
Enterprise Application Integration using

Publish/Subscribe REST with IP Multicast

Fadel Cheteng and Rattakorn Poonsuph
Graduated School of Applied Statistics, NIDA, Thailand

Email: fadelc99@hotmail.com, rattakorn@as.nida.ac.th

Abstract—Web services is a technology standardized by

World Wide Web Consortium or W3C with the purpose of

enabling software the ability to coordinate with one another

regardless of the programming languages, technologies and

platforms. Web Services is widely used in the integration of

various applications and platforms in each organization so

that the common data can be communicated and

transferred to the silo applications on any platform.

However, Web Services has significant limitations; which is

its inability to indicate the latest state of the common data

across applications. In order to do so, the connected

application programs have to constantly retrieve the

common data. This procedure not only overuses the

network and causes a bottle neck issue, but it can also

generally affect the response time, further causing the delay

of the entire network. There were many other researches

that try to resolve these problems, but were unable to

resolve almost all of the aforementioned problems.

Therefore, this research paper will be focusing on the

network usage's most efficient method, which is to use

public/subscribe Web Services on REST lightweight

protocol along with the multicast data transmission that

transfers a single packet of data only once to the networks

so that all of the connected silo’s applications will receive it

simultaneously. The solution can be applied with mobile

devices that maintain common data across the mobile

devices.

Index Terms—EAI, web services, IP multicast, REST

I. INTRODUCTION

Information nowadays is essential day-to-day

operations for any organizations. Application program is

designed to process data and provides intelligence

information to manage the business operations. However,

the application programs have been grown organically

within the organization based on their business and user’s

demands. Usually, there was no strategic planning or

architectural blueprint to structure the application

programs that are to be integrated in a unified pattern.

Most of the application programs were acquired or

developed independently. In other words, it was

developed by the variety of programming languages,

technologies and platforms without them being linked or

exchanged of the common data or information.

Manuscript received May 20, 2015, revised August 29, 2015.

Consequently, the data and information of each

application programs contains inside their applications.

Nevertheless, today's ever doubling demand for

information leads to the emerging of a new digital

businesses such as business to business trade (B2B) [1]

with mobility platforms. Moreover, there are rapid

changes in the business operations as well. An enterprise

application integration or EAI [2] is, as a result,

necessary and crucial for organizations these days.

Web Services [3] is a technology standardized by

World Wide Web Consortium or W3C with the purpose

of enabling software the ability to coordinate with one

another regardless of the languages and platforms. Thus,

it is widely used in the integration of various application

programs and platform in each organization so that

common data can be communicated and transferred to

solo applications on any platform. Web Services is

consisted of three main components: SOAP (Sample

Object Access Protocol) [4], WSDL (Web Service

Description Language) [5] and UDDI (Universal

Description Discovery and Integration) [6]. All of them

are in XML (Extensible Markup Language) format that

are simple but self-describing messages. Their self-

description means that they do not depend on any

platform or programming languages. As for the

application of Web Services, it is divided into two

sections: Service Provider and Service Client. Firstly, the

Service Client will search for the self-registered service

from UDDI in order to obtain the WSDL document (or

the client can get it directly from the Service Provider).

WSDL is a document that informs the Service Provider;

the methods that are available for the system call,

including the formats and types of the parameters in

which each method requires such as Endpoint. When the

Service Client receives the WSDL, it will be used to

make a Stub or Proxy. Then, the Web Services can be

used through this newly-made stub. In 2000, Roy

Fielding put forward the new type of Web Services,

which is the REST or Representational State Transfer [7].

It is an application of the HTTP protocol method with the

URI or Universal Resource Identifiers when operated.

For instance, the GET method is used in order to extract

data resource from the Web Services as indicated in the

URI.

