190 475 569 39290 2:09

1.8 180 492 620 40077 2:39

1.7 170 510 692 39445 3:22

1.6 160 526 771 40717 3:40

1.5 150 540 878 39557 4:36

1.4 140 573 1013 39646 6:07

1.3 130 598 1240 39920 8:23

1.2 120 621 1570 40162 11:26

1.1 110 641 1974 40194 16:40

9©2015 Journal of Emerging Technologies in Web Intelligence

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

TABLE IV. RESULTS OF CSB-MINE ALGORITHM

Support
in %

Support
Number of Symbols

with MinSupport

Total Number of

Sequential Access

Patterns generated

Average

Memory
Usage

(in KB)

Run Time
(in Min:Sec)

2.0 200 462 533 20086 1:56

1.9 190 475 569 20091 2:07

1.8 180 492 620 20098 2:33

1.7 170 510 692 20109 3:23

1.6 160 526 771 20117 3:43

1.5 150 540 878 20120 4:36

1.4 140 573 1013 20139 6:01

1.3 130 598 1240 20168 8:21

1.2 120 621 1570 20203 11:27

1.1 110 641 1974 20225 16:46

TABLE V. RESULTS OF PROPOSED MINING ALGORITHM

Support

in %
Support

Number of Symbols

with MinSupport

Total Number of
Sequential Access

Patterns generated

Average

Memory

Usage
(in KB)

Run Time

(in Min:Sec)

2.0 200 462 533 9386 1:27

1.9 190 475 569 9457 1:41

1.8 180 492 620 9548 2:01

1.7 170 510 692 9630 2:45

1.6 160 526 771 9693 3:25

1.5 150 540 878 9793 4:18

1.4 140 573 1013 9901 5:51

1.3 130 598 1240 10018 8:05

1.2 120 621 1570 10167 10:36

1.1 110 641 1974 10278 14:29

TABLE VI. NUMBER OF SEQUENTIAL ACCESS PATTERNS OF DIFFERENT LENGTHS

Support

in %
Support

Length of Sequential Access Patterns
Total Number of

Sequential Access

Patterns generated 1 2 3 4 5 6 7

2.0 200 462 71 - - - - - 533

1.9 190 475 94 - - - - - 569

1.8 180 492 128 - - - - - 620

1.7 170 510 182 - - - - - 692

1.6 160 526 239 5 1 - - - 771

1.5 150 540 330 7 1 - - - 878

1.4 140 573 428 11 1 - - - 1013

1.3 130 598 598 32 12 - - - 1240

1.2 120 621 844 41 36 21 7 - 1570

1.1 110 641 1202 65 37 21 7 1 1974

For evaluation, we have implemented CSB-mine and

our proposed mining algorithms in Java. To compare our

experimental results, we have used the available standard

code of PrefixSpan algorithm. The PrefixSpan algorithm

is proposed by Jian Pei et al. [9]. These experiments are

performed on Pentium Dual core T4200 @ 2.00 Ghz

machine with Windows 7.0 Enterprise N operating

system. We have used publicly available synthetic data

set T25i10D10K to carry out our experiments. It is made

available by IBM Quest data mining project. The

10©2015 Journal of Emerging Technologies in Web Intelligence

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

correctness of the implementations is confirmed by

checking that the frequent patterns generated for the same

dataset by all algorithms are the same. Table III shows

the results of PrefixSpan mine algorithm, while Table IV

gives the results for CSB-mine algorithm and finally

Table V shows the results of proposed mining algorithm.

Run time means total execution time. It includes time

required to read session file, build data structure and

generate final patterns. Memory usage implies the

memory required to store all data structures and

generated final patterns. Table VI shows the number of

sequential access patterns generated, with different

lengths and different support.

Fig. 5 shows the memory usage comparison between

PrefixSpan, CSB-mine and our proposed mine algorithms.

It shows that the proposed mine algorithm requires less

memory as compared to other two algorithms for all

support values. Fig. 6 shows the run time comparison

between all three algorithms and shows 10% to 15%

improvement for proposed mine algorithm.

Figure 5. Memory usage comparison between PrefixSpan, CSB-mine and proposed mine algorithms.

Figure 6. Run time comparison between PrefixSpan, CSB-mine and proposed mine algorithms.

VI. CONCLUSION

In this paper, we have proposed an efficient algorithm

for mining sequential access patterns from web access

sequence (WAS) database. The performance of the

proposed mining algorithm has been evaluated in

comparison with PrefixSpan and CSB-mine algorithms.

Our proposed algorithm does not require construction of

initial tree or intermediate conditional trees. It eliminates

the need for generating sub conditional sequence bases

separately, does not require any separate single sequence

testing algorithm, avoids to use any separate data

structure to store first appearance of symbol and uses a

compact data structure and thus avoids the reconstruction

of projected database. All these techniques save

considerable amount of space and time.

Experimental results have shown that the proposed

algorithm outperforms the PrefixSpan and CSB-mine

algorithms. The results show significant improvement in

average memory usage and 10% to 15% improvement in

the run time.