Using Web Service in the EAI context is a challenged

implementation. Ranges of silo application programs in

organization maintain common data such as customer

20©2015 Journal of Emerging Technologies in Web Intelligence
doi: 10.12720/jetwi.7.1.20-24

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

information, product catalog, or account receivable

profile. These common data could be updated in a silo

application program, while others were not realized of

those changed. Web Service could be used to exchange

the common data among silo application programs. The

point-to-point Web Service integration is to sync the

common data as a direct link from one application to

another. At the end, the direct links of point-to-point Web

Service are all across the silo application programs, it

creates burden to developer and manager in order to

maintain these messed up architecture for enterprise

application system. On the other hand, the

public/subscribe Web Services with a coordinated broker

is the most suitable integration architecture of enterprise

application integrations. A publisher will send only an

updated common data package to the coordination broker

on a certain topic. A subscriber may then choose listen to

the topics of their own interests and received updated

common data packages in order to update the copy of its

common data inside their internal database. The most

benefits of this architecture is that the publisher and

subscriber are only connected to the coordinated broker,

therefore the publisher has less burden in order to send

the common data directly over to each subscriber

regardless number of subscribers.

Figure 1. Point-to-Point web services for enterprise application
integration

Figure 2. Publish/Subscribe web services for enterprise application
integration

One significant limitation of enterprise application

integration using Web Services is its inability to indicate

the latest state of the common data amongst silo

application program. In order to do so, the connected

application programs have to constantly retrieve the

common data from the source application programs. This

procedure not only overuses the network and may cause a

Bottle neck issue when the size of the data is too large or

when there are too many clients, but it can also generally

affect the response time causing the delay of the entire

network. Hence, there were researches done in order to

get rid of the issues that will be covered in more details in

the paper.

II. RELATED WORKS

The following research aims to resolve the

aforementioned problems and have adapted the

Publish/Subscribe architecture to their resolutions. In

2003, Brenna and Johansen [8] used this procedure with

WAIF Proxy. Firstly, the Service Client registers the

WAIF Proxy device and retrieves the certain data to his

or her own device. Then, if there were data alterations on

the Service provider, the data would be transferred to the

Service Client's registered device as seen in Fig. 3 (a.).

However, the disadvantage of this method is that it

requires the user to have the WAIF Proxy to be

constantly retrieving the updated data. If the data size is

too large and being retrieved too many times, the bottle

neck problem would occur to the Service Provider's

device. In 2009, Feng, Xue and Zhang [9] adapted the

UDDI system to their work. They started from having the

Service Providers register the UDDI and the Service

Clients would come register for the topics of their own

interests as seen in Fig. 3 (b.). When there is any updating

in the data, the Service Providers would send signals to

the UDDI which would then be transferred and indicated

to the clients so that they could retrieve the data from the

Service Providers. However, this procedure causes

complication as each application program interface

requires its own queuing system. In 2010, Skjervoid,

Hafsøe, Johnsen, and Lund [10] utilized a central broker

called Delay and Disruption Tolerant SOAP Proxy

(DSProxy). DSProxy is in both sides of the Service

Providers and the Service Clients. The DSProxy in the

Service Providers' side would retrieve data from the

Service Providers to constantly examine them for any

specific changing information. If any updated data was

found, a signal would be sent to the DSProxy in the

Service Clients' side in order to inform them of data

alteration and the information retrieval from the Service

Providers' side. This method helps lessen the unnecessary

use of the network. However, its practicality faces

problems as the protocol is not of standard protocol as

SOAP/REST protocol and therefore has limitation in the

application program implementation in the real world.

Web Services

Provider

WAIF

Proxy
Web Services

Client

Push

Subscribe

Pull

Web Services

Provider

Subscribed Conditions

Publish UDDI
Message

Queue
Inform

UserSubscribe

Request

Response (Data Message)

Figure 3. Publish/Subscribe architecture used in troubleshooting. a)
WAIF Proxy and b) UDDI registration system.

Later in 2012, there was a research done by Thanisa

Noomnon [11] that can eliminate the bottle neck problem

21©2015 Journal of Emerging Technologies in Web Intelligence

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

and can also offer a better network usage by following a

Push-Based architecture as seen in Fig. 4. The Push-

Based architecture is consisted of Broker, Service

Provider and Service Client. The Broker is used to set up

a Topic and create a WSDL document which is

considered as a canonical message for the chosen topic so

that the Service Provider and Service Client can use them

together.

Service

Provider
Broker

Service

Client

WSDL

Stub StubWeb Services

Interface

Web Services

Interface

Figure 4. Overview of calling web service using Push-Based method

Meanwhile, the Service Provider would bring in the

WSDL document as a client and transform it into a stub.

The Service Provider swaps the role by transferring the

data over to the Broker's interface. Simultaneously, the

Service Client would also bring in the same WSDL

document as the Service Provider but it would set up its

own Web Service interface endpoint as a data receiver in

order to update their internal data. After that, the Service

Client would register by notifying the Endpoint of his

Web Service to the Broker. But consequently, whenever

the Service Provider makes any alteration to the data, the

updated data from Stub would transfer the data onto the

Broker's interface. Then, the Broker would send the data

to each registered Service Client directly. With this

procedure, the bottle neck issue would be eliminated of as

the application programs on the Service Provider

constantly transfer the data to the Service Clients so that

they receive the latest edited data. So the constant pooling

of the updated data on the Provider Client is no longer

needed.

Upon consideration, it is noticeable that the Broker has

to keep sending out the same data packet to a registered

Service Clients. However, if the number of the clients

was too high or the sizes of the data were too large, the

network overusing issues would follow.

III. RESEARCH CONCEPTUAL MODEL

This research comes up with the practical solution of

using the network in the best efficient way possible by

having Broker send one set of data one time to the IP

Multicast [12] in which will be received by the Agent in

the recipient's side before transferring onto the Service

Client as seen in Fig. 5.

Service

Provider
Broker

Service

Client

WSDL

Stub StubWeb Services

Interface

Web Services

Interface

Agent

Stub

Port

IP

Multicast

Figure 5. Components of web service using IP multicast.

Additionally, most of the previous researches typically

use SOAP protocol as the data transmission between

Service Provider and Service Client. REST protocol,

however, has a better performance because it bears

minimal overhead on top of HTTP. This means that the

performance of the network (i.e. bandwidth). Since REST

uses standard HTTP it is much simpler in creating clients,

developing APIs. REST also permits many different data

formats that have been beneficial. JSON, for example,

usually is a better fit for exchanging data and parses

much faster than XML in SOAP.

The research objective is to quest for the best solution

using Web Service as the integration platform. So that we

applied the push-based method [11] of inversion of Web

services and improving them with REST protocol along

with IP Multicast.

Figure 6. Sequence diagram implementation Push base/Subscribe SOAP & REST IP multicast

22©2015 Journal of Emerging Technologies in Web Intelligence

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

IV. RESEARCH METHODOLOGY

The research based on real experimental of the

research concepts. More than 30 servers on MS Windows

platform have been used in the research experiment

which was set up as Services Providers and Service

Clients. The implementation of the Publish/Subscribe

REST with IP Multicast in the push-based architecture is

set up based on the following assumptions: First, there is

only one operation in a unique topic that both Service

Providers and Service Clients are used to exchange the

common data. The common data is global information

that is resided within all Service Providers and Service

Clients. Secondly, there can be multiple Services

Providers in a topic and there is no Services Provider that

can also be a Service Clients of the same time. Lastly, a

program of Service Providers and Service Clients has

been developed by using a standard SOAP protocol and

REST protocol. However, there are internally modifying

these standard protocols to adapt the transmission of data

package using IP Multicast.

There are two phases for the experimental

implementation, which is the registration phase and the

run-time phase. The registration phase is for announcing

of a topic which the common data cloud be exchanged.

The registration defines the WSDL topics for SOAP

protocol or Web-API method for the REST protocol that

used as a common interface for both Service Providers

and Service Clients. The next step is the subscription

process. The interested Service Clients must subscribe at

least one topic to the broker for received a message from

Service Providers. For the run-time phase, the Service

Providers submits the updated data portion of common

data to the broker, where then the broker forwards those

updated data portion to all the subscribers.

V. EXPERIMENTAL RESULT

The research experiment is operated by using IP
Multicast and is divided into two parts. The first part is an
experiment using SOAP Web Services to compare the
former data transfer with Multicast. The result has seen in
Fig. 7. The larger the number of the Service Clients'
devices is the better uses of multicast network. The
comparison on the 30 service clients using SOAP base in
Inversion Web Services is around 1,792.50 milliseconds
and using IP Multicast is approximately 668.00
milliseconds by average, which is 62.73% better.