REFERENCES

[1] Y. Z. Bao, C. H. Siu, and A. C. Ming Fong, “Efficient sequential
access pattern mining for web recommendations,” International

0

10000

20000

30000

40000

50000
1

1
0

1
2

0
1

3
0

1
4

0
1

5
0

1
6

0
1

7
0

1
8

0
1

9
0

2
0

0

M

e

m

o

r

y

i

n

K

B

Support Value

PrefixSpan

CSB

Proposed Algo

0:00

4:48

9:36

14:24

19:12

1
1

0

1
3

0

1
5

0

1
7

0

1
9

0

16:40 T

i

m

e

i

n

M

I

N

:

S

E

C

Support Value

PrefixSpan

CSB

Proposed Algo

11©2015 Journal of Emerging Technologies in Web Intelligence

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

Journal of Knowledge Based and Intelligent Engineering Systems,
ACM, vol. 10, no. 2, pp. 155-168, April 2006.

[2] J. Srivastava, R. Cooley, M. Deshpande, and P. N. Tan, “Web

usage mining: Discovery and applications of usage patterns from
web data,” SIGKDD Explorations, ACM SIGKDD, vol. 1, no. 2,

pp. 12-23, Jan. 2000.

[3] K. R. Suneetha and R. Krishnamoorthi, “Identifying user behavior
by analyzing web server access log file,” IJCSNS International

Journal of Computer Science and Network Security, vol. 9, no. 4,

April 2009.
[4] N. R. Mabroukeh and C. I. Ezeife, “A taxonomy of sequential

pattern mining algorithms,” ACM Computing Surveys, vol. 43, no.

1, pp. 3:1-3:41, November 2010.
[5] R. Agrawal and R. Srikant, “Fast algorithms for mining

association rules,” in Proc. 20th VLDB Conference, 1994, pp. 487-

499.
[6] U. Niranjan, R. B. V. Subramanyam, and V. Khanaa, “An efficient

system based on closed sequential patterns for web

recommendations,” IJCSI International Journal of Computer
Science Issues, vol. 7, no. 3, no. 4, pp. 26-34, May 2010.

[7] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc.

International Conference on Data Engineering, 1995, pp. 3-14.
[8] K. C. Srikantaiah, N. K. Krishna, K. R. Venugopal, and L. M.

Patnaik, “Bidirectional growth based mining and cyclic behaviour

analysis of web sequential patterns,” International Journal of
Data Mining & Knowledge Management Process, vol. 3, no. 2,

March 2013.

[9] J. Pei, J. W. Han, B. Mortazavi-Asi, H. Pinto, Q. M. Chen, U.
Dayal, and M. C. Hsu, “PrefixSpan: Mining sequential patterns

efficiently by prefix-projected pattern growth,” in Proc. 2001,

International Conference Data Engineering, April 2001, pp. 215-
224.

[10] H. Wang, C. Yang, and H. Zeng, “Design and implementation of a

web usage mining model based on fpgrowth and prefixspan,”
Communications of the IIMA, vol. 6, no. 2, pp. 71-86, 2006.

[11] R. Srikant and R. Agrawal, “Mining sequential patterns:

Generalizations and performance improvements,” in Proc. 5th
International Conference on Extending Database Technology:

Advances in Database Technology, Lecture Notes in Computer
Science, vol. 1057, Springer, 1996, pp. 3-17.

[12] J. W. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C.

Hsu, “Free span: Frequent pattern-projected sequential pattern

mining,” in Proc. 6th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, 2000, pp. 355-359.

[13] J. Pei, J. W. Han, B. Mortazavi-Asl, J. Y. Wang, H. Pinto, Q. M.
Chen, U. Dayal, and M. C. Hsu, “Mining sequential patterns by

pattern-growth: The prefixspan approach,” IEEE Transactions on

Knowledge and Data Engineering, vol. 16, no. 11, pp. 1424-1440,

November 2004.

[14] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick, “Sequential pattern

mining using a bitmap representation,” in Proc. 8th ACM
SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2002, pp. 429-435.

[15] J. Pei, J. W. Han, B. Mortazavi-Asl, and H. Zhu, “Mining access
patterns efficiently from web logs,” Knowledge Discovery and

Data Mining, Current Issues and New Applications, Lecture Notes

in Computer Science, vol. 1805, Springer, 2000, pp. 396-407.

Krishnakant P. Adhiya

received the B.E.
degree in Computer Engineering from

Amravati University, India in 1990, the

M.E.

degree in Computer Science and Engineering
from Allahabad University, India in 1996. He

is currently working as Associate Professor in

department of Computer Engineering at
SSBT’s College of Engineering and

Technology, Bambhori, Jalgaon,

India. He

has teaching experience of 23 years. His
research interest lies

in the field of Data Mining.

Satish R.

Kolhe

received the B.E. degree in

Computer Engineering from Amravati

University, India, in 1991, the

M.Tech.

degree in Engineering Systems from

Dayalbagh Educational Institute, Agra, India,

in1994, and the Ph.D. degree in Computer

Engineering from North Maharashtra

University,

Jalgaon,

India, in 2007. He is

currently working as a Professor with the

School of Computer Sciences, North

Maharashtra University. His research interests include artificial
intelligence and pattern recognition. Prof. Kolhe is a Fellow Life

Member of Institute of Electronics and Telecommunication Engineers,

India, Life Member of Computer Society of India, India, Linguistic

Society of India, and Indian Science Congress Association. He is also a

member of Special Interest Group in Artificial Intelligence, India

12©2015 Journal of Emerging Technologies in Web Intelligence

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