The second part of the experiment is an IP Multicast

data transfer comparison between SOAP and REST Web

Services. The performances of REST Web Services are

found to be working better than SOAP around 73.9%.

Figure 7. Comparison between existing data transmission method and multicast IP method.

Figure 8. Comparison between SOAP and REST while applied multicast IP method to both of them.

VI. CONCLUSION

There is significant evidence to prove that the REST
protocol and IP Multicast enhances the response time of
an enterprise application integration based on Web
Services. Publish/subscribe REST protocol with IP
Multicast push-based model is the network usage's most
efficient method. The experimental results showed that a
significant number of a reduction in the network
bandwidth and improvement in response time in
exchange of updated information to all publisher service
providers and subscribed service clients.

The experiment model is not limited to enterprise

application integration area. But it can also be used in

mobile devices as well. Currently, from the widespread

use of mobile devices in a country. Each mobile device is

considered as silo application that maintains its own data.

In order to exchange the data automatically with their

families, friends, colleagues, etc. such as contact

information, or available inventory of products, this

approach may be used to enhance the network bandwidth

in distributing the common data among all mobile

devices.

23©2015 Journal of Emerging Technologies in Web Intelligence

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

ACKNOWLEDGMENT

The author would like to thank the anonymous

reviewers for valuable, detailed, and careful comments

and feedback.

REFERENCES

[1] D. Nedbal, “Guiding B2B integration of business process and

services: A process model for SMEs,” in Proc. International
Conference on Emerging Data and Web Technologies, 2011.

[2] D. S. Linthicum, Enterprise Application Integration, Boston:

Addison Wesley, 1999.
[3] (February 10, 2013). World Wide Web Consortium (W3C). Web

Services. [Online]. Available:
http://www.w3schools.com/webservices/default.asp

[4] (February 10, 2013). World Wide Web Consortium (W3C).

[Online]. Available:

http://www.w3schools.com/webservices/ws_soap_intro.asp

[5] (February 10, 2013). World Wide Web Consortium (W3C).

WSDL. [Online]. Available:

http://www.w3schools.com/webservices/ws_wsdl_intro.asp

[6] (February 10, 2013). World Wide Web Consortium (W3C).

[Online]. Available:

http://www.w3schools.com/webservices/ws_wsdl_uddi.asp

[7] R. T. Fielding, “Architectural styles and design of network-based
software architectures,” Ph.D. dissertation, University of

California, Irvine.

[8] L. Brenna and Johansen, “Engineering push-based web services,”
International Journal of Web Services Practices, 2005.

[9] X. Feng and T. Zhang., “Research on data exchange push

technology based on message-driven,” International Join

Conference on Artificial Intelligence, 2009.

[10] E. Skjervold, F. T. Johnsen, and K. Lund, 2010, “Enabling

publish/subscribe with COTS web services across heterogeneous

networks,” in Proc. IEEE International Conference on Web

Services. Miami, FL, 2010, pp. 660-668.
[11] T. Noomnonda, “Inversion of web service invocation using

publish/subscribe push-based architecture,” Ph.D. dissertation,

National Institute of Development Administrator (NIDA), 2012.
[12] D. Makofske and K. Almeroth, “Multicast sockets practical guide

for programmers,” San Francisco: Morgan Kaufmann, 2002.

Fadel Cheteng received the degree in

computer sciences from Ramkamheng

University. He is now working at Miracle
Advance Technology Ltd., Thailand, as Team

Leader.

Rattakorn Poonsuph received the Sc.D.
(Computer Science) from University of

Massachusetts Lowell. He is an Assistant

professor in the School of Applied Statistics,
National Institute of Development

Administrator (NIDA), Thailand.

24©2015 Journal of Emerging Technologies in Web Intelligence

Journal of Emerging Technologies in Web Intelligence Vol. 7, No. 1, November 2015

http://www.w3schools.com/webservices/default.asp
http://www.w3schools.com/webservices/ws_soap_intro.asp
http://www.w3schools.com/webservices/ws_wsdl_intro.asp
http://www.w3schools.com/webservices/ws_wsdl_uddi.asp

